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Tire appearance defect detection based onmachine vision is an effective technology
to improve the tire production quality. The detection process can be completed by
the way of non-destructive testing. Therefore, more and more researchers are
paying attention to this technology. However, tires are characterized by single
block colors and various defects. It is a great challenge to accurately detect tire
appearance defects. To complete the task of detecting tire defects, this paper
presents a novel tire appearance defect detection method via combining
histogram of oriented gradients (HOG) and local binary pattern (LBP) features.
First, we construct a tire image dataset to provide defective and normal tire
images. Then, histogram of oriented gradients and local binary pattern features of
tire images are, respectively, extracted and used to train the support vector machine
(SVM) classifier. Finally, the support vector machine classifier calculates the
prediction scores of the test images via combining the histogram of oriented
gradients and local binary pattern features. These scores can be utilized to
determine whether the test image is a defective or a normal tire image, and the
goal of tire appearance defect detection is achieved. Conducted on the tire image
dataset, our method has verified the effectiveness of detecting tire detects, and the
mean accuracy is improved more than 1.6% than the algorithm that only uses the
histogram of oriented gradients or local binary pattern feature. The experimental
results demonstrate that the combination of HOG and LBP features can increase tire
appearance defect detection accuracy.
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1 Introduction

In recent years, the number of cars owned by residents has increased rapidly. The tire is one
of the most important parts of cars, and it is necessary to ensure the surface quality of the tire
because it directly affects the safety of drivers’ lives. Therefore, the inspection of tire quality has
become the focus in car manufacturing. The study of detecting tire appearance defects has
excellent practical significance.

The tire production process is complicated and requires highly environmental and
technological conditions. Tires in the high-speed production process often appear with a
variety of minor defects, such as bubbles, peeling, impurities, bulging, and cracks. At the same
time, most enterprises still use manual defect inspection according to personal experience; thus,
some small defects cannot be effectively detected [1]. Moreover, the workload and work
intensity of the workers are huge, and they are prone to misjudge easily when their eyes are
fatigued [2, 3]. It is necessary to realize automatic and reliable inspection of tire appearance
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defects, and the accurate detection method is important to reduce
labor costs and improve the tire quality.

To achieve the goal of tire appearance defect detection with
machine vision, many researchers analyze edges and texture
features of defects [4]. For example, [5, 6] propose a multi-scale
edge detection method for tires based on the Fourier transform
analysis and wavelet transform. This method obtains wavelet filter
coefficients according to the analysis of tire image characteristics to
improve the accuracy of graphic edge detection and obtains better
edge detection results. Research [7–10] was conducted to using Gabor
filtering or other methods to process artificial features to realize simple
and effective tire appearance defect detection.

Some methods utilize X-ray images to detect tire defects.
Chuanwen Lin et al. [11] introduced a novel method for shoulder
bending detection in tire X-ray images. They present a seed searching
algorithm to find the defect, and the method obtains higher precision
and recall. Research[3] shows a new defect detection algorithm for the
image of the tire. It uses the Faster R-CNN network of the deep
learning algorithm, which overcomes the shortcomings of traditional
defect detection algorithms that require human involvement to extract
defect features. Jinyin Chen et al. [12] put forward a novel deep
learning model and modified the Faster R-CNN to conduct X-ray
defect detection. However, X-ray images used in these methods
require expensive image acquisition equipment.

Convolutional neural network (CNN) models [13–18] have
also been widely applied in tire appearance defect detection.
Sofia Sa’idah et al. [19] detected tire defects using the CNN
method with GoogLeNet architecture. This study uses secondary
data obtained from the Kaggle web dataset and produces high
accuracy. Zhouzhou Zheng et al. proposed a novel two-stage
convolutional neural network (CNN) [20] and an end-to-end
residual U-structure (HLU2-Net) [21] for tire defect detection.
In HLU2-Net, the novel residual U-structure is used to replace
the encode–decode block of U-Net for fusing multi-scale and
multi-level features. Although the accuracy of the CNN model is
high, the computational cost is also large.

