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Radiomics has shown great promise in detecting important genetic markers involved in
cancers such as gliomas, as specific mutations produce subtle but characteristic changes
in tumor texture andmorphology. In particular, mutations in IDH (isocitrate dehydrogenase)
are well-known to be important prognostic markers in glioma patients. Most classification
approaches using radiomics, however, involve complex hand-crafted feature sets or
“black-box” methods such as deep neural networks, and therefore lack interpretability.
Here, we explore the application of simple graph-theoretical methods based on the
minimum-spanning tree (MST) to radiomics data, in order to detect IDH mutations in
gliomas. This is done using a hypothesis testing approach. The methods are applied to an
fMRI dataset on n = 413 patients. We quantify the significance of the group-wise difference
between mutant and wild-type using the MST edge-count testing methodology of
Friedman and Rafsky. We apply network theory-based centrality measures on MSTs
to identify the most representative patients. We also propose a simple and rapid
dimensionality-reduction method based on k-MSTs. Combined with the centrality
measures, the latter method produces readily interpretable 2D maps that reveal
distinct IDH, non-IDH, and IDH-like groupings.

Keywords: medical imaging, biostatistics, genotype-phenotype correlation, tree-based methodology, data
visualization

INTRODUCTION

The advent of widespread medical imaging, large imaging datasets, and large-scale inexpensive
computing power has ushered in an era of unprecedented resources for medical image analysis
[1]. Cancers can now be automatically detected and staged from histopathology images, or
from clinical imaging datasets such as MRI, CT or PET data. In particular, considerable
success has been achieved using complex computer-derived image-analysis features derived
from such data as input for advanced statistical and machinelearning methods. This approach,
known as “radiomics”, offers the potential to take into account multiple features of the image
not detected by human observers and hence also avoiding the issue of inter-observer
variability [2].
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Genotyping of gliomas is difficult and invasive, as it requires
biopsy of brain tissue. While some genetic correlates of cancer
prognosis, such as MGMT promoter methylation, have not
shown strong correlation with radiomics features [3], other
mutation types are associated with marked differences in
radiomic profiles—although considerable variability between
studies exists. In particular, isocitrate dehydrogenase (IDH)
mutations are found in 5–13% of glioblastomas and are
strongly correlated with radiomics features [3].

Current automated methods for visual or radiomic genotyping
of gliomas increasingly depend on deep neural network methods
and pipelines, often using off-the-shelf architectures such as
ResNet for detection and then classification [4]. Still other
studies have made use of random forest methods for
genotyping, in combination with CNN-based methods for
tumor segmentation [3]. Alongside neural networks, more
traditional “hand-crafted” features, involving human-defined
combinations of pixel-level image analysis methods such as
gray-level co-occurrence matrices (GLCMs), represent a
second still-vibrant branch of radiomics analysis [5].
Handcrafted features often have the benefit of imparting
greater interpretability to radiomics analyses; on the other
hand, since neural network models are considered by some to
be more free from human bias, current state-of-the-art radiomics
methods frequently combine both [6].The area under the curve
(AUC) is a typical metric for evaluation for these approaches,
with values around 0.85−0.95 representing the state-of-the-art as
of this writing [2]. Other measures such as F1 score, sensitivity
and specificity are also common. However, while useful for
gauging performance, these measures do little to provide an
intuitive understanding of the structure of the underlying data,
or the reasons for the classifier outputs—a problem which is
particularly serious with neural networks, which with their many
millions of automatically learned parameters are often considered
to be “black-boxes” [7]. While deep learning is the current state-
of-the art classification technique, we do note that other modeling
procedures could be used, such as logistic regression, support
vector machines or L1-penalized regression approaches, among
many others.

Minimum spanning trees (MSTs) are graph-theoretic
structures in which a set of data-points or “nodes” are
connected into a single component using the minimum
possible total connection distance [8]. Notably, MSTs, while
easy to compute, are capable of representing key statistical
properties of highly complex datasets in a vastly simplified
format that is also readily amenable to lower-dimensional
(even 2D) visualization. This renders them applicable to
understanding a range of systems, such as gene expression,
transportation networks and brain connectivity [9, 10].
Furthermore, node centrality measures--which aim at
measuring the “importance” of a given node to the overall
network structure--are readily applicable to the MST [11].
Therefore, MST and other graph-based approaches may offer
an appealing and complementary alternative to the ‘blpredictions
given by neural-networks.

