
An improved method
MSS-YOLOv5 for object
detection with balancing
speed-accuracy

YapingHe1, Yingying Su1*, XiaofengWang2, Jun Yu1 and Yu Luo1

1College of Electrical Engineering, Chongqing University of Science and Technology, Chongqing,
China, 2College of Mathematical and Physical Sciences, Chongqing University of Science and
Technology, Chongqing, China

For deep learning-based object detection, we present a superior network

named MSS-YOLOv5, which not only considers the reliability in complex

scenes but also promotes its timeliness to better adapt to practical

scenarios. First of all, multi-scale information is integrated into different

feature dimensions to improve the distinction and robustness of features.

The design of the detectors increases the variety of detection boxes to

accommodate a wider range of detected objects. Secondly, the pooling

method is upgraded to obtain more detailed information. At last, we add the

Angle cost and assign new weights to different loss functions to accelerate the

convergence and improve the accuracy of network detection. In our network,

we explore four variants MSS-YOLOv5s, MSS-YOLOv5m, MSS-YOLOv5x, and

MSS-YOLOv5l. Experimental results of MSS-Yolov5s show that our technique

improvesmAP on the PASCAL VOC2007 and PASCAL 2012 datasets by 2.4% and

2.9%, respectively. Meanwhile, it maintains a fast inference speed. At the same

time, the other three models have different degrees of performance

improvement in terms of balancing speed and precision in challenging

detection regions.
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1 Introduction

With the rapid development of science and technology, object detection technology

has become a hot research problem [1]. Object detection has been useful in enhancing

production and life efficiency in a variety of industries, including intelligent

transportation, steel defect identification, face detection, and others. In terms of smart

transportation, A great many traffic accidents happened in the world because of fatigued

driving and drunk driving. Globally more than 1.25million people died in traffic accidents

and economic losses amount to billions of dollars every year. Due to the increasing

number of vehicles and the irregular operation of drivers, the accident rate is further

increasing, which brings many adverse effects to our production life. The computer-aided

driving system monitors and senses the surrounding environment through deep learning
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algorithms, and transmits information about obstacles in front of

the vehicle to the driver or driverless system to facilitate the next

effective operation, which is of great importance to reducing the

incidence of traffic accidents. For steel defect detection,

numerous steel varieties and complex application scenarios

make it difficult to detect steel defects, which raises the cost of

manual screening. The currently used object detection approach

may efficiently find flaws, considerably increase production

efficiency, and quicken the transition to an intelligent, modern

industry.

Deep learning, as an extension of traditional machine

learning, has developed rapidly in recent years in the context

of big data. The essence of deep learning is the learning process

that enables machines to reach or even surpass human levels. Its

unique advantage is that excellent features can be extracted using

convolutional networks. Currently, it is widely used in machine

vision, pattern recognition, and other fields. A large number of

improved algorithms have achieved significant success in terms

of accuracy and speed, such as SPPnet, Fast R-CNN, Faster

R-CNN, single-shot detector (SSD) [2], You Only Look Once

(YOLO), YOLOv2, YOLOv3, YOLOv4, YOLOv5, and other

object detection networks. However, it is extremely difficult to

achieve a mutual trade-off between speed and precision. So in

this work, inspired by YOLO and SSD, we propose an improved

mobile-friendly and high-accuracy object detection algorithm.

To summarize, our main contributions are as follows:

• We propose an improved YOLOv5 algorithm namedMSS-

YOLOv5 to improve accuracy while keeping the speed

largely unchanged based on YOLOv5 [3–5]. We design an

upsampling and downsampling to the network to facilitate

deeper information fusion and compensate for missing

information. Our design of four YOLO detectors will

facilitate the detection of obstacles of different sizes.

• A new pooling method is adopted in the SPP module to

improve network performance in this paper. Our pool

approach helps reduce information loss compared to

maximum pooling and average pooling. This lossless

boost will not come at any additional cost to the

network. It is friendly to server devices and embedded

deployments.

