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It is very challenging to accurately understand and characterize the internal structure of
three-dimensional (3D) rock masses using geological monitoring and conventional
laboratory measures. One important method for obtaining 3D core images involves
reconstructing their 3D structure from two-dimensional (2D) core images. However,
traditional 2D–3D reconstruction methods are mostly designed for binary core images,
rather than grayscale images. Furthermore, the reconstruction structure cannot reflect the
gray level distribution of the core. Here, by combining the dimension promotion theory in
super-dimension (SD) reconstruction and framework of deep learning, we propose a novel
convolutional neural network framework, the cascaded progressive generative adversarial
network (CPGAN), to reconstruct 3D grayscale core images. Within this network, we
propose a loss function based on the gray level distribution and pattern distribution to
maintain the texture information of the reconstructed structure. Simultaneously, by
adopting SD dimension promotion theory, we set the input and output of every single
node of the CPGAN network to be deep gray-padding structures of equivalent size.
Through the cascade of every single node network, we thus ensured continuity and
variability between the reconstruction layers. In addition, we used 3D convolution to
determine the spatial characteristics of the core. The reconstructed 3D results showed that
the gray level information in the 2D image were accurately reflected in the 3D space. This
proposed method can help us to understand and analyze various parameter
characteristics in cores.

Keywords: porous media, 3D microstructure reconstruction, deep learning, cascaded progressive generative
adversarial network (CPGAN), super-dimension (SD)

1 INTRODUCTION

Current on-site geological monitoring approaches struggle to accurately understand and characterize
the three-dimensional (3D) structural properties of rock mass [1].

The most commonly used method to solve this problem entails obtaining detailed information on
the rock structure using physical imaging equipment [2–7]. Taking computed tomography (CT) as
an example, the gray values of pixels in a 3D-core CT image comprehensively reflect the differences
in the X-ray absorption coefficients of different rock components [8]. Real rock samples are usually
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composed of multiple components, and these different
components show different gray values under imaging
equipment. Specifically, the core parameter characteristics,
such as permeability [9–11], electrical conductivity [12–14],
and elastic modulus [15–17], will also vary with the
distribution of these components. 3D gray core CT images are
of great significance for studying core compositions and their
physical characteristics [18–26].

Digital core reconstruction methods can be divided into two
categories. The first is direct imaging, which uses various optical
or electronic equipment (such as CT) to scan and image the rock
sample and perform 3D reconstruction. This reconstruction
method requires interpolation. The second is to extract feature
information from a two-dimensional (2D) image and use
mathematical methods for 3D reconstruction. This method
involves reconstruction from a single 2D image to a 3D
structure with the addition of certain prior information in the
absence of interpolation.

However, for direct imaging, owing to high costs,
computational difficulties, and the long length of time
required, obtaining 3D data sets through physical imaging
equipment for different samples has its limitations. Notably,
high-resolution 2D images can be obtained easily at a low cost
[27]. 2D–3D reconstruction does not require the reconstruction
results to reproduce the same structure exactly; it only requires
that the reconstruction results and the target system are similar in
terms of statistical and morphological features. Based on the
above mentioned reasons, it would be extremely valuable to be
able to reconstruct the 3D structure of a sample based on a single
2D image [28–32]. Most of the current research in this regard is
based on binary images; however, research into the
reconstruction of gray core images is still relatively rare.

Compared with the reconstruction of binary cores, gray cores
are more difficult to reconstruct because there are 256 gray levels,
which makes it more difficult to describe their complex statistical
and morphological characteristics. Learning these features and
building a map for their reconstruction are the key actions
required to solve this problem. Deep learning and super-
dimension (SD) reconstruction theory [33–36], which has
been widely used in binary core reconstruction, is a better
strategy for establishing a map than traditional methods.

SD theory borrows the concepts of “mapping relationship,”
“prior model,” and “training dictionary,” from learning-based
super-resolution reconstruction [37–40] and applies them to the
3D reconstruction of porous media. In the training stage, the
mapping relationship between the 2D patches and the 3D blocks
in the real core is learned; this is used as prior information to
guide the subsequent reconstruction of a single 2D image.

Machine learning (ML)-based methods [41–44] have become
increasingly popular because they can predict end-to-end
(2D–2D and 2D–3D) material properties to accelerate the
design of new materials. Recent advances in “deep learning”
have made it possible to learn from raw data representations
[45, 46], such as the pixels of an image. This makes it possible to
build a universal model that is superior to traditional expert-
designed representations. At present, deep learning methods are
mostly used to reconstruct binary cores [47].

In this study, we designed the cascaded progressive generative
adversarial network (CPGAN) by combining the deep learning
method [48–50] and idea of dimension promotion in the SD
concept. Based on this network, we proposed a gray-core image
reconstruction algorithm. The inspiration for this design comes
from the following sources: in the field of deep learning, the newly
emerged bicycleGAN [51] can achieve image-to-image style
conversion. Therefore, to solve the problem of mode number
explosion for the dictionary patterns of gray core images, here we
attempted to establish a mapping function relationship through
deep learning, to maintain the texture information of the
reconstructed structure. Simultaneously, by borrowing the idea
of gradual reconstruction in SD dimension promotion, we
designed a cascading peer information network to achieve
continuity and variability between reconstruction layers.

The remainder of this paper is organized as follows. The
backgrounds of GAN and SD reconstruction are introduced in
Section 2. The proposed CPGAN network and its related 3D
grayscale core image reconstruction algorithms are described in
Section 3. Section 4 describes and analyzes the results of the
experiments performed, and a summary of this study is presented
in Section 5.