In addition to being easy to calculate, the MST of a high-
dimensional dataset also comes with an attendant hypothesis

testing procedure that allows one to assess the significance of the
difference between classes. This is the Friedman-Rafsky
multivariate runs test (here abbreviated “MVR”) [12–14].
Briefly, MVR involves constructing an MST over the pooled
data from two different classes, removing the edges that connect
different classes, and counting the number of connected
components that result. Smaller numbers of connected
components indicate greater significance between the classes;
this significance, furthermore, can be calculated using a
standard normal approximation. Note that our goal here of
inference is substantially different from much of the radiomics
literature described above, which is focused on classification
performance.

The k-MST is a simple extension of the MST, found by
repeating the MST algorithm k times, each time excluding any
connections chosen in prior iterations [14]. This allows a richer
level of connectivity information which in turn can improve
statistical test results such as edge-counting [12, 14]. At the same
time, like an MST, a k-MST is a uniquely defined mathematical
structure that can be calculated from any given point-set without
requiring any user-tuned parameters; thus, use of the k-MSTmay
greatly ameliorate one of the common concerns regarding
“handcrafted” radiomics features, namely that of lower
reproducibility stemming from bias in the feature design [6].

In the present work, we use the k-MST as a representation of
the underlying structure of multivariate radiomics data,
randomly embed it in a 2D region, and apply a simple 2D
force-directed layouts methodology whereby nodes that are
directly connected in the k-MST experience an attractive force.
To avoid the expensive process of calculating repulsive forces
between non-connected nodes, an isotropic expansion or
“reflation” is carried out after each iteration, to counteract the
tendency of a wholly-attractive configuration of forces to collapse
to a point.

Because the k-MST contains only a small fraction of the
possible pairwise connections between nodes, and because
there are no explicit repulsive forces to calculate, our method
allows rapid creation of 2D representations of arbitrarily high-
dimensional radiomics datasets. Importantly, we find this method
consistently converges to configurations which effectively
segregate the IDH and non-IDH patients—especially when
combined with the results of node centrality measures. This
suggests possible wide applications of MST-based methods in
creating “explainable” maps of radiomic data with respect to
tumor genotype.

METHODS

Our analytic workflows are described in Figures 1,2. Our
dataset derives from MRI scans conducted on 413 glioma
patients, genotyped as either IDH-mutated (n = 144) or
IDH wild type (n = 269). The data come from a previously
published study [4]. T2-weighted and fluid-attenuated
inversion recovery (FLAIR) MR images of diffuse gliomas
(WHO grades II, III and IV) were obtained in DICOM
format from After conversion to NIfTI format, T2-weighted
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images were re-sampled to 1 mm isovoxel resolution using the
‘trilinear’ option from the FLIRT function, while FLAIR
images were registered to the T2 images after skull
stripping, all using the FMRIB software library (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FSL). Next, image signal intensity
was normalized using the WhiteStripe R package. Tumor
areas (defined by hyper-intensity in T2 images and edema
on FLAIR images) were segmented with semi-automatic
methods such as region growing, signal intensity
thresholding, and edge detection, with an open-source
software (Medical Image Processing, Analysis and
Visualization, https://mipav.cit.nih.gov/). Segmentations
were manually corrected by a neuroradiologist as deemed
necessary.

Once MRI post-processing was completed, 467 radiomics
features were calculated per patient using the PyRadiomics
suite [15]. A full list of features used is included under
(Supplementary Table S4). All data was centered to zero and
normalized by dividing each column by its standard deviation. To
account for the possibility of redundancy or overlap among the
radiomics features, our MATLAB pipeline provides the option to
perform PCA, retaining only those components which together
comprise >98% of the total variance. This step reduces the
number of components from the original 467 to 48. Example
results of our pipeline using this PCA step are provided in
Supplementary Figures; however, as this step did not
dramatically change the character of the results, it was not
used in the main study.