To develop the simple and effective tire defect detection in the
industrial field, we present a tire appearance defect detection method
based on HOG and LBP features. First, the tire appearance defect
detection dataset is constructed, which consists of normal and
defective tire images. Then, after preprocessing the images in the
dataset, our method extracts HOG and LBP features of the tire image,
and the feature model is established by training SVM classifiers.
Finally, the SVM classifier predicts whether there are defects in the
tire image by fusing HOG and LBP features. The motivation of our
method is that the HOG feature represents edge information and the
LBP feature describes the texture feature of the tire appearance; thus,
the fusion of these two features can consider edge and texture features
synthetically, which is beneficial in improving the accuracy of defect
detection. HOG and LBP features are representative descriptors for
representing edge features and texture features, which have been
applied in many other fields. The experimental results show that
our proposed defect detection method can effectively and accurately
identify crack defects. The main work and innovations of this paper
are as follows:

1) A tire appearance defect detection dataset is constructed. The
dataset collects 1,021 images that consist of normal and
defective tire images.

2) We present a tire defect detection method via combining HOG and
LBP features. The method considers HOG and LBP features
comprehensively. HOG and LBP features describe edge and
texture information on the tire image, respectively. Therefore,
the fusion of HOG and LBP features is beneficial for improving
the defect detection ability.

3) The experiments compare our method to the algorithms that use
the HOG or LBP feature alone. The results show that the accuracy
of fusing HOG and LBP features to detect tire appearance defects is
higher than the accuracy of using HOG or LBP features alone.

2 Tire appearance defect detection
method via combining HOG and LBP
features

2.1 Overview of the proposed method

The overall flowchart of our proposed tire appearance defect
detection method is shown in Figure 1. First, we collect tire images
and obtain a dataset that consists of normal and defective images.
Second, our method preprocesses the normal and defective images,
and then, HOG and LBP features of tire images are extracted to
describe the tire’s edge and texture information. Then, SVM classifiers
are trained with HOG and LBP features, respectively. Afterward, the
SVM classifier predicts the defective probability of the tire image with
feature fusion by adding SVM predictive scores of HOG and LBP
features. Finally, tire images are classified into normal or defective
images.

2.2 Construction of the tire image dataset

We construct a tire image dataset to effectively detect tire defects.
A total of 1,021 tire pictures are obtained by collecting industrial field
and network screenshots, including 530 defective tire pictures and
491 normal tire pictures.

This dataset is mainly designed for a type of tire crack defect. Some
tires in the picture collected from the network are not from the
production workshop, and these tires are older. Since dust, dirt, or
other sundries on tires interfere with defect detection, it is more
difficult to accurately detect defects for these tires compared with tires
in the production workshop. Some tire images in the dataset are shown
in Figure 2. Using all pictures in the dataset, we can test the robustness
and accuracy of the proposed tire defect detection method.

2.3 Image preprocess

To reduce the amount of computation and facilitate the extraction
of tire image features, the paper preprocesses the tire image by using
the weighted average gray-scale algorithm and the bilinear
interpolation image size normalization algorithm.

2.3.1 The weighted average gray-scale algorithm
The color of every pixel in the image is composed of R (red), G

(green), and B (blue) colors. Each component of these three color
components is described with 255 values. If the feature is extracted
directly from the original image, each pixel can produce more than
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16 million (i.e., 2553) parameters. These parameters easily lead to an
exponential increase of computation in the process of feature
extraction.

In this paper, the weighted average method is used for image gray
processing, and different weights are used for the weighted average of

RGB color components. The specific principles are interpreted as
follows [22]:

I x, y( ) � 0.299R x, y( ) + 0.587G x, y( ) + 0.144B x, y( ), (1)

FIGURE 1
Tire appearance defect detection method via combining HOG and LBP features.

FIGURE 2
(A) shows samples of normal images in the dataset, (B) shows samples of defective images in the dataset.

Frontiers in Physics frontiersin.org03

Liu et al. 10.3389/fphy.2022.1099261

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1099261


where I(x, y) is the gray value of the pixel at the coordinate (x, y);
R(x, y), G(x, y), and B(x, y) represent the value of R, G, and B
components, respectively. Figure 3 shows the original tire image with
defects and its gray-scale image. The gray-scale image and the
original image are similar in texture structure and visual effect.
However, the computational complexity of the gray-scale image is
greatly reduced.

2.3.2 The image size normalization algorithm
If the image sizes for feature extraction are different, the

dimensions of feature vectors will also be different. This difference
disturbs the subsequent defect recognition because the similarity
between feature vectors cannot be calculated. Therefore, it is
necessary to normalize the sizes of the images in the dataset. In
this paper, the bilinear interpolation algorithm is used to unify the
sizes of all images in the dataset to 64 × 64 pixels.