2 BACKGROUND OF GENERATIVE
ADVERSARIAL NETWORK AND
SUPER-DIMENSION RECONSTRUCTION

2.1 Generative Adversarial Network and
Mapping in the Reconstruction of 3D Digital
Cores
The GAN is composed of two opposing models: the generator
and the discriminator. The generator attempts to learn the
distribution characteristics of a given dataset to generate near-
real data to trick the discriminator. The discriminator then judges
the authenticity of the generated results given by the generator by
estimating the probability. The network structure parameters are
continuously optimized through a continuous game between
these two models. Finally, the generator produces the required
result, which is almost indistinguishable from the real data, which
is given by

min
G

max
D

V(D,G) � Ex~pdata(x)[logD(x)] + Ez~pz(z)[log
(1 −D(G(z)))] (1)

where G is the generative model, D the discriminative model, z
the noise, Pz(z) the prior noise distribution, x the input data, and
V(D, G) the value function.

By adding additional constraints, y, to the discriminator and
generator, we can obtain a conditional GAN (CGAN) whose
expression is as follows:

min
G

max
D

V(D,G) � Ex~pdata(x)[logD(x∣∣∣∣y)] + Ez~pz(z)[log(1
−D(G(z∣∣∣∣y)))]

(2)

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 7167082

Li et al. Reconstruction of Grayscale Core Images

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


GAN-based deep learning methods have been gradually
recognized in the field of digital cores and demonstrated to
have a very good performance. Regarding the reconstruction
of core images, current research is still focused on binary image
reconstruction. The schematic diagram of synthesis and
reconstruction of binary images is attached as Supplementary
Material S1. These applications have great potential for the
reconstruction of 3D structures from 2D gray core images.

2.2 Gradual Reconstruction in the
Super-Dimension Promotion Process
The complete process of the SD reconstruction framework can be
divided into the dictionary building stage and reconstruction
stage. In the dictionary building stage, a set of real cores is
selected. Then, a 2D template of size N × N and a 3D
mapping template of size N × N × N are selected. Afterward,
the mapping template is used to access the real core along the
raster path to obtain dictionary elements. Next, a mapping
relationship between the acquired 2D image mode and the
corresponding 3D image mode is established, and they are
stored as dictionary elements to form a dictionary. In the
process of scanning the real core with the mapping template,
the acquired 2D image pattern will have a large number of
repetitions, and the same 2D image will correspond to
multiple 3D blocks. The atomized 2D–3D matching pair in
the real core is obtained and used as prior information. Based
on this, different learning mechanisms are used to learn the
mapping relationships in the real core to guide the
reconstruction. In the reconstruction stage, the current 2D
reference image to be reconstructed is traversed along the
raster path with the size of N × N template, and the obtained
2D block is used to search for the best matching 3D block in the
dictionary through the learned SD mapping relationship. After
the entire reference image is searched and matched, the current
N-layer images is reconstructed, and then, the uppermost 2D
image is used as a new training image to repeat the
aforementioned reconstruction process, until the entire 3D
structure has been reconstructed. The schematic diagrams of
the dictionary building stage and reconstruction stage of SD
algorithm are attached as Supplementary Material S1. The
SD reconstruction process adopts a systematic progressive
reconstruction. The previous reconstruction information can
be used as a constraint condition for the next step, thereby
maintaining the continuity and variability between layers.

XMAP � argmin⎡⎣∑p
k�1





BkX − yk





2 + λγ(X)⎤⎦ (3)

The 3D reconstruction of the digital core can be expressed
using the mathematical model shown in Eq. 3. This formula
represents the process of estimating the corresponding 3D spatial
structure X based on a single 2D reference image yk, with the
addition of regularization terms γ(x) as prior knowledge. Here, Bk
is the dimensionality reduction matrix, X the reconstruction
result obtained through maximum posterior probability
estimation, and λ the regularization coefficient.

2.3 Advantages and Disadvantages of Using
Generative Adversarial Network and
Super-Dimension Methods in Grayscale
Core Reconstruction
The key to using GAN to reconstruct a 3D grayscale core image
from a single 2D image lies in determining how to build a 2D-to-
3D map under the condition of information equivalence. GANs
are commonly used to reconstruct binary images. If a single 2D
gray image was taken as the input and the entire 3D gray core
image as the target of the GAN network, this inequality created
between the input and output information would increase the
solution space of the generated structure, which is not conducive
to the training of the entire network. Under this condition, the
reconstructed grayscale core structure could maintain grayscale
texture information but would not be able to maintain continuity
and variability between layers.

When using the SD reconstruction method to reconstruct
grayscale core images, compared with the reconstruction of
binary core images, the mapping relationship between the 2D
patches and the 3D blocks of the gray core images becomes more
complicated. If the SD method is used in the reconstruction of
grayscale core images, a dictionary containing the mapping
relationship between the 2D gray level patches and the 3D
gray level blocks should be established. Consider as an
example a template of size N × N. For a binary core, the
number of pixel modes in the dictionary is 2N × N. However,
for a grayscale image, the number of modes increases sharply to
256N ×N. The direct consequence of this is the incompleteness of
the SD dictionary. In the later stages of reconstruction, textures
and pattern information would gradually disappear owing to
matching errors. However, owing to progressive reconstruction,
the continuity and variability between layers would be
maintained during reconstruction.