Next, using the features as dimensions and each patient as
a node, we constructed MSTs over the pooled patient data
from both groups and carried out the multivariate runs
(MVR) test outlined by Friedman and colleagues [12](13)
[14]. The Euclidean distance based on the standardized
radiomics feature vectors was used to calculate distances
between all pairs of subjects. This yields a graph with edge
weights based on the distance which is used to construct an
MST. For the MVR test, edges connecting dissimilar node-
types (i.e., nodes connected from two different groups) are
removed, yielding a number of disjoint trees, R. Given two
MSTs with Na and Nb nodes, (and N = Na + Nb), Friedman
and Rafsky demonstrate that R is normally distributed, with
mean equal to

E[R] � 2NaNb/(N + 1)
and variance (conditioned on C, the number of pairs of edges that
share a common node in the given MST), equal to

var[R|C] � 2NaNb

N(N − 1){
2NaNb −N

N
+ C −N + 2

(N − 2)(N − 3) [N(N − 1) − 4NaNb + 2]}.

This allows rapid, exact, and direct assessment of the degree
of significant similarity between the IDH and non-IDH
groups.

Next, a variety of node centrality measures were calculated for
each node of the MSTs drawn over the IDH and non-IDH groups
separately. Six measures of centrality were assessed for each node
included: 1) degree centrality; 2) total degree count of neighbors;

3) through-space closeness; 4) through-tree closeness; 5)
betweenness; and 6) eigenvector. Degree centralities are simply
the number of other nodes to which the node of interest is directly
attached; closeness is the inverse of average distance to all other
nodes, either through space or through the MST connections;
betweenness indicates the proportion of all the shortest paths
between nodes in the MST that pass through the node of interest;
and eigenvalue centrality, roughly speaking, combines the
concepts of degree and betweenness by relating each MST
node to the entries of the principal eigenvector of the MST
connectivity matrix [16].

The k-MST is an extension of the MST, found by repeating the
MST algorithm k times, each time excluding all the connections
previously chosen. This allows a richer level of connectivity
information which in turn can improve statistical test results
such as edge-counting. Here, we use the k-MST as a
representation of the underlying structure of multivariate data
and apply a simple 2D force-directed layout methodology
whereby nodes that are directly connected in the k-MST
experience an attractive force. “Reflation” is carried out after
each iteration, to counteract the tendency of a wholly-attractive
configuration of forces to collapse to a point. Because the k-MST
contains only a small fraction of the possible pairwise connections
between nodes, and because there are no explicit repulsive forces
to calculate, our method allows rapid creation of 2D
representations of arbitrarily high-dimensional radiomics
datasets.

For the kMST force-directed layouts method for
dimension reduction, the steps are as follows: using the
distance matrix over the pooled patient nodes, the
minimal spanning tree algorithm is iteratively applied,
each time setting the distance matrix entries
corresponding to chosen edges to a high value so that they
are not chosen again. The edges chosen by each successive
MST calculation are then saved. For the present work, we
used a 5-MST, or 5 iterations.

The method is then initialized by assigning the nodes to
random positions within the unit square (we used a uniform
distribution was used for this purpose). Next, position updates are
iteratively calculated, by summing the attractive ‘forces’ exerted
on each node by only its direct neighbors within the MST. The
attractive force is “spring-like” in that it increases linearly with
distance between nodes.

To avoid having to calculate numerous repulsion effects
between all nodes not connected in the kMST, we instead
implemented an ‘inflationary’ step: at the end of each
iteration the coordinates of the nodes are automatically
rescaled to fit just inside the unit square. This inflationary
step preserves the configuration changes of each position
update while preventing the whole configuration from
collapsing to a point.

Two parameters are used to generate the position updates:
dEq, the equilibrium distance where attraction between kMST
neighbors becomes repulsion with decreasing distance; and kAtt,
the relative strength of the attractive force. For this study, we used
values of dEq = 0.025 and kAtt = 0.015.
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All calculations (after MRI acquisition and processing, and
radiomics feature extraction) were implemented directly
using a custom MATLAB pipeline. Scripts used are
available on Github at https://github.com/Ghoshlab/
OSimonScripts.