• Inspired by the structure of the SIoU loss function, we add

the Angle cost to our loss function. Meanwhile, based on

the idea of Focal loss [6], we added the new weight

coefficient to the cross-entropy loss function as a way to

describe the importance of edge loss to the overall loss

function.

• Our improved approach not only performs well on small

models but also on large models as well. Referring to the

model design of YOLOv5, we present four versions of the

model in this paper, MSS-YOLOv5s, MSS-YOLOv5m,

MSS-YOLOv5l, and MSS-YOLOv5x.

The rest of this paper is organized as follows. Section 2

introduces the related works. The methods are presented in

Section 3. The experiments and results are discussed in

Section 4. The conclusions are drawn in Section 5.

2 Related works

With the rise of a deep network, the accuracy of object

detection has been greatly improved. The commonly used object

detection algorithms are divided into two categories. Two of the

most commonly used are two-tier target-detection algorithms

that contain regional recommendation networks, such as R-CNN

[7], Faster-RCNN [8], Mask-RCNN [9], SPP Net [10], etc.

Despite having high accuracy in most detection tasks, these

network models have a large number of parameters. They are

difficult to deploy on embedded devices and do not have a high

recognition accuracy for small targets. The other category is the

single-stage YOLO [11–13] (You Only Look Once) family of

algorithms. In contrast to the two-stage algorithm, it has a fast

inference speed. Because of its ease of deployment, YOLO has a

wide range of applications in many areas such as unmanned

vehicles and the military.

YOLOv5 is the fifth generation version of YOLO which

shows excellent performance in different detect tasks. There

are four types of YOLOv5, which are YOLOv5s, YOLOv5m,

YOLOv5l, and YOLOv5x, while the basic structure of YOLOv5s

is shown in Figure 1. Due to the rapid development of deep

learning, a large number of excellent works to improve

YOLOv5 have emerged. Cheng et al [14] proposed adding

attention mechanisms to YOLOv5 to enable the network to

learn the information we need adaptively. Xing [15] et al.

used YOLOv5 algorithm and DeepSORT algorithm to detect

and track multiple moving targets. Lan et al [16]. proposed an

improved deep learning network model YOLOv5-DN based on

YOLOv5. The CSP-DarkNet module in YOLOv5 was replaced by

CSP-DenseNet to promote the accuracy of target detection and

classification in the model. Howard et al [17] proposed to

combine LRM and Focal loss in YOLOv5 to improve the

average accuracy. Zhao et al [18] used the ghost module to

reduce the parameters and thus further improve the detection

speed. A series of valuable works have contributed to the

development of YOLO algorithm.

YOLOv5s was one of the first networks to use SPP in a single-

stage algorithm. Although the backbone network can extract

some of the features after all the network depth was limited to

extract depth information of the network. The SPP module

contains convolutional kernels of sizes 1, 5, 9, and 13, which

are used to obtain feature information under different perceptual

fields by maximum pooling. Although the ASPP [17] and RFB

[19] modules have appeared in previous studies, these modules

expand the receptive field by dilated convolution and do not
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address the information loss problem caused by maximum

pooling or average pooling.

There are many factors that affect YOLOv5s performance,

such as loss function, backbone networks, pool method, etc. A

great many works were emerged to improve the loss function. Li

et al. proposed GIOU [20] to solve the problem of disappearing

gradients. However, there are some problems such as slow

convergence. Zheng et al. On this basis, the DIoU [21] was

proposed, and the distance between the mass of the prediction

frame and the real frame is considered in the function definition.

Cai et al. found that there is a risk of degradation when the

centroids of two boxes overlap. The aspect ratio of the boxes was

therefore introduced to form the CIoU [22]. Although CIoU

considers the overlap area, centroid distance, and aspect ratio, the

true difference between aspect and confidence is not well

reflected by v in the formula, making it more difficult to

optimize. Min et al. then reconsidered the aspect factors and

proposed EIoU [23] on top of this. The above work is useful for

portraying the difference between the prediction frame and the

true frame. There is still room for improvement in the loss

function.