3 MATERIALS AND METHODS

3.1 Materials
The cores used for conventional research are typically cylinders
with a diameter of 25–100 mm. If a clear image of the micron or
nanoscale pore structure is to be obtained, the core can be cut into
a few millimeters or smaller. In this study, to obtain a training
image, the columnar cores were first obtained, with a diameter of
25 mm and image pixel length of 13.6 μm. These cores were then
cut and scanned by CT. The final core diameter and image pixel
length were 2 mm and 1 μm, respectively. Slice thickness refers to
the (often, axial) resolution of the scan. Here, the resolution of the
final obtained CT slice was 1 μm.

The resolution of the CT image to be reconstructed is related
to the quality of the reconstructed structure. The higher the
resolution, the more detailed the information obtained. In this
study, the resolution of the reconstructed 3D structure by the
proposed method depends on the resolution of the 2D image to
be reconstructed (1 μm in this study).

Different materials have different differential opacities. The
gray value of the pixel in the 3D core CT image comprehensively
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reflects the difference in the X-ray absorption coefficient of
different components of the rock. In this study, the deep
learning network CPGAN can establish a mapping from a 2D
plane to a 3D space for reconstructing different materials with
differential opacities.

3.2 Methods
In our previous research on binary core reconstruction, the
original SD algorithm was proposed by establishing 2D and
3D matching pairs as the dictionary [34]. In this study, for the
reconstruction of grayscale core images, the mapping relationship
is more complicated. In establishing a 2D-to-3D mapping
relationship of grayscale cores, the major research problem is
how to maintain both textural and inter-layer information during
the reconstruction process to ensure the reconstructed structure
is consistent with the real situation.

To address this problem, both deep learning and SD methods
have distinct advantages. The mapping function relationship
established by the deep learning method can maintain the
textural information of the reconstructed structure, but the
continuity and variability between the layers of the 3D
structure cannot be maintained. By contrast, dimension
promotion in SD can realize continuity and variability
between layers of reconstruction. How to combine these two
ideas organically is essential in solving the problem.

This study is novel in its attempt to establish a mapping
function through deep learning for maintaining the textural
information of the reconstructed structure. Simultaneously, the
idea of progressive reconstruction in SD theory is utilized, and
cascade every single network whose input and output are peer-to-
peer structures. This is necessary to achieve continuity and
variability between the reconstruction layers. Based on the
aforementioned information, this research proposes CPGAN
to reconstruct gray core images. The details of this method are
analyzed further.

To establish 2D to 3D mapping under the condition of equal
information and to use 3D convolution to learn 3D spatial

information, we designed the CPGAN and set the input and
target of each single-layer node network in the CPGAN cascade
network to be two 3D volumes with a peer structure (as explained
in paragraph 4 of Section 3.2.2). The specific design of the
network is as follows.

3.2.1 Deep Gray Padding
In this study, we used a deep gray-padding technology to fill the
input and output 2D images into a 3D structure, with a size
similar to that of the final reconstructed target. This ensured that
the network learned the mapping relationship between the 3D
input and the 3D output. Figure 1 show a schematic diagram of
the deep gray padding. This type of network learning is simpler
than learning the relationship from 2D to 3D images. Similar
techniques have also been used for pedestrian re-identification
[52]. Suppose the dimensions of the input image are 1 × N × N,
that it is filled with a 3D volume with size (N-1) × N × N, and that
all pixel values are 127. The size of the final 3D structure would be
N × N × N.

3.2.2 Cascade Network Architecture
The CPGAN architecture is composed of node networks in the
training stage and a cascaded network in the reconstruction stage.

In the training stage, for a grayscale core reference image of
size n2, log2n node networks are required: the trained generators
are cascaded in the reconstruction stage. Here, we used a 128 ×
128 image as a reference image for reconstruction. In this case,
seven-node networks were required during the training stage. For
the kth-node network (1 ≤ k ≤ 7), the input images were 2k−1

continuous images in the CT sequence, which were padded using
the method described in Section 3.2.1. The output images are 2k

continuous CT slices including the 2k−1 input, which will also be
padded.

Under these conditions, we were able to progressively train a
mapping relationship with input and output structures that had
overlapping parts; this is similar to the idea of dimension
promotion in SD theory. Thus, the continuity and variability
between the layers were maintained. Besides, as deep learning
technology was used to establish the map, the grayscale texture
information was maintained. Figures 2A,B show the first and
third node networks in the training stage, respectively.

The inputs and outputs of CPGAN’s node network comprised
a peer-to-peer structure because they are all 3D objects of the
same size. The advantages of adopting this peer-to-peer structure
are twofold. On the one hand, we can use the 3D convolution
kernel to learn the 3D spatial information of the grayscale core
image. On the other hand, 2D to 3D grayscale core image
reconstruction, which is an ill-conditioned problem with
unbalanced input and output information, is converted to a
problem of gradual reconstruction. The first node network can
be regarded as mapping from a 2D image to a 2D image and the
node network after as mapping from a 3D image to a 3D image.
This reduces the information difference between the input and
output in the entire process.

For every node network, the generator’s network structure is
still based on the classic U-Net. Notably, to better capture 3D
spatial information, we used both 3D convolution and 3D

FIGURE 1 | Schematic diagram of deep gray padding.
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transposed convolution. However, the 3D convolution operation
greatly complicates the process of training the network, resulting
in an insufficient graphics processing unit (GPU) memory. To
solve this problem, we cancelled the final channel fusion process,
as 3D (transposed) convolution itself is an operation performed
in 3D, which can effectively fuse information between channels.
In traditional GAN, after the image enters the generator, it is
downsampled stepwise to a size of 1 × 1. Regarding the algorithm
proposed in this paper, previous experiments have shown that
image downsampling to a size of 2 × 2 has little influence on the
final accuracy but that this strategy can reduce the network
parameters by approximately 30%, save GPU memory, and
accelerate network convergence. For the abovementioned
reasons, we downsampled the image to a size of 2 × 2.