RESULTS

Node centralities for IDH-mutated and IDH-wildtype patients
are displayed using six different centrality definitions in
Figure 3 and Supplementary Figure S1, using node size and
color to represent centrality. Notably, in this case, the same
small number of nodes were consistently chosen as “most
central”, despite the wide differences in the centrality
definitions applied. Specifically, for the IDH-mutated
gliomas, Patient 24 was the ‘most central’ for node degree,

node neighbor degree, through-space closeness, and eigenvector
centrality, while Patient 80 was the most central in the case of
through-tree closeness and betweenness. Among the IDH wild
type gliomas, three nodes were prominent: Patient 35 (degree
centrality), Patient 37 (neighbor degree, through-tree
closeness), and Patient 39 (through-space closeness,
eigenvector).

These nodes are usually located towards the “center” of the
MST, usually at a junction between several sub-trees. Conversely,
the lowest-centrality nodes are invariably found at the edges of
the MST, among nodes with only one connection (“leaves”).
These observations confirm that these measures do indeed reflect
the intuitive idea of centrality.

Additionally, when PCA reduction was used to decrease the
number of features, nearly all the central nodes remained the
same, with the sole exception that in the IDH-wildtype gliomas
the highest eigenvector centrality shifted from Patient 39 to

FIGURE 1 | Flowchart for analysis using centrality maps.

FIGURE 2 | Flowchart for analysis using k-MST force-directed maps.
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Patient 35 (Supplementary Figure S2). This close
correspondence suggests that the centrality measures and
MST algorithms used are robust to complex manipulations
and changes of coordinates, such as those which occur
using PCA.

The MVR results for our radiomics dataset (Figure 4) showed
a clear distinction between the IDH-mutated and IDH-wildtype
groups, consistent with prior literature reporting the strong effect
of this mutation on radiomics profiles. Beginning with the pooled

MST, the number of separate trees that would be expected in the
null case (188.6) far exceeds the actual number resulting from the
cut (91). This amounts to a difference of −9.82 standard
deviations, effectively excluding the possibility that the groups
differ according to chance. Thus, the MVR test of Friedman and
Rafsky rejects the null hypothesis of no difference between the
two groups with a p-value less than 1 × 10−32.

As was the case with the node centralities, the MVR test
carried out with PCA reduction to 48 features (Supplementary

FIGURE 3 |MSTs for the IDH mutation positive (Figure 3A) and IDH mutation negative tumors (Figure 3B), with node sizes proportional to degree of the nodes.
The X- and Y-axes represent spatial coordinates for visualization of the minimum spanning trees.

FIGURE 4 | (A) The pooled MST before the hybrid-edge cut; (B) A 2-dimensional representation of the subtrees of the MSTs after removing the hybrid edges. The
X- and Y-axes represent spatial coordinates for visualization of the minimum spanning trees.
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Figure S3) yielded results similar to the original dataset. While
the null expectation value of the number of trees remains the
same by definition, number of trees from the actual cut (97), and
the total standard deviations from the expectation value (−9.21)
reveal a change of only half a standard deviation despite the PCA
manipulation. This again helps establish the robustness of these
methods to feature selection.

Applying the kMST-force directed algorithm to the 5-MST
drawn over the pooled data-points, we found that the method
rapidly and effectively produces readily interpretable visual
layouts of the group structure. A representative result is
shown in Figure 5. The results of three randomly-initialized
runs of the algorithm using 3-MST, 5-MST, and 7-MST
respectively (Supplementary Figures 4A–I) show that,
despite the random initialization and the large number of
datapoints involved, the final configurations produced by the
algorithm are remarkably consistent overall (notwithstanding
mirror-symmetry and rotations), and also reveal a clear though
not perfect spatial separation between the two genotype groups.
As might be expected, the runs using the lowest-complexity
k-MST (the 3-MST) show somewhat more variability in the final
structure and also a somewhat different final structure from the
others, whereas the 5-MST and 7-MST show quite good
consistency both between random initializations and between
each other. This strongly indicates that the k-MST, despite its
much-simplified structure with respect to the full graph,
contains the information necessary for meaningful and
reproducible dimension reduction of the data and that its
local minimum under force calculation is likely unique.