The pooling method affects the detection performance of the

model to some extent. Kumar et al [24] used a deep network

model using ResNet-50 and global average pooling to solve the

vanishing gradient and overfitting problems. Tan et al [25]

proposed to incorporate maximum pooling into an improved

SPP network to enhance the network’s ability to represent

information. Zhang et al [26] proposed to replace max

pooling and average pooling with random pooling to obtain

deep learning models with better performance. However, the

problem of maximum pooling and average pooling leading to

significant information loss has not been resolved.

In summary, the ability of YOLOv5 to extract detailed

information is limited, and the balance between speed and

accuracy has been a difficult problem to be tackled.

YOLOv5 has significant room for improvement, both in terms

of the loss function and pooling methods or feature fusion.

Therefore, we will also focus on these three improvement

points in this paper.

3 Presented network

In this section, we present some of our design ideas about

MSS-YOLOv5, which help us trade off between speed and

precision. First, we design four branches to integrate different

scale features. Then, we replace Maxpool with an improved

SoftPool in the SPP module. Finally, inspired by the structure

of the SIoU loss function, we add the Angle cost and other

strategies to improve the performance further.

Combining these approaches, we named the improved

YOLOv5 algorithm MSS-YOLOv5. MSS takes the initials

multi-scale fusion, Softpool, and SIoU respectively. Similar

to YOLOv5, we provide four versions, with the number of

model parameters ranging from small to large as MSS-

YOLOv5s, MSS-YOLOv5m, MSS-YOLOv5l, and MSS-

YOLOv5x. The overall flow of the model is shown in

Figure 2. After the data is enhanced, the input pictures are

sent into the model for training. BCE loss is used to calculate

the classification loss and target loss. NMS (non-maximum

FIGURE 1
The network structure of YOLOv5s. The input size of image is 640 × 640. The final output is three effective feature layers, and their output size is
128, 256, 512. The structure inside the algorithm can be used for the extraction of feature information.
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suppression) is used to filter out the boxes with low scores due

to occlusion and other factors. Firstly, the IoU threshold is set

to 0.5. Secondly, all the boxes are sorted, and each box with

IoU >0.5 is set to 0 if it has the highest probability of scoring,

and the opposite is kept. The final output is the location and

labels information of the target.

3.1 Multi-scale feature integration

There are many large differences in the size and shape of

targets in detection tasks. To address this problem, both Scaled-

YOLOv4 [27] and TPH-YOLOv5 [28] use a multi-scale feature

fusion strategy [29, 30] to extract more useful information. Both

decrease the difficulty of detecting target objects of different sizes

by increasing the number of detectors. Inspired by these two

algorithms, we add a branch to integrate different channel

information in the network. And we can use the Concat

operation to integrate these information. A large detector has

extensive coverage and abundant information on feature points,

so it is easier to obtain global information. On the contrary, the

small-scale detector has opposite characteristics. The loss of

feature information is more obvious after the backbone

network. Generally, only single-digit pixel sizes are left,

resulting in small targets that do not match the original image

after mapping through the perceptual field, which ultimately

leads to poor regression and prediction results. Backbone, SPP,

and PANet in YOLOv5s have extracted some feature information

about the target to a certain extent. However, there is still some

room for mining deep semantic information and shallow detailed

information.

According to the above problems, we proposed the following

improved measures. 1) As shown in Figure 3, we add one more

upsampling and downsampling in the PANet of YOLOv5s

(PANet originally had two upsamples and two downsamples).

The sampling structure consists of Convolution, Batch

Normalization [31], and Leaky Relu [32]. Convolution is used

for feature extraction. Batch Normalization can prevent gradients

from exploding or disappearing, speed up network convergence

and improve the stability of the detection network. Leaky Relu

can enhance the ability of non-linear representation of the

network. 2) We add an extra YOLO Head as a detector to

accommodate different scales of target detection. The multi-

scale fusion strategies used in this paper are all methods of fusion

at four different scales.