A schematic diagram of the reconstruction stage of the
CPGAN is shown in Figure 2C. Here, the n generators that
were trained as described earlier were cascaded (when the
reference image size is 128, n = 7). The input is a 3D volume
with a reference image as the first layer and other layers were
padded with pixels with a gray value of 127. This 3D body was
first sent to the first layer of CPGAN, and its output was used as
the input for the next layer of the network. We repeated the
abovementioned operations to reconstruct 2n images from the
original reference image. By stacking these 2n images, the entire

3D structure can be reconstructed. The cascade formula for
CPGAN is

Output � G7(G2(G1(input, z), z), z/, z) (4)

3.2.3 Histogram matching Constraints for Cascaded
Progressive Generative Adversarial Network
The traditional BicycleGANnetwork uses the weighting of the CGAN
loss function, LGAN, and uses the L1 loss function, LL1, as the final loss
function. The purpose of CPGAN as proposed here is to reconstruct
the gray core images. Therefore, it is necessary to propose a new loss
function specifically for reconstructing gray core images. It is also
necessary to achieve a better reconstruction effect by weighting and
summing with the previous LGAN and LL1 loss values.

3.2.3.1 Lgrayscale Pixel value—Histogram matching Constraints
Based on the Grayscale Pixel Value Distribution
Traditionally, the loss function is used to measure the difference
between the predicted value of the network and the true value. The
calculated loss is back propagated to update the parameters. The
loss function of the common GAN generator is defined as follows:

LCGAN(G) � x ~ p(x)[D(x, G(x) − 1]2 (5)

FIGURE 2 | Schematic diagram for the training and reconstruction stage of CPGAN. (A) The first node networks in the training process of CPGAN; (B). The third
node networks in the training process of CPGAN; (C) The reconstruction stage of CPGAN.
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where x is the input, G the generator, D the discriminator, and E
the expectation. Eq. 5 shows that the goal of G is to expect the
generated fake sample to be judged as 1 (true) by the
discriminator. That is, it hopes to produce a more realistic
image and achieve the purpose of deceiving the discriminator.

For the reconstruction problem in this study, Eq. 5 only
indicates that the fake sample, G(x), is (visually) similar to the
real sample. Furthermore, it does not restrict the grayscale
distribution of the pores and rock. To reflect this constraint,
we added loss to measure the point-to-point difference of the
grayscale pixel value between the reconstruction result and the
target image. The specific definition is as follows:

Lgrayscale pixel value � ∑255
0








Bgrayscale pixel value − B̂grayscale pixel value









2

2

(6)
Here, Bgrayscale pixel value represents the pixel value distribution

of the real image, and B̂grayscale pixel value represents the pixel value
distribution of the reconstruction result.

3.2.3.2 Lgrayscale pattern—Histogram matching Constraints
Based on the Grayscale Pattern Distribution
Similar to the pattern set in multipoint geostatistics, the grayscale
pattern distribution in the grayscale core image can reflect its
morphological characteristics. The advantage of using a smaller
pattern is that the GPU memory requirement is small and the
matching speed is fast. The disadvantage is that the long-range
information of the obtained image is limited. The advantage of
using a larger pattern is that more information in the long-range
can be obtained, but the disadvantage is that the GPU memory
requirement is large and the matching speed is slow. Therefore, in
CPGAN, we propose a loss function based on the grayscale
pattern distribution to measure the difference between the
predicted value, G(x, z), and the true value in the pattern
distribution, B. The specific definition is as follows:

Lgrayscale pattern �







Bgrayscale pattern − B̂grayscale pattern









2

2
(7)

In this formula, Bgrayscale pattern represents the grayscale pattern
distribution of the real image, and B̂grayscale pattern represents the
grayscale pattern distribution of the reconstruction result. Here, a

grayscale pattern in the image is defined as data composed of multiple
points captured by an N × N template. Taking a 3 × 3 template as an
example, Figure 3 shows the calculation process of the pattern
distribution. Specifically, this process comprised the following steps:
1) scan the slices in x, y, z directions of the 3D target and the generator
output of G((x,z)) with a template to collect all patterns that appear,
Pati; 2) flatten each pattern and perform binarization to obtain its
corresponding binary code and then convert it into a decimal number,
PatNumi; and 3) count the occurrences of each Pati to get Num(Pati)
and then normalize it to get the probability, Pi, of each pattern. Pi is
defined as shown in Eq. 8, in which Ntotal represents the sum of the
numbers of all patterns in an image:

pi � NUM(Pati)
Ntotal

(8)

3.2.3.3 Ltotal loss—Total Loss Function
In CPGAN, the total loss function is the weight of LGAN, LL1,
Lgrayscale pixel value, and Lgrayscale pattern. It can be expressed as
shown in Eq. 9. Here, the λgrayscale pixel value and λgrayscale pattern

represent the weights of the grayscale pixel value loss and the
grayscale pattern loss, respectively. The basic principle of the loss
function weight setting is to ensure that the contribution of each
part of the loss to the total loss is similar. If the weight is set too
small, the loss will not constrain the network enough; if the weight
is set too large, the loss will contribute too much to the total loss,
and the network will have difficulty learning the constraints of
other loss functions. In this research, the λgrayscale pixel value and
λgrayscale pattern were set to be 1,000 and 5 × 105, respectively.