Furthermore, as in the previous approaches, the layouts were
consistent and quite similar even when PCA reduction was first
carried out (data not shown).

Given that the k-MST force-directed algorithm did not
perfectly separate the two classes—more non-IDH nodes are
present in the region dominated by IDH than vice-versa--we
wondered whether the centrality measures would reasonably
reflect the location of the nodes with respect to the overall
distribution of class examples within the 2D layout,
i.e., whether the nodes closest to the center of their class
distribution in the layout would have the highest centralities
as well. We found this to be generally the case, though the
choice of centrality measure does have an effect. Interestingly,
we find that eigenvector centrality gives much lower
precedence to the “IDH-like” non-IDH cases found in the
predominantly region, yielding better separation between IDH
and wild-type regions when both centrality and kMST layout
are used (Supplementary Figure 4F). Other measures,
particularly betweenness, seem to be much less effective at
distinguishing ‘IDH-mimics’ from the other wild-types—there
are a few IDH-like cases with relatively high betweenness, but
this centrality also yield an even clearer overall divide between
the main IDH and wild-type than does eigenvector
(Supplementary Figure 4E). Degree-based or closeness-
based centrality measures, on the other hand, do not appear
to be especially effective at discriminating the central regions
of the two classes in the kMST layout, even when the difference
is exaggerated by squaring the centrality (Supplementary
Figures 4A–D).

FIGURE 5 | Representative example of 5-MST force-directed result using PCA-reduced data. IDH-mutated patients are shown in orange, while IDH-wildtype is
blue. The algorithm was run for 1800 iterations, with the values of kEq and kAtt held constant. The X- and Y-axes represent spatial coordinates for visualization of the
minimum spanning trees.
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DISCUSSION

In the foregoing, we have demonstrated the feasibility of a
simple graph-theoretical toolkit to address the problems
presented by large, high-dimensional radiomic datasets. For
the example dataset drawn from IDH-mutated and IDH-
wildtype glioma patients, we were able to use MST-based
methods to establish highly significant differences between
the two groups, to identify patients that are most
“representative” of each group using a combination of
centrality measures, and to use a simple kMST-based force-
directed method to illustrate those centrality measures within
the context of a two-dimensional map of the data. Importantly,
we find this method converges to a very consistent configuration
which can effectively segregate IDH-mutated and IDH wild-
type gliomas, especially when combined with centrality
measures.

Although there is overlap between the two classes, there is a
very clear difference in the overall localization between the two
groups. Particularly focusing on the 5-MST and 7-MST—which
converged consistently to a roughly triangular 2D point
distribution—we see that IDH-wildtype patients tend to
group strongly in one corner of the triangle with almost no
IDH-mutated patients present, while at another corner and
towards the center of the triangle IDH-mutated cases
predominate. Notably, a significant minority of IDH-wildtype
patients exhibit IDH-like localization, suggesting that the IDH
mutation is sufficient but not necessary for an “IDH-like”
phenotype. This means that stratification by radiomic
features alone may be vulnerable to false positives, in the
sense that patients with typically IDH-like radiomic features
(at least according to our mode of analysis) may nonetheless
lack the IDH mutation. Conversely, there might be further
subtypes of IDH-wildtype populations to further characterize,
although our study is not sufficiently powered for this type of
discovery.

We hypothesize this may be due to other mutations or
combinations of mutations that partially phenocopy the IDH
mutation. Future genetic studies may help elucidate these IDH-
mimicking gene combinations, perhaps by looking for epistatic
effects on the IDH pathway [17]. Furthermore, it would be highly
worthwhile to track the outcomes of IDH-like patients, to
determine whether they in fact share the prognosis generally
associated with IDH mutation proper. As noted, our results
suggest that the combination of eigenvector centrality and
k-MST layouts may be especially useful in distinguishing
between wild-type glioma patients that are IDH-like and those
that are more ‘typical’.