The schematic diagram of bilinear interpolation is shown in
Figure 4. The value of a new pixel interpolated point P is
calculated by interpolating in the vertical Y direction of R1 and R2,
while the values of R1 and R2 are obtained by interpolating four pixels
in the horizontal X direction of Q11, Q12, Q21, and Q22, where the
values ofQ11,Q12,Q21, andQ22 are known in advance. In other words,
the algorithm first employs the linear interpolation in the horizontal X
direction to obtain I(R1) and I(R2), and then, the pixel value I(P) of
point P is obtained by the linear interpolation from the vertical Y
direction. The implementation formula is described as follows [23]:

I R1( ) ≈ x2 − x

x2 − x1
I Q11( ) + x − x1

x2 − x1
I Q21( ), R1 � x, y1( ), (2)

I R2( ) ≈ x2 − x

x2 − x1
I Q12( ) + x − x1

x2 − x1
I Q22( ), R2 � x, y2( ), (3)

I P( ) ≈ y2 − y

y2 − y1
I R1( ) + y − y1

y2 − y1
I R2( ) (4)

2.4 HOG feature extraction

The flowchart of the HOG feature extraction for the tire image is
shown in Figure 5. The tire image is divided into several blocks without
overlapping each other, and the block is then further divided into four
cells. These cells and blocks are used to calculate HOG and LBP
descriptors. In this section, we mainly interpret the HOG feature
extraction process. LBP feature extraction is described in Section 2.5.

In the process ofHOG feature extraction, the gamma transform of the
target image is first used to reduce the influence of the illumination
intensity change on image features, and then, the gradient operator is used
to compute gradients of pixels. Afterward, our method calculates the cell’s
histogram with weighted projection statistics. Finally, all histograms are
cascaded to construct the HOG feature of the whole tire image.

2.4.1 Computational gradients of pixels
The accurate extraction of the HOG feature is interfered by the

change of the illumination intensity when the image is photographed.

FIGURE 3
(A) shows Original tire image, (B) shows Gray-scale tire image.

FIGURE 4
Schematic diagram of the bilinear interpolation method.
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To overcome this problem, gamma is used to improve the illumination
robustness of the tire image to reduce the influence of the illumination
intensity change. Assuming the gamma value is 1/2, the gamma
compression transformation formula is as follows [24]:

H x, y( ) � H x, y( )gamma, (5)
where H(x, y) represents the pixel value at the coordinate (x, y).

The gradient calculation formulas for the X direction and Y
direction of the image are described in the following equations:

Gx x, y( ) � H x + 1, y( ) −H x − 1, y( ), (6)
Gy x, y( ) � H x, y + 1( ) −H x, y − 1( ), (7)

where Gx(x, y) and Gy(x, y) are the horizontal gradient and the
vertical gradient of the pixel at the coordinate (x, y), respectively.

The gradient amplitude and direction at the image pixel (x, y) are
calculated as follows:

G x, y( ) � ������������������
Gx x, y( )2 + Gy x, y( )2√

, (8)

α x, y( ) � tan−1 Gy x, y( )
Gx x, y( )( ), (9)

where G(x, y) and α(x, y) are the gradient amplitude and the
direction at the image pixel point (x, y), respectively. After
calculating HOG gradients of all pixels in the image, we can obtain
the HOG feature map.

2.4.2 Calculating the gradient histogram of the cell
Gradient directions and amplitudes of all pixels of the cell are counted

to generate histograms. The horizontal axis of this histogram is the
gradient direction, and the vertical axis is the gradient cumulative
amplitude of each gradient direction interval. In general, the gradient

direction ranges from 0° to 180°; it is divided into nine parts (bins) on
average, i.e., any gradient direction bin = 20°.

Afterward, the cumulative sum of gradient amplitudes in each
gradient direction bin is counted to obtain the eigenvector of each cell.
This process is equivalent to mapping the pixels in the image to a
corresponding angle range, and the weighted projection is carried out
in the gradient direction histogram.

2.4.3 Obtaining the HOG feature
Each adjacent cell unit is combined into a large and spatially

connected block, and then, the eigenvectors of each cell unit in the
block are connected in a series to obtain the block descriptor. After
eigenvectors of this block are normalized, we can obtain the HOG
descriptor.

The final HOG feature of the tire image can be obtained by
cascading all feature vectors in the block. Figure 6 shows the original
image and gradient feature maps of normal and defective images.

2.5 LBP feature extraction

The local binary pattern (LBP) is an operator used to describe the
local texture features of an image. The texture refers to the natural
attribute of the surface of the object, which describes the distribution
relationship between image pixels. The LBP feature does not change
with the variation of the external illumination intensity.