Ltotal loss � LCGAN + LL1 + λpatternLpattern

+ λgrayscale pixel valueLgrayscale pixel value (9)

4 EXPERIMENTAL RESULTS AND
DISCUSSION
4.1 Relationship Between the Structure
Size, Network, and Reconstruction Time
The running environment of the experiment in this section was as
follows: the CPU model was Intel i7-6700k, RAM was 16 GB

FIGURE 3 | Schematic diagram for the reconstruction stage of CPGAN.
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DDR3, GPU model was Nvidia GTX 1080, and the operating
systemwas Ubuntu 16.04. It took 0.5 s to reconstruct a core image
with a size of 1283 pixels. The reconstruction time is proportional
to the amount of network input data, for a core image of size n3 in
terms of the amount of data, n3 = 1283 × (n/128)3. Thus, the
reconstruction time is approximately (n/128)3 times the
reconstruction time of the 1283 size core image; that is, (n/
128) 3× 0.5 s.

4.2 Experimental Basis and Network
Parameter Settings
Batch size is an important parameter in network design based on
deep learning. It is related to the GPU memory cost and training
speed. Every time we send a part of the data in the training set to
the network, and this part of the data is called a batch. The
amount of this part of the data is called the batch size. It indicates
the number of data passed to the program for training at a time.
For example, our training set has 1,000 pieces of data. In this case,
if we set the batch size to 100, then the program will first train the
model with the first 1–100th data. The batch size cannot be too
large or too small. If the batch size is too small, the gradient of the
entire network will constantly change, and thus the network will
not converge. If the batch size is too large, this will cause
insufficient memory, slow parameter modification, and slow
network convergence. Based on these factors and after
continuous experiments, we set the batch size to four (4 sets
of data in the training set) to achieve an optimal network
performance.

The learning rate is the step size of the gradient descent. A very
small learning rate will ensure that the gradient approaches the
minimum value during training. Thus, the minimum value will
not be missed, but the corresponding training speed will be slow.
If the learning rate is high, the training may cross the minimum

value and fluctuate frequently. Based on these considerations, we
set the learning rate to 0.0002.

In terms of software configuration, we used an Nvidia GTX
1080 GPU and the Pytorch deep learning framework to build
CPGAN for the reconstruction of 3D gray core images.

4.3 Visual Effects of Reconstruction Results
To prove the universality of CPGAN, we selected three sets of
gray core sample images composed of different rock components
for the experiments. A schematic of the CPGAN reconstruction
results is shown in Figure 4. In Figure 4, inputs 1, 2, and 3 are
slices randomly selected from targets 1, 2, and 3, respectively.
Visually comparing the target system and the reconstructed
structure revealed that they have similar morphological
characteristics, indicating that our proposed algorithm can
successfully reconstruct gray core images. Furthermore, the
components in the 2D image were well reflected in the 3D
structures, indicating that CPGAN successfully learned the

FIGURE 4 | Schematic diagram of CPGAN reconstruction results.

FIGURE 5 | Comparison of gray core images reconstructed by SD and
CPGAN. (A) Reference image; (B) target sample; (C) SD algorithm
reconstruction structure; (D) cross-section of the structure reconstructed by
SD; (E) CPGAN algorithm reconstruction structure. (F) cross-section of
structure reconstructed by CPGAN.
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relationship between the component information in the 2D image
and the 3D space.

4.4 Comparative Experiments
In this section, we compare the results of the gray cores
reconstructed by the SD and CPGAN algorithms. SD is an
algorithm used for binary-image reconstruction. For
comparison, the dictionary of the SD algorithm is obtained
from grayscale core CT sequence images, which are then used
for grayscale core image reconstruction. During reconstruction, a
5 × 5 size 2D template is used to traverse the training images to
build a dictionary. For the purposes of this comparison, we
trained CPGAN according to the method described in Section
3 to establish the related mapping relationship.

The gray core reference image and the target system that we
used in this experiment are shown in Figures 5A,B, respectively.
The structures reconstructed using the SD and CPGAN
algorithms and their cross-sectional views are shown in

Figures 5C–F. A visual comparison of the reconstruction
effects revealed that the target system and the reconstructed
structure of the CPGAN exhibited more similar morphological
characteristics than the other structure. This indicates that the
algorithm described in this paper was best at reconstructing the
gray core image.

Based on the experiment shown in Figure 5, we compared
sliced images of the reconstruction results of the two algorithms.
The sliced images of the reconstruction structures of the SD
algorithm are shown in Figures 6A–D. The sliced images of the
reconstruction structures of the CPGAN algorithm are shown in
Figures 6E–H, respectively.

Regarding the grayscale core images reconstructed by the SD
algorithm, although there were continuity and variability between
the layers of the reconstruction structure, the large number of
modes meant that the dictionary was relatively incomplete; this
likely resulted in the gradual disappearance of mode information
in the later stage of reconstruction, such as the grayscale texture.
The CPGAN algorithm not only achieved continuity and
variability between the layers of the reconstructed structure
but also maintained the textural information through a
combination of GAN and SD theory. In the remainder of this
section, we used different parameters to quantitatively analyze the
reconstruction results.