3.2 Improved SoftPool

The main function of pooling is to reduce the dimensionality

of the feature map, reducing the computational overhead and

thus saving memory, offering the possibility of studying deeper

networks. The prevailing pooling methods are maximum pooling

and average pooling or a combination of both, but extensive

experiments have shown that these types of pooling result in the

loss of important feature information. Therefore, literature

32 proposes the SoftPool [33] method, where each activation

is assigned a corresponding weight through a softmax operation.

The weights can be expressed as follows.

ωi � eai∑j∈Re
aj

(1)

FIGURE 2
The process of training and testing themodel. Data augmentation is used to acquire high-quality pictures. SIoU loss can help us reduce the loss
of border to train the model more effectively. The model ensemble contains different methods, which can remove those detection boxes with a low
score. The prediction section consists of two parts: location and classification.
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The output of soft pooling (�a) is the weighted sum of all

activations in the kernel neighborhood R.

�a � ∑
i∈R

ωi · ai (2)

Soft pooling performs a normalization operation using the

softmax of a region. Its probability distribution is proportional to

each activation value relative to the neighboring activation values

in the kernel region. Therefore, SoftPool is microscopic. It can

provide a certain gradient at each backpropagation. However,

there are still problems such as limited lifting accuracy and the

return value of the gradient is too small to be optimized.

Therefore, a new SPP structure is proposed in this paper. As

shown in Figure 3, the MaxPool in the SPP is replaced with

SoftPool, while the pooling kernel size is adjusted from [5, 9, 13]

to [3, 5, 7] to retain rich enough depth information and enhance

feature representation. Of course, it is possible to keep the

convolution kernel size the same or resize it to [5, 7, 9].

However, kernel sizes of [3, 5, 7] are significantly less

computationally intensive. At the same time, when the fitting

ability of the network is saturated, it will be beneficial to reduce

more redundant information.

3.3 SIoU loss

Object detection is one of the core problems in the field of

vision and its detection accuracy depends on the definition of the

loss function. In previous studies, the loss function has mostly

been defined using the distance, intersection ratio, and aspect

ratio between the prediction box and the true box. We have not

taken into account the direction in which the predicted boxes do

not match the real boxes. The loss function has disadvantages

such as slow convergence, difficulty in optimization, and low

detection accuracy. Therefore, we adopt a new loss function SIoU

in this paper. SIoU was pioneered by Zhora Gevorgyan [34] in

2022 and consists of four main Cost functions, Angle cost,

Distance cost, Shape cost, and IoU cost. The latter three

elements have been studied enough in previous work to have

a positive impact. However, it does not mean that there is no

room for improvement in the loss function. So Angle cost is

added. This addition ensures that the prediction is effective. This

improved method allows the prediction box to be moved quickly

to the nearest axis. Finally, only the X or Y coordinates are needed

for the regression operation. Overall, the Angle cost penalty

makes the degrees of freedom of loss much lower, making it

FIGURE 3
Multi-scale feature integration architecture. The Backbone is CSPDarknet53, which outputs C2–C5 featuremaps to the neck. The neck is a new
PANet, which inputs four featuremaps and outputs four featuremaps. For YOLOv5-MSSs, the input channel numbers are [20, 40, 80], and the output
channel numbers are [20, 40, 80, 160].

Frontiers in Physics frontiersin.org05

He et al. 10.3389/fphy.2022.1101923

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1101923


easier to converge. The following sections show the computation

of the four Cost functions.

3.3.1 Angle cost
The picture of regression loss of borders was shown in Figure 5.

It reflects the relationship between the position of the predicted box

and the real box. We calculate the relevant parameters in Figure 4.

In order to make the function converge quickly, we will first

try to minimize α if α≤ π
4 otherwise minimize β � π

2 − α.