2.5.1 Computation of the LBP of pixels
Figure 7 shows the flowchart of LBP feature extraction for the

tire image. The basic idea of the LBP is to compare the gray value of
an image pixel with the gray value of its surrounding pixels [25]. If
the gray value of the surrounding pixels is greater than the gray

FIGURE 5
HOG and LBP feature extraction flow.
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value of the point, it is marked as 1; on the other hand, if the gray
value of the surrounding pixel is less than the point, then it is
marked as 0. The compared results are saved as a binary number,
which is the LBP value of the point reflecting the local texture
features of the image.

In our method, the basic LBP operator is used to calculate the LBP
value of each pixel for the pre-processed tire image. The gray value of
each pixel is compared with the gray value of the surrounding 3 ×
3 neighborhood. If the gray value of the pixel larger than the center
point is marked as 1, then the gray value of the pixel smaller than the
center point is marked as 0. The result is saved as a binary number.
After calculating LBP descriptors of all pixels in the image, we can
obtain the LBP feature map.

2.5.2 Calculating the LBP histogram of the cell
The LBP image is divided into non-overlapping blocks and cells.

The histograms of all blocks and cells are calculated. Since there are
256 (i.e., 28) possible values for LBP values, the horizontal coordinate
values of the histogram, therefore, range from 1 to 256.

2.5.3 Obtaining the LBP feature
The LBP feature vectors of the whole tire image can be

obtained by cascading LBP features of each region block.
Figure 8 shows LBP feature maps of the normal tire image and
the defective tire image.

2.6 SVM classifier

After extracting HOG and LBP features, this paper, respectively,
uses the two features to train SVM classifiers to get the prediction
probability values for feature fusion.

The idea of the SVM classifier is that if the original data cannot
be classified effectively in a low dimension, then the original data
samples can be mapped to a higher or even infinite dimension
feature space by the non-linear mapping algorithm. Then, the
linear indivisible problem of the original space can be
transformed into a linear separable problem in the high-
dimension space.

FIGURE 6
(A) shows defective tire image and its HOG feature map, (B) shows normal tire image and its HOG feature map.

FIGURE 7
LBP descriptor calculation process.
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To design SVM with a better classification performance, it is
necessary to choose an appropriate kernel function. In this paper, the
linear kernel function is selected for the case of linear separability [26]:

K xi, xj( ) � 〈xi, xj〉. (10)

The non-kernel functions selected for the linear indivisibility are
as follows:

1) The polynomial kernel function:

K xi, xj( ) � 〈xi, xj〉 + 1( )q. (11)

This is a polynomial classifier of order q. q generally takes
1–10 values.

2) The radial basis kernel function:

K xi, xj( ) � exp
xi − xi| |
−σ2( ), (12)

where sigma is generally selected from .001 to .006.
The cross-validationmethod is employed to select the kernel function.

Cross-validation uses different kernel functions to train original samples
until a kernel function with the smallest error is obtained.

Using the SVM classifier to test the tire image, our method outputs
the prediction scores to classify the tire image as a normal image or
defective image. The SVM prediction scores using HOG and LBP
features are recorded as ScoreHOG and ScoreLBP, respectively. Each
score is a vector with the length of 2. The first and second score values

in the vector, respectively, represent the possibility score that the
image is classified into a defective or normal image. The larger the
score value, the greater is the probability that the tire image belongs to
the corresponding category.

2.7 Fusion of HOG and LBP features

The HOG and LBP feature can, respectively, describe the shape
and texture information, but the tire appearance image consists of
complex semantic information, and the observation contained by one
feature alone has limitations. Therefore, HOG and LBP features are
fused to build a relatively comprehensive tire feature model.

The additive fusion method is used to combine HOG and LBP
feature prediction scores, and this prediction score fusion considers
the shape and texture information comprehensively. The additive
fusion is chosen according to the characteristics of the SVM classifier
score. We do not utilize multiplicative fusion because the SVM
classifier score may be zero. Multiplying zero with any score still
equals zero, which may interfere with the correct judgment in
multiplicative fusion. In other words, the non-zero similarity score
may be changed to zero after multiplicative fusion; however, this zero
score may be wrongly classified, which reduces the defect detection
accuracy. In comparison, additive fusion can reduce the influence of
the zero value, so we select the additive fusion method in this paper.
The additive fusion formula is as follows:

Score � λ1 · ScoreHOG + λ2 · ScoreLBP, (13)

FIGURE 8
(A) shows defective tire image and its LBP feature map, (B) shows normal tire image and its LBP feature map.
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where Score is the prediction score after fusion, λ1 and λ2 represent the
weight coefficients ofHOGandLBP features, and ScoreHOG and ScoreLBP
represent prediction scores of HOG and LBP features, respectively.