4.4.1 Variogram
Variogram is a statistic that describes the spatial correlation of a
random field or a random process, and is defined as the variance
between two points in space. The formula for Variogram is
derived as follows: let the regionalized variable Z(x) satisfy the
(quasi) eigen hypothesis, h is the spatial separation distance
between the two sample points, and Z(xi) and Z(xi + h) are
respectively the observed value of Z(x) at the spatial positions xi
and xi+h (i = 1, 2,...N(h)), then the formula for calculating the
experimental variogram is:

γ(h) � 1
2N(h) ∑N(h)

i�1
[Z(xi) − Z(xi + h)]2 (10)

Here, N(h) represents the number of sample pairs when the
separation distance is h.

To further quantify the reconstruction results of the grayscale
core image, we compared the variogram of the target sample with
the reconstruction structures of the SD and CPGAN algorithms.
The comparison curve is shown in Figure 7A. Through the
analysis of Figure 7A, it can be seen that the CPGAN
reconstruction structure better reproduced the 3D spatial
correlation of the target sample. Due to the loss of grayscale
information in the reconstruction process by SD algorithm, the
variogram of SD is slightly lower than the other two curves as
a whole.

4.4.2 Local Pore Distribution Function
In this section, we used the local porosity distribution function
[53, 54] to further compare the morphological similarities
between the reconstruction result and the target system as
shown in Figure 5. This characteristic function is a higher-

FIGURE 6 | Cross-sectional view of structure reconstructed by the SD
algorithm (A–D) and the CPGAN algorithm (E–H).
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order statistical function that can effectively describe the spatial
distribution of 3D pores. It is defined as follows:

Let us suppose there is a sample of porous media, S∈R3. If the
sample includes only the grain phase, M, and the pore phase, P,
then S � P ∪ M and P ∩ M � Ø.K( c. , L) is a measuring unit in
porous media, which is a subset of S and represents a cube with
points c

.
as the center and L as the side lengths inside the porous

media. Then, the local porosity, ϕ( c. , L), can be expressed as

ϕ( c., L) �
V(P ∩K( c., L))
V(K( c., L)) (11)

Here, V(T) represents the volume of the phases T and T∈R3.
Based on the definition of local porosity, the local pore
distribution function is defined as

μ(ϕ, L) � 1
m
∑
r
.

δ(ϕ − ϕ( c., L)) (12)

Here, δ(x) is the Dirac function andm represents the number
of measurement units. The physical meaning of the local pore
distribution function is as follows: given any measurement unit,
K( c., L), the probability of its porosity within the range ϕ → ϕ +
dϕ is ￼ μ(ϕ, L) ϕ is the volume porosity.

The distribution curve of the local porosity distribution
function, μ(ϕ, L) can be used to determine the structural
characteristics of the degree of homogeneity of the porous
medium. When the size of the measurement unit, L, is fixed
with porosity, ϕ, as an independent variable, the function μ(ϕ, L)
reflects the distribution of porosity across the entire porous
medium. The distribution concentration reflects the degree of
structural homogeneity. The more concentrated the curve
distribution, the better the homogeneity.

We also compared the abovementioned characteristics of the
target system and the reconstructed results from SD, and CPGAN
(Figure 5). Figure 7B shows the comparison results. The
distribution and peak breadths of the local porosity of the
target were similar to those of the structure reconstructed by
CPGAN. This indicates that the 3D pore space distribution and

degree of homogeneity of the structure reconstructed by CPGAN
were more similar to those of the target than to those of SD.

4.4.3 Gray Level Co-Occurrence Matrix
The statistical method of GLCM was proposed by Haralick et al.
in the early 1970s. This is a classic and vital texture feature
extraction method. It has been widely used in image classification,
image segmentation, and other fields because of its simple and
effective calculation. Essentially, the GLCM describes the joint
conditional probability distribution of two pixels in space as:
G(i, j|d, θ). It reflects the comprehensive information of the
image in the direction, interval, range, and speed of change by
calculating the correlation between the grayscale of two points in
the image at a certain distance and in a certain direction. In this
probability distribution, i and j represent the gray values of these
two pixels, respectively, and d and θ represent the distance and
angle relationship between them, respectively. A typical
schematic diagram for GLCM calculation is attached as
Supplementary Material S1, in which d = 1 and θ � 0.

Generally, some scalars can be used to characterize the features
of a GLCM. Some common features of the GLCM are as follows:

Energy (angular second moment; ASM): energy is the sum of
the squares of the element values of the GLCM; it reflects the
uniformity of the image grayscale distribution and the thickness
of the texture. Its expression is

ASM � ∑k

i�1∑k

j�1(G(i, j))2 (13)

Entropy (ENT): entropy is used to measure the degree of
disorder of the pore distribution in an image. The larger the value,
the more scattered the element values are in the matrix. If there is
no texture in the image, then this value will be smaller, whereas if
the image’s texture is complex, the value will be larger. Its
expression is as follows:

ENT � −∑k

i�1∑k

j�1G(i, j)logG(i, j) (14)

Contrast (CON): the greater the contrast, the deeper the
texture grooves and the clearer the image. On contrary, the

FIGURE 7 | Comparison curve of the variogram (A) and local porosity (B) between target sample and reconstructed structure for different algorithms.
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shallower the texture grooves, the more blurred the image. Its
expression is

CON � ∑k−1
n�0n

2{ ∑
|i−j|�n

G(i, j)} (15)

Inverse difference moment (IDM): IDM measures the degree
of similarity of spatial GLCM elements in the row or column
direction. Therefore, the correlation value reflects the local gray
level correlation in the image. Its expression is

IDM � ∑2
i�1
∑2
j�1

1

1 + (i − j)2pij(r). (16)

Correlation (COR): this can be used to describe the correlation of
matrix elements in the row or column direction. If the image has a
texture in a certain direction, then the value of the index of the matrix
in said direction will be relatively large. Its expression is as follows:

COR � ∑k

i�1∑k

j�1
(ij)G(i, j) − uiuj

sisj
(17)

ui � ∑k

i�1∑k

j�1iG(i, j) (18)
s2i � ∑k

i�1∑k

j�1G(i, j)(i − ui)2 (19)

Here, we used these five feature functions to evaluate the
quality of the reconstruction results of different algorithms,

FIGURE 8 | Comparison of characteristic functions of structures reconstructed by different algorithms: (A) energy; (B) contrast; (C) entropy; (D) inverse difference
moment; and (E) correlation.
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including SD and CPGAN. Figure 8 shows the comparison
results. Owing to the combination of deep learning and SD
theory in the CPGAN algorithm proposed in this study, the
GLCM feature function of the reconstructed structure was closest
to that of the target system, indicating that CPGAN best
maintained the texture information of the reconstructed
structure. The texture information would have been gradually
lost during the reconstruction process of the SD reconstruction
algorithm, which explains why its texture information was poor.

4.4.4 Pore Network Model and Seepage Analysis
The 3D reconstruction aims to use the reconstructed structure to
analyze the seepage characteristics and other physical
characteristics. The seepage characteristics mainly depend on
the pore space characteristics and core connectivity
characteristics, as well as many other complex factors.
Therefore, the seepage experiment can be used to test whether
the reconstructed structure has pore space characteristics similar
to those of the target sample.

The pore network model is a common tool used for simulating
the two-phase seepage characteristics of complex 3D core structures.
Here, we used the maximum–minimum ball algorithm to extract
pores and throats from core images. The essence of this algorithm is
to extract the pore structure inside the core from the actual CT
sequence of the core. Dividing pores and throats, their positions, link
relationships, and other information reflects the morphological
information and topological structure of the pores inside the
core. Finally, the segmented pores and throats are abstracted as
pipeline objects with different cross-sectional shapes, and dynamic

displacement simulation research is carried out. In this study, we
performed pore network extraction and seepage analysis on the
reconstruction results based on this method.

After the pore network model was established, an oil–water
two-phase seepage simulation experiment was carried out. The
entire experiment included two stages: oil flooding (drainage) and
water flooding (inhalation). To simulate the distribution of oil
and water, assuming that the model is initially saturated with
water, the oil flooding process simulation was carried out; that is,
the wetting phase water was replaced with the non-wetting phase
oil. After the process was completed, the middle of the hole
contained non-wetting phase oil, while the corners were occupied
by the wetting phase water. Water was injected from the inlet, and
the water flooding simulation was performed to simulate the
water flooding process in the actual formation.

Figures 9A–B shows the pore network model structure of the
reference and reconstructed structures. Table 1 summarizes some
important comparison parameters between the reconstructed and
reference structures in the pore network model. Table 1 reports
that the two sets of data are close in agreement, indicating that the
pore space structures of the two 3D structures are similar.

The experimental results of the seepage of the reconstructed
structure and the target sample are also shown in Figure 9.
Figures 9C, D shows the oil flooding process (drainage) and
water flooding process (inhalation), respectively. As shown in the
figure, the two-phase seepage curves, which have a strong
dependence on the spatial structure, are also consistent. This
shows from another perspective that the proposed algorithm can
effectively reconstruct complex 3D structures.

FIGURE 9 | Pore network model and seepage experiment of the reconstructed structure and the target sample. (A) Pore network model of micro-CT image; (B)
Pore network model of 3D reconstructed image; (C) oil flooding process; (D) water flooding process.
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4.4.5 Ablation Experiments
To verify the influence of the proposed and used loss functions on
the reconstruction results, four comparative ablation experiments
were conducted based on different combinations of loss functions
(Table 2).

Table 3 presents an analysis of the evaluation function error
between the reconstruction results using the four loss function
combinations and the target 3D structure. The following equation
was used to calculate the reconstruction error:

error � ∑
r

∣∣∣∣∣freconstruction(r) − ftarget(r)
∣∣∣∣∣ (20)

As summarized in Table 3, four evaluation functions were
adopted. The two-point correlation function S2(r) represents the
correlation of the spatial distribution of two points, that is, the
probability that two points belong to the same phase (pixel); the
two-point cluster function L(r) is an important function
describing the connectivity of porous media. Clusters refer to
individual connected regions in the image. The two-point cluster
function focuses on the probability that two points belong to the
same cluster; the linear path function C2(r) represents the
probability that a line segment is completely contained by a

cluster. The local porosity indicates the probability that the
porosity of the measurement unit is within the specified range.

A trend of the overall reconstruction accuracy can be seen
from the four parameters: the more the loss function is used, the
higher the reconstruction accuracy.

In addition, the error obtained when using the original
BicycleGAN loss alone is the largest. Based on the original
BicycleGAN loss, the increase in the use of Lgrayscale pattern

alone can better improve the reconstruction accuracy
compared to using the Lgrayscale pixel value alone. Increasing the
simultaneous use of Lgrayscale pattern and Lgrayscale pixel value can help
achieve the smallest reconstruction error.

We further analyzed the local porosity distribution results
described in Table 3. In the local porosity distribution, the peak
reflects the maximum probability value of the porosity
distribution. By calculation, in the 20 sets of repeated results
in experiments 1-4, the mean and standard deviation of the
porosity corresponding to the peak were 0.120 ± 0.022,
0.141 ± 0:015, 0.148 ± 0:012, 0.176 ± 0.010 (Mean ± Standard
Deviation), separately. The porosity corresponding to the peak of
the target sample is 0.171, which is the closest to the result of
experiment 4. This indicates from another aspect that the 3D pore

TABLE 1 | Comparison of the morphological parameters.