To achieve this first, an angle-aware component is

introduced and defined as follows:

Λ � 1 − 2 · sin 2 arcsin x( ) − π

4
( ) (3)

Where

x � ch
σ
� sin α( ) (4)

σ �
���������������������
bgtcx − bcx( )2 + bgtcy − bcy( )2√

(5)

ch � max bgtcy − bcy( ) −min bgtcy − bcy( ) (6)

b and bgt are the centers of the predicted and real boxes

respectively. σ is the distance between the center point of the

predicted box and the real box. cw and ch denote the width and

height of the rectangle with σ as the diagonal, respectively. α and

β denote the angles formed by the diagonal and the width and

height respectively, of which α + β � π
2.

3.3.2 Distance cost
The distance is defined in the following way:

Δ � ∑
t�x,y 1 − e−γρt( ) (7)

ρx �
bgtcy − bcy

cw
( )2

, ρy � bgtcy − bcy
ch

( )2

, γ � 2 − Λ (8)

The contribution of Distance cost is small when the angle

is small but becomes larger as the angle gradually converges

to π
4.

3.3.3 Shape cost
The shape is defined in the following way:

Ω � ∑
t�w,h

1 − e−ωt( )θ (9)

where

ωw � w − wgt| |
max w,wgt( ),ωh � h − hgt| |

max h, hgt( ) (10)

θ reflects the degree of attention paid to Shape cost and θ is

uniquely determined for each dataset. θ = 4 is calculated by the

genetic algorithm in this paper.

3.3.4 IoU cost
IoU [35] reacts to the ratio of intersection to concatenation

when the prediction box intersects the real box. A Schematic of

the relation of IoU component contribution was shown in

Figure 5. The formula is as follows.

IoU � b ∩ bgt| |
b ∩ bgt| | (11)

3.3.5 SIoU cost
The regression loss of the border is represented below.

Lbox � 1 − IoU + Δ + Ω
2

(12)

3.3.6 Total loss
The final loss function used in this paper is as follows.

FIGURE 4
The relationship between the position of the prediction box
and the real box.

FIGURE 5
Schematic of relation of IoU component contribution.
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Loss � αLossSIoU + βLossconf + γLosscls

� α · λcoord∑S2
i�0
∑B
j�0
Iobjij xi − x

Λj

i )2 + (yi − y
Λj

i( )2[ ]
+ α · λcoord∑S2

i�0
∑B
j�0
Iobjij

��
ωj
i

√
−

��
ω
Λj

i

√
)2 +

��
hji

√
−

��
h
Λj

i

√⎛⎝ ⎞⎠2⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
− β ·∑S2

i�0
∑B
j�0
Iobjij C

Λj

i log Cj
i( ) + 1 − C

Λj

i( )log 1 − Cj
i( )[ ]

− β · λnoobj∑S2
i�0
∑B
j�0
Inoobjij C

Λj

i log Cj
i( ) + 1 − C

Λj

i( )log 1 − Cj
i( )[ ]

− γ ·∑S2
i�0
Iobjij ∑

c∈classes

P
Λj

i log Pj
i( ) + 1 − P

Λj

i( )log 1 − Pj
i( )[ ]
(13)

In all the above formulas, LossSIoU means SIoU Loss,

Lossconf means confidence loss, Losscls means class Loss.

α, β, γ denote the weighting factors respectively, which are

used to measure the importance of different losses. In this

paper, α, β and γ take the values 0.5, 1, and 4 respectively.

3.4 Other strategies

The K-means [36] clustering method was chosen to

predict more accurate anchor frames in this paper.

Different types of objects have different sized frames, and

the same object may vary depending on how close or far it is

photographed. Each detector uses three anchor frames to

determine the position of the object. There are three

detectors in YOLOv5s, so nine clustering centers are

needed. Based on the experiments conducted, the final

clusters were: [(19,48), (40,40), (35,97), (81,80), (64,176),

(138,145), (117,286), (253,234), (193,428), (485,310),

(330,488), (561,546)]. The distribution of clustering centers

is shown in Figure 6.

Data augmentation is a common way of expanding data.

It can enhance the detection capability of a neural network

with a limited amount of data. In this paper, we have the

requirement to enhance the generalization capability of the

model. Therefore, we adopted the mosaic data augmentation

method to stimulate the maximum performance of the

algorithm. In previous enhancement methods, horizontal

inversion and illumination were often used to enhance the

data, but there were many drawbacks such as poor

generalization and hindering accuracy improvement.

