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Picosecond pulse laser is the main light source for satellite laser ranging. In this paper,
a 10 kHz repetition rate picosecond green laser with an average output power of
5.3 W is demonstrated. The laser generates a pulse width of 18.6 ps at a center
wavelength of 532.20 nm with a spectral width of .066 nm. The beam quality is well
preserved with M? of 1.1 with the beam divergence measured to be .62 mrad and
pointing stability of 7 urad over 30 min of operation. The laser system was then
applied to measure the BeiDou satellite (Compass-13) and generated a single range
accuracy of 3.2 mm, which is the highest reported range accuracy for synchronous
orbit satellite laser ranging.
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Introduction

Satellite laser ranging (SLR) which uses a laser to detect the variation of a satellite from
its predicted orbit is the most accurate satellite ranging technique [1-3]. With laser as the
core light source, SLR uses the time-of-flight (TOF) measurement method for ranging [4,
5]. Generally, a laser with narrower pulse width contributes to higher ranging accuracy;
meanwhile, a higher repetition rate leads to a higher probability of range echoes. At
present, along with the technological breakthrough of kilohertz picosecond lasers, lasers
with high repetition rate are rapidly becoming the landmark light source for fourth-
generation satellite laser ranging [6-11]. Mode-locking technology is the main approach
to achieve picosecond pulses, but the energy of the ultrashort pulses generated by mode-
locked is low (~nanojoule) [12, 13]. In order to increase the pulse energy while
maintaining the narrow pulse width, laser amplifiers (viz. regenerative amplifier and
traveling wave amplifiers) are usually used to amplify the pulses output from picosecond
oscillators [14-17]. Regenerative amplifiers have been widely applied to amplify the
picosecond pulses from the nanojoule level to the millijoule level with a peak power
enhancement of 10° times [18, 19].

In this letter, a picosecond green laser with a high repetition rate, high beam quality,
high pointing stability and high-power stability is presented. In this system, a regenerative
amplifier is used to increase the single pulse energy while keeping the pulse width constant.
Then, the energy is further amplified using a traveling wave amplifier. Finally, the green
laser output is achieved by second harmonic generation (SHG) with a conversion efficiency
of up to 81.5%. The laser generates 10 kHz repetition rate picosecond pulses with an average
output power of 5.3 W and pulse width of 18.6 ps. The center wavelength of the laser is
532.20 nm with a spectral width of .066 nm. It has a beam divergence angle of .62 mrad and
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FIGURE 1

Schematic showing the layout of the laser system. PC, BBO crystal Pockels cell; HWP, half-wave plate; FR, Faraday rotator; M, mirrors; F, focus lens; P,

Brewster angle polarizer.

a beam quality factor (M?) of 1.1. The peak-to-peak energy
fluctuations of the laser are 1.32% at .5 h.

Experiment and results

The experimental setup of the green picosecond laser is shown
in Figure 1, which mainly consists of a picosecond seed source
module, a regenerative amplifier module, a power amplifier
module, and an electric control module. The seed source
outputs 1,064 nm ps pulses with a pulse energy of 2nJ and a
pulse width of 20 ps at a repetition rate of 84 MHz. The seed
passes through the optical isolator and then enters the
regenerative amplifier. The optical isolator which is to prevent
the amplified laser from returning and causing damage to the
picosecond seed source consists of a polarizer, a half-wave plate,
and a Faraday rotator. The regenerative amplification module
consists of a polarizer, a quarter-wave plate, a gain medium, an
electro-optical switch—Pockels cells (PC), a pump source, and a
highly reflective mirror. The seed light pulse energy is amplified to
.32 mJ in the regenerative amplification module with a repetition
rate of 10 kHz. In the regenerative amplification module, the gain
medium uses .3 at % doped Nd: YVO, crystal, which has a large
excited emission cross-section and a wide pumping bandwidth.
And the laser output is linearly polarized due to its natural
birefringence property, which can mitigate thermogenic
birefringence [20]. By using a semiconductor laser to end-
pump the gain medium, a better mode matching of the pump
light to the signal light is achieved and a better beam quality is
obtained. The in-band pumping method is used to excite the
particles directly to the upper energy level of the laser (*I5,,—*F3,
»), which can avoid the non-radiative leap process (*Fs;,—"F3,,),
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reduce the quantum loss, reduce the thermal effect, and improve
the beam quality and stability [21, 22]. The size of Nd:YV Oy, is
3 mm x 3 mm X 20 mm. The pump light with a power of 25 W is
injected into the Nd: YVO, crystal after being collimated and
focused by a coupling lens set.