Parameters Target Average of reconstructions

Number of pores 287 238
Number of throats 470 414
Average shape factor 0.031 0.030
Average size of pore radius (μm) 23.09 24.45
Average size of throat radius (μm) 12.92 12.83
Average volume of pore (μm3) 1.44 × 106 1.51×106

Average volume of throat (μm3) 1.22 × 105 1.14×105

Average radius size ratio of pore and throat 0.269 0.265
Average coordination number 3.28 3.48
Effective permeabilities(m2) 1.023 × 10–11 1.407 × 10–11

TABLE 2 | Loss function comparison experiment.

Loss function experiment Original BicycleGAN loss
function

Lgrayscale pixel value Lgrayscale pattern

Experiment 1 ✓ ✕ ✕

Experiment 2 ✓ ✓ ✕

Experiment 3 ✓ ✕ ✓
Experiment 4 ✓ ✓ ✓

TABLE 3 | Comparison of the reconstruction results. a) Two-point correlation function; (b) Linear path function; (c) Two-point cluster function; (d) Local porosity distribution.
Each error is the average of 20 reconstruction results.

Evaluation function error
experiment

S2(r) L(r) C2(r) Local porosity distribution

Experiment 1 0.58 0.20 0.22 0.69
Experiment 2 0.54 0.16 0.19 0.62
Experiment 3 0.29 0.08 0.17 0.56
Experiment 4 0.17 0.05 0.10 0.30
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space distribution of the reconstructed structure in experiment 4
is the most similar to the target system.

4.4.6 Additional Performance Analysis of the
Reconstruction Results
In the experiment, the test objects are core samples from the
supplementary materials of the paper “Segmentation of digital
rock images using deep convolutional autoencoder networks” by
Sadegh Karimpoulia and Pejman Tahmasebi [56] (3D μCT image
of Berea sandstone with a size of 1,024 × 1,024 × 1,024 voxels and
a resolution of 0.74 μm). Figure 10B shows the 3D CT image of
the real core, Figure 10C shows the reconstruction result, and
Figure 10A) is the slice image of the input sample, which was
randomly extracted from the core sample in Figure 10B for
reconstruction.

From the perspective of visual effects, the reconstruction
results had relatively similar grayscale and structural features
to the real 3D structure, and the sizes of the pores and particles
were relatively similar.

Figure 11A shows the benchmark samples of Berea
sandstone detected in a scanning electron microscopy, which
was mainly composed of quarts and K-feldspar. Figure 11B
shows the related μCT image, from which the reconstruction
experiments are done.

We tested the volume fraction, linear path function, and
chord length distribution of different mineral compositions of

the target system and reconstructed structures through
repeating the experiments 20 times. In the target system
and reconstructed structure, the average volume fractions of
feldspar were 0.0524805 and 0.0627785 and of quartz were
0.760586 and 0.735257, respectively. Mineral composition
distributions in the two 3D structures were very close,
indicating that the algorithm proposed in this paper can
reproduce the composition information of the structures to
be reconstructed. The linear path function describes the
connectivity of pores in the form of line segments. As
shown in Figures 12A–B, the reconstructed structure is in
good agreement with the reference structure linear path
function. This shows that the algorithm can control the
spatial distribution of mineral components in the 3D
structure well, making this spatial distribution conform to
the reference structure.

The chord length distribution function of a certain phase of
the structure is defined as

F(C) � ℓ(C) × N(C)
ϕ

(21)

Here C represents the chord of the image, ℓ(C) the chord
length of the chord, N(C) the number of occurrences of the
chord, and ϕ the overall proportion of a certain phase. For
example, when studying the porosity phase, ϕ is the porosity,
and �• represents the overall statistical average. The results of the

FIGURE 10 | Visual comparison between our reconstructions and the target. (A) reference image; (B) target system; (C) reconstruction structure.

FIGURE 11 | (A) Different minerals of Berea sandstone detected in a Scanning electron microscopy and (B) μCT image of Berea sandstone.
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statistical analysis in Figures 12C–D showed that the chord
length distribution functions of the same mineral components
of the reconstructed structure and the reference structure have
good consistency, that is, these components have similar
morphological characteristics as a whole.

5 CONCLUSION

Here, we proposed a novel CPGANmodel and related algorithms
for the reconstruction of gray cores. This is achieved by
combining the deep learning method with the idea of
dimension enhancement in the SD frame. This network sets
the input and target as 3D equivalent structures and learns the
spatial structure of the gray core image through a 3D convolution
kernel and the cascading of individual networks. In addition, we
designed loss functions based on grayscale pixel distribution and
grayscale pattern distribution for the training process of the
network. We conducted experiments to reveal that gray core
images reconstructed by CPGAN matched the target system very
well. Comparing with the original SD reconstruction algorithm,
we revealed that the proposed algorithm could better reconstruct
the gray core image.

In summary, CPGAN is a flexible machine-learning
framework for predicting gray level distribution and for
maintaining the continuity and variability of reconstructed
structures. The framework provides the reconstruction of 3D
structures from 2D slices for gray level cores with different

structure types and compositions. As an example of
knowledge extraction, we applied this method to the
design of a 3D core and showed that its design results
were consistent with the structural characteristics of the
target core. Moreover, the reconstruction time was
significantly reduced compared to that of traditional
algorithms.
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