Therefore, we follow the mosaic data enhancement method

[37] of YOLOv4 and YOLOX [38] in this paper. Numerous

experiments have shown that this enhancement method has

an effort on increasing the detection accuracy and enhancing

the generalization ability of the model to a certain extent. The

results of the mosaic data enhancement are shown in

Figure 7.

FIGURE 6
Map of clustering centers.

FIGURE 7
The results of the mosaic data enhancement.
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4 Experiments and results

4.1 Experimental environment and
datasets sources

The hardware setup in the laboratory configured for this

study is as follows: the experimental platform is Windows 10, the

processor is Intel Core i7-11700F 2.50 GHZ, equipped with

NVIDIA GeForce RTX3060-32GB, the development

environment is Pycharm2020, Python3.6, the deep learning

framework is Pytorch1.7, using CUDA11.2.0/CUDNN11.2 for

image acceleration.

The public PASCAL VOC datasets used in the training

process are as follows:

1) PASCAL VOC 2007: a real-world dataset with still different

views from our life. It contains 20 categories with a total of

4952 pictures. Moreover, the training and test sets were

divided according to 9:1, with 4457 training sets and

495 test sets.

2) PASCAL VOC 2012: a real-world dataset with still different

views from our life. It contains 20 categories with a total of

17125 pictures. Moreover, the training and test sets were

divided according to 9:1, with 15412 training sets and

1713 test sets.

The dataset of PASCAL VOC 2007 and PASCAL VOC

2012 were used to validate the effort of the improved method.

At the same time, We compared common lightweight networks

for comparative experiments. FPS and mAP were combined to

compare the superiority of the algorithms.

4.2 Evaluation indicators

Precision, recall, AP, andmAP are used to evaluate the merits

of the model. The formulae are shown below.

Pprecision � TP
TP + FP

(14)

Rrecall � TP
TP + FN

(15)

AP � ∫1

0
P R( )dR (16)

mAP � 1
C

∑
c∈C

AP c( ) (17)

TP represents the total number of correctly classified positive

samples, FP represents the total number of misclassified positive

samples and FN represents the total number of misclassified

negative samples. The precision rate indicates the number of

positive category samples as a proportion of the total number of

samples. The recall indicates the proportion of all positive

samples detected to the number of positive samples in the

dataset. The mAP can be used as a comprehensive evaluation

metric for single category detection, with higher AP values

indicating better detection of a category, and mAP being a

comprehensive evaluation of the entire network. The

complexity of a model is measured by the number of

parameters or computations. In general, the lower the number

of parameters in a model, the faster the detection speed, which is

usually evaluated in terms of FPS.

4.3 Model training

The following settings are made when the model is trained.

To obtain better training results, this experiment uses the pre-

training weights of the CSPDarknet53 backbone, and the model

is optimally trained using SGD (stochastic gradient descent). The

input image size of the model is 608 × 608, the maximum

learning rate is 1e−2, the freeze part batch size is 16, freeze

training for 50 cycles, unfreeze part batch size is 50 cycles of

freeze training. The IoU threshold and momentum are set to

0.5 and 0.937, respectively. Other versions of MSS-YOLOv5 use

the same training method.

The model was trained using the above parameter settings

and a combination of improvements. The final loss function

curve is shown in Figure 8. From the figure, we can see that the

loss function curve has an overall decreasing trend. Meanwhile,

the loss curve has almost approached convergence at the 20th

epoch. The experiments demonstrate that our method is not only

easy to converge but also highly stable.

FIGURE 8
Loss function curve of MSS-YOLOv5s.

Frontiers in Physics frontiersin.org08

He et al. 10.3389/fphy.2022.1101923

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1101923


4.4 Ablation experiment

To verify the effectiveness of the algorithm, we conducted

ablation experiments on the improved modules, in order of

four scales, maximum pooling replacement to Softpool, and

GIoU replacement to SIoU, to verify the detection

effectiveness of the improved algorithm. Through

experiments, we found that the improved method has

significant performance gains on small models, but not

much for large models. Therefore, we demonstrate ablation

experiments with MSS-YOLOv5s as an example in this paper.