Finally, the input tire image is classified according to the score
value, when the first element in Score is larger than the second
element; on the contrary, when the second element in Score is
greater than the first element, the input tire image is normal. The
task of tire appearance defect detection is completed. We summarize
the proposed method as Algorithm 1.

Input: Tire image dataset

1: Randomly select 80% of tire images in the dataset as

training samples and the other 20% as testing

samples;

2: Extract the HOG and LBP features of the training

samples;

3: Train the SVM classifier using HOG and LBP

features;

4: for i = 1 to I do

5: Extract the HOG and LBP features of the i th

testing sample;

6: Calculate the SVM probability scores of HOG and

LBP features for the testing sample;

7: Fuse the probability scores of HOG and LBP features

according to Eq. 13;

8: Determine the classified result of the i th testing

sample.

9: end for

Output: Defect detection result: Whether the testing

sample is normal or detective.

Algorithm 1 Our proposed tire image defect detection method.

3 Experimental results and analysis

In this paper, we test our method on the formulated dataset, and
the effectiveness and accuracy of the algorithm is verified.

In the experiments, we randomly assign 80% (i.e., 817 images) of
1,021 tire images as training sets and 20% (i.e., 204 images) as test sets.

The experiment is based on the MATLAB platform. The computer
processor is Intel Core i7 2.3 GHz, and the memory is 16 GB.

To verify the improvement of fusing HOG and LBP features for tire
defect detection methods, the defect detection results and accuracies of
the following three algorithms are compared and analyzed:

1) HOG + SVM: Using the HOG feature and SVM classifier to realize
tire image defect detection.

2) LBP + SVM: Using the LBP feature and SVM classifier to realize
tire image defect detection.

3) HOG + LBP + SVM: Fusing HOG and LBP features and then
combining the SVM classifier to realize tire image defect detection.

3.1 HOG + SVM tire defect detection method

We implement the HOG + SVM algorithm for tire images. Figure 9
shows the detection results and the corresponding original image. The
results show that the HOG + SVM algorithm can detect the defective and
normal image correctly, as shown in Figures 9A,B. However, some
defective images are prone to be determined as normal images easily,
which generates a false result, as shown in Figure 9C. It is because that the
HOG only describes the edge information on the tire, defects such as
cracks are easily regarded as tire patterns. To verify the ability of the HOG
+ SVM algorithm, the accuracy of the defect detection method is
computed. The accuracy is formulated as follows:

Accuracy � Ncorrect

Ntest
, (14)

whereNcorrect is the correct defect detection sample number andNtest

is the total sample number in the test stage. We train and test 10 times
for HOG + SVM algorithm. In each epoch, the detection results and
accuracies are saved.

Table 1 shows the tire image defect detection accuracies of theHOG+
SVM algorithm. The experimental results show that the recognition rate
of the tire appearance defect detection by theHOG feature combined with
the SVM classifier is about 70%. Although it can effectively detect some
defects, it is far from enough for the desired effect in actual production.
This method has a higher accuracy when detecting normal images, but
there are still errors when detecting defective images, as shown in Figure 9.

FIGURE 9
(A) shows defective image detection result using the HOG + SVM algorithm, (B) shows normal image detection result using the HOG + SVM algorithm,
(C) shows a false result using the HOG + SVM algorithm.
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3.2 LBP + SVM tire defect detection method

We implement the LBP + SVM algorithm for tire images.
Figure 10 shows the detection results and the corresponding
original image. The results show that the LBP + SVM algorithm
can detect the defect image correctly, as shown in Figure 10.

Table 2 shows the tire image defect detection accuracies of the LBP
+ SVM algorithm. Compared with HOG + SVM, the LBP + SVM
algorithm obtains higher detection accuracy. The accuracy of the LBP
+ SVM algorithm is higher than 12%. We think that the LBP is mainly
used to describe texture features of the tire; the texture feature has a
more discriminative ability for classifying the tire defect. Once a defect
occurs, the LBP feature can clearly show the texture features of the
image, and even small cracks can be detected.