The seed light is output from the regenerative amplifier module
and then enters the traveling wave amplifier module, which
consists of a pump source, a gain medium, and a highly
reflective mirror. Similar to the regenerative amplification
module, the gain medium of the traveling wave amplification
module is selected as .5 at % doped Nd: YVO, crystal with a
size of 4 mm X 4 mm x 32 mm, using the same pumping geometry.
The pump power is 90 W. After the signal light is amplified by the
traveling wave module, the pulse energy is amplified to .65 mJ and
the repetition rate is 10 kHz. The signal light amplified by the
traveling wave amplifier module enters the frequency doubling
module. It consists of a lens, a frequency doubling crystal, a
dichroic mirror, and a highly reflective mirror. The frequency
doubling crystal is selected as LBO crystal, which has a wide
transmission range, good optical uniformity, high damage
threshold, good mechanical properties, and high frequency
efficiency [23, 24]. LBO adopts a
combination of angular phase matching and temperature phase
matching. The LBO is cut at 6 = 90° and ¢ = 10.6° with dimensions
of 4 mm x 4 mm x 12 mm. In the experiment, the LBO achieves the

doubling conversion

best matching at around 50°C. This matching method can avoid the
system disturbance caused by the high local temperature of the
system, and at the same time suppress the micro-dampness of the
crystal to improve the service life.

The amplified pulse is focused by the lens and then enters the LBO
crystal for frequency doubling. The frequency doubled light is
separated from the fundamental frequency light at the dichroic
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FIGURE 2
Compilation of output characteristics of the green laser. (A) Encapsulated lasers; (B) Normalized wavelength spectrum of the amplified laser output; (C)
Characteristic of a single output pulse with an autocorrelation trace; (D) Normalized pulse characteristics of the output (E) plot of the focusing characteristics
of the output beam (inset: beam profile).

mirror, and the fundamental frequency light is output at the dichroic ~ energy was converted from .65 to .53 mJ, and the frequency doubling
mirror and collected by the collector, while the frequency doubled  efficiency was 81.5%. The central wavelength of green light is
light is reflected by the dichroic mirror and then reflected and output ~ 532.20 nm, with a single pulse energy of .53 mJ, a repetition rate of
by the high reflector. After the frequency doubling crystal, the pulse 10 kHz, and a pulse width of 18.6 ps.
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FIGURE 3
Plot of residuals from polynomial fit of measurement results.
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The encapsulated laser is shown in Figure 2A. The output laser
parameters are measured. The spectrum of the output laser is
measured by wusing a spectrometer (AQ6374 OPTICAL
SPECTRUM ANALYZER) as shown in Figure 2B. The central
wavelength of the output laser is 532.20 nm and the linewidth is
.066 nm. The pulse width of the output laser is measured by using
an autocorrelator as shown in Figure 2C. The pulse width of the
output laser is about 18.6 ps. The repetition rate of the output
laser is measured by using an oscilloscope, as shown in Figure 2D.
The beam quality of the output laser is measured by using a beam
quality analyzer, as shown in Figure 2E. The beam quality factor
of the output laser is M,> = 1.09, M,> = 1.12, and the beam
divergence angle is about .62 mrad. The laser has good power
stability (.11% at 2h) and energy stability (Pulse Energy
Peak—Peak Fluctuation 1.32% at .5h). Output laser pointing
stability is 7 prad at .5 h.

According to the above experimental results, the green picosecond
laser output laser has a narrow pulse width, which can improve the
measurement accuracy of a single pulse; high energy stability, which
can reduce the main wave timing jitter and further improve the
measurement accuracy; narrower spectral width can better match
the narrow band filter and improve the reception efficiency; high
repetition rate of 10 kHz can obtain more effective data and reduce the
fitting error. In summary, the laser can effectively improve the satellite
laser ranging accuracy.

Applied to the satellite laser ranging system of Shanghai
Astronomical ~ Observatory, the Compass-I3  satellite in
geosynchronous orbit (36,000 km) was measured, as shown in
Figure 3, and a single ranging accuracy of 3.2 mm was obtained.
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To the best of our knowledge, this is the highest SLR accuracy obtained
in synchronous orbit.

Conclusion

In this paper, a green picosecond laser with high beam quality, high
pointing stability and high power stability is demonstrated. The final
output laser has a power of 5.3 W, a central wavelength of 532.20 nm, a
spectral width of .066 nm, a pulse width of 18.6 ps, and a repetition rate of
10 kHz. The laser has high beam quality and repetition rate, as well as very
high power, energy, and pointing stability, and was applied to a satellite
laser ranging system to measure the Compass-I3 satellite in
geosynchronous orbit (36,000 km). The final single range accuracy of
3.2 mm was obtained, which is the highest range accuracy we know of for
laser ranging of satellites in synchronous orbit. This research provides a
high-quality laser source for high-precision space detection.
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