The results of the ablation experiments of MSS-YOLOv5s are

shown in Table 1.

As we can see that quadruple scale feature fusion,

Softpool, and SIoU loss function, provide a significant

improvement in detection accuracy from Table 2. The

multi-scale fusion sacrifices some of the speed, but after

all, it is minimal and gives a solution for accuracy

improvement. With the introduction of softpool and SIoU,

the model size remains almost unchanged and the speed is

essentially the same, with an average precision improvement

of 2.9%.

4.5 Comparison of different algorithms

To reflect the effectiveness of the algorithm

improvements, we experimentally compared the target

detection algorithms YOLOv4, YOLOv4-tiny, YOLOv3,

YOLOv3-tiny, and YOLOv5. The experimental results are

shown in Table 2.

From Table 3, we can see that although the two-stage Faster

RCNN uses a region suggestion network, it does not achieve

higher accuracy. On the contrary, YOLOv4 works better but

poses some difficulties for model deployment due to its slower

speed. YOLOv4-tiny, YOLOv3-tiny, and YOLO5s, as

commonly used lightweight algorithms, have certain

advantages, but the detection accuracy is too low to meet the

needs of autonomous driving corresponding to complex

scenarios. In the improved model, MSS-YOLOv5s, MSS-

TABLE 1 Ablation experiment of MSS-YOLOv5s.

Multi-scale Softpool SIoU mAP/% FPS/f/s Model size/MB

7 7 7 81.49 65 27.14

✓ 7 7 82.03 54 27.70

✓ ✓ 7 82.73 51 27.70

✓ ✓ ✓ 84.39 50 27.70

The bolded values indicate the best experimental results in the same group of experiments.

TABLE 2 Comparison of different algorithms.

Model Backbone mAP/% FPS/f/s Model size/MB

YOLOv3 Darknet53 79.68 37 235.08

YOLOv4 CSPDarknet53 85.23 24 248.25

YOLOv4- tiny CSPDarknet53-Tiny 77.47 116 22.58

Faster RCNN Resnet50 77.42 7 522.91

YOLOv5s CSPDarknet53 81.49 65 27.14

YOLOv5m CSPDarknet53 87.73 15 80.62

YOLOv5l CSPDarknet53 90.81 10 176.39

YOLOv5x CSPDarknet53 92.67 6 329.38

MSS-YOLOv5s(Ours) CSPDarknet53 84.39 50 27.70

MSS-YOLOv5m(Ours) CSPDarknet53 89.11 14 82.31

MSS-YOLOv5l(Ours) CSPDarknet53 91.53 9 182.05

MSS-YOLOv5x(Ours) CSPDarknet53 92.87 6 340.04

The bolded values indicate the best experimental results in the same group of experiments.
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YOLOv5m, MSS-YOLOv5l, and MSS-YOLOv5x have different

degrees of enhancement. The speed of MSS-YOLOv5s is

essentially the same as YOLOv5s, but there is a significant

improvement in mAP. This is despite a 0.2% improvement in

the large model MSS-YOLOv5x, which tends to be saturated.

This non-destructive improvement of MSS-YOLOv5 is

extremely model friendly, achieving a degree of balance

between speed and accuracy and providing more options for

embedded deployments.

From Figure 9, we can see that the detection accuracy of all

types of targets has been improved to different degrees, especially

for small targets. When using YOLOv5s, the detection effect of

the dining table, sofa and boat are not obvious, but on our

improved algorithm, the improvement is 0.09%, 0.15%, and

0.05% respectively, which shows that our improved strategy is

simple and effective.

To give a more intuitive picture of the detection effect of

the improved algorithm on the PASCAL VOC2007 dataset,

Figure 10 shows the detection of the different algorithms, the

right panel shows the detection effect of the original

YOLOv5s and YOLOv5x model and the left panel shows

the detection effect of the MSS-YOLOv5x and MSS-

TABLE 3 Performance of different algorithms on the PASCAL 2012 dataset.