3.3 HOG + LBP + SVM tire defect detection
method

3.3.1 Fusion parameters
According to Eq. 13, the additive fusion method consists of two

important parameters, i.e., λ1 and λ2, which represent the weight

coefficients of HOG and LBP features, respectively. To select the
optimal weight coefficient values, we draw the accuracy curve with
different λ1 and λ2 values, as shown in Figure 11.

TABLE 1 Tire image defect detection accuracy of the HOG + SVM algorithm.

Experimental label 1 2 3 4 5 6 7 8 9 10 Mean

Accuracy (%) 70.5 68.6 72.6 71.5 72.5 67.2 71.5 72.9 68.2 69.3 70.5

Running time (s) .40 .42 .34 .39 .36 .35 .37 .38 .34 .34 .37

FIGURE 10
(A) shows defective image detection result using the LBP + SVM algorithm, (B) shows normal image detection result using the LBP + SVM algorithm.

TABLE 2 Tire image defect detection accuracy of the LBP + SVM algorithm.

Experimental label 1 2 3 4 5 6 7 8 9 10 Mean

Accuracy (%) 82.6 82.6 82.5 82.0 82.2 82.2 82.8 82.9 82.9 82.3 82.5

Running time (s) .40 .41 .45 .35 .41 .35 .35 .36 .34 .36 .38

FIGURE 11
Accuracy curve with various weight coefficients.
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If it is assumed that λ1 + λ2 = 1, then the value of λ2 decreases
with increasing λ1. Figure 11 shows that the accuracy increases first
and achieves the highest when λ1 = .2; afterward, the accuracy
begins to decrease when λ1 is greater than .3. The reason is that the
tire appearance has many types of textures, of which the LBP
feature can better describe tire image than the HOG feature.
Therefore, when λ1 is less than .3, the accuracy is higher
because the weight of the LBP feature is bigger than that of the
HOG feature; on the contrary, when λ1 is more than .3, the accuracy
is lower because the weight of the LBP feature is smaller than that of
the HOG feature. In one word, λ1 = .3 can be considered as a critical
threshold. We select this critical threshold as the optimal value of
λ1. Therefore, the values of λ1 and λ2 are set to .3 and .7 in our
experiments, respectively.

3.3.2 Tire defect detection results
The detection images and defect results are shown in Figure 12 and

Table 3. The experimental results show that our proposed HOG + LBP
+ SVM algorithm can correctly detect the defective and normal tire
image. Moreover, the detection accuracy based on HOG + LBP + SVM
is about 84%. The mean accuracy of the HOG + LBP + SVM is 1.6%
and 13.6% higher than that of HOG + SVM and LBP + SVM
algorithms, respectively. These results verify the effectiveness of
combining the HOG feature and the LBP feature. The proposed
method can complement the advantages of HOG and LBP features,
and the edge and texture features of the tire image are
comprehensively utilized to detect tire appearance defects.

In addition, we list the running time of the three algorithms in
Tables 1–3 to analyze the speed of our proposed method. When
compared to the algorithm only using the HOG or LBP feature, the
combined algorithm needs more running time. In other words, feature
fusion really increases the computational complexity. However, the
significance of the improving accuracy is more important than the
influence of the increasing time in some applications. Certainly, we
will further optimize the algorithm structure to improve the
calculation speed, and it is believed that the increased running time
with the milliseconds level can be accepted under the rapid
development of the GPU computing ability.

4 Conclusion

The paper proposes a tire defect detection method based on the
fusion of HOG and LBP features. First, we establish a tire image
dataset that consists of normal and defective tire images. Then, tire
images are grayed and normalized to reduce the computational
complexity and enhance the image quality. Afterward, the HOG
feature and LBP feature are extracted and used to train the SVM
classifier. Finally, the tire images are classified into the normal or
defective image by fusing the prediction scores of HOG and LBP
features. The experimental results show that our proposed method can
effectively detect tire appearance defects. Compared to algorithms
only using the HOG or LBP feature, the proposed method obtains
higher detection accuracy.

FIGURE 12
(A) shows defective image detection result using the HOG + LBP + SVM algorithm, (B) shows normal image detection result using the HOG + LBP + SVM
algorithm.

TABLE 3 Tire image defect detection accuracy of the HOG + LBP + SVM algorithm.

Experimental label 1 2 3 4 5 6 7 8 9 10 Mean

Accuracy (%) 84.0 84.3 84.5 84.0 84.0 84.2 84.2 84.1 84.0 83.5 84.1

Running time (s) 1.13 1.06 .79 .73 .95 .70 .69 .70 .70 .72 .82
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