Model Backbone mAP/% FPS/f/s Model size/MB

YOLOv3 Darknet53 79.88 28 235.08

YOLOv4 CSPDarknet53 85.49 21 248.25

YOLOv4- tiny CSPDarknet53-Tiny 77.52 111 22.58

Faster RCNN Resnet50 77.81 6 522.91

YOLOv5s CSPDarknet53 82.04 62 27.14

YOLOv5m CSPDarknet53 87.81 15 80.62

YOLOv5l CSPDarknet53 90.83 12 176.39

YOLOv5x CSPDarknet53 92.68 6 329.38

MSS-YOLOv5s(Ours) CSPDarknet53 84.44 49 27.70

MSS-YOLOv5m(Ours) CSPDarknet53 89.17 14 82.31

MSS-YOLOv5l(Ours) CSPDarknet53 91.04 11 182.05

MSS-YOLOv5x(Ours) CSPDarknet53 92.91 6 340.04

Through the above comparison, we can easily find that MSS-YOLOv5 not only maintains a faster speed but also outperforms other lightweight networks in terms of accuracy. It proves that

MSS-YOLOv5 can work effectively on different datasets.

FIGURE 9
Comparison of the mAP of YOLOv5s and MSS-YOLOv5s.
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YOLOv5s. From the figure, we can see that the MSS-

YOLOv5x detected significantly more targets than the

YOLOv5x algorithm, and for the targets that were both

detected, the confidence level of the MSS-YOLOv5x was

higher. The same result is found on the MSS-YOLOv5s

and YOLOv5s. This shows that our improved approach

improves the performance of the model both on large and

small models. The MSS-YOLOv5 not only enriched the deep

semantic information of the feature map but also enhanced

the acquisition of shallow detail information to a certain

extent, improving the detection capability of the network for

targets of different sizes.

FIGURE 10
Comparison of test results for different algorithms.

FIGURE 11
Comparison of different algorithms for heat maps.
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4.6 Performance on the PASCAL
VOC2012 dataset

To further validate the effectiveness of the improved method,

we used the PASCAL VOC 2012 dataset to prove the superior

performance of the new framework. The same training approach

was used to retrain the PASCAL VOC 2012 dataset. Figure 11 is a

heat map presentation of the different algorithms on the

PASCAL VOC 2012 dataset.

The heat map represents the area of interest of the network to

the detection target, and the more thermal points, the more

targets are detected. Experiments have shown that our algorithm

is still able to obtain better detection results.

The performance of the different algorithms on PASCAL

2012 is shown in Table 3.

5 Conclusion

In this work, we propose an improved YOLOv5 object

detection algorithm named MSS-YOLOv5 to solve the problem

of a trade-off between the speed and precision of YOLOv5 in object

detection. Multi-scale information is integrated into different

feature dimensions to improve the distinction and robustness of

features. The design of the detectors increases the variety of

detection boxes to accommodate a wider range of detected

objects. The pooling method is upgraded to obtain more

detailed information. We add the Angle cost and assign new

weights to different loss functions to accelerate the convergence

and improve the accuracy of network detection. Experiments have

shown that the improved model has essentially similar inference

speeds to the original model. However, the improvements we

propose are effective in improving accuracy on both large and

smallmodels and performwell on different data sets. SIoU loss and

feature fusion approaches can be considered to optimize other

network structures. We propose a new model with reliable

accuracy and high timeliness.

The presented network not only achieves great performance

on the PASCAL 2007 but also works efficiently on the PASCAL

2012 dataset. However, our proposedmore efficient deep learning-

based YOLO series algorithm still cannot work perfectly to heavily

obscured targets. In the future, we will introduce structural

reparameterization techniques in backbone and FPN to

improve the overall performance of your network and add swin

transformerv2 to backbone to enhance the network’s ability to

capture information over long distances.
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