Among the force-directed layouts methods, the Barnes-Hut
algorithm, which coalesces sufficiently distant points into a
single center of mass by constructing a quadtree based on a
distance criterion, may be the best-known means of simplifying
force calculations for very large numbers of points [18]. In our
case, however, the use of the k-MST greatly reduces the number
of interactions that need to be calculated at each iteration and
inherently restrains the calculation only to “sufficiently close”
node pairs, so that the Barnes-Hut approach is unnecessary. The

replacement of explicit repulsion term calculations with a
simple “inflationary” step after each iteration also simplifies
the overall calculation while likely reducing the chance of the
configuration becoming trapped in “geometrically-frustrated”
local minima. Notably, for 5-MST and higher, we saw no
evidence of alternative minima for our simulation—in all
conditions tested, the overall arrangement of points did not
differ qualitatively from the overall pattern seen here. It will be
interesting to see if this general pattern is observed for different
datasets.

The choice of k for the k-MST is likely to depend on n, the
number of observations being handled by the simulation, as
Figure 3 suggests that choosing k too low means that the final
configuration will be underdetermined. Arguments based on
stochastic-block models suggest that there is a minimum value
of k below which there is inadequate information to reconstruct
the true underlying class-membership; however, this values grows
only slowly, as Ω (log n) [19].

With respect to other common dimensional-reduction
methods, our “spring-like” approach with stochastic
initialization and gradient descent is related to such familiar
approaches like t-SNE [20], though we do not assign neighbors
using a Gaussian or t-distribution but rather use repeated
application of the MST algorithm itself. One potential future
issue is that the k-MST approach is likely to be sensitive to class
imbalance. If one class comes to be vastly outnumbered by
another its members may be less likely to be connected in the
k-MST, and hence will not experience the attractive forces that
produce strong clustering; conversely, the attraction between
relatively few similar nodes may be overwhelmed by the
attractive force of a much larger number of adjoining, yet
dissimilar nodes.

Even in this case, however, we believe it is likely that the
members of the less-populated class will tend either to have a
higher chance of being connected through the k-MST (by a
similar reasoning to that which motivates the MVR test itself),
or will form part of a larger region containing “similar” nodes
of the other class (as we see with the considerable number of
WT patients whose nodes consistently segregate into the IDH-
dominated region). One possible solution to this potential
limitation, inspired by work for the MVR test [21], might be
simply to weight the attractive forces within the k-MST
simulation in inverse proportion to the number of nodes in
the class, so that “rarer” nodes attract each other most
strongly.

One potential computational limitation of our approach
relates to its dependence on the creation of MST, which
requires creation of a full-graph distance matrix. Since this
contains n2 pairwise distances, the computational overhead
will increase with O (n2), limiting the number of data-points
that can be calculated. However, clustering-based approaches are
known which can be used to generate approximateMSTs that run
in O (n3/2), substantially speeding up the distance-matrix
bottleneck [22]. A natural next step, therefore, will be to
implement and evaluate approximate MSTs, which should
allow the processing of hundreds of thousands of data-points
in reasonable time.
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It is well-known that radiomics approaches can be vulnerable
to false positives, particularly in the case where there are more
radiomic features than there are patients [23]. Furthermore, it has
been noted that “choice of the classification model could lead to
variations in the predictive values of the radiomic features up to
>30%” [23]. While our approach largely avoids feature-selection
issues by effectively condensing the data into a higher-level
statistical, graph-theoretical, indeed structural question, further
validation studies on other types of radiomics and imaging data
are clearly indicated, as such studies can help to eliminate false
positives [23].

Even taking this into account, we believe the centrality/
MVR/k-MST force-directed combination approach presented
here has the potential to greatly simplify the analysis of
radiomics data, while simultaneously rendering it far more
readily interpretable. By relying on the simple, MVR
test—which is parameter-free except with respect to the
variable C, itself derived from the pooled data MST--we
avoid numerous somewhat arbitrary aspects of testing and
analysis with high-dimensional data. Since the MST itself does
not depend on any arbitrary parameters, this too provides a
simpler, possibly more “objective” approach. As raised by a
reviewer, there is an important theoretical question, which
involves our centrality based analysis. It is based on the MST,
and the relationship between MST-based centrality with the
original data-based graph centrality remains an open
problem.

In conclusion, we have developed a combination of graph-
theoretical approaches that provide rapid visualization,
significance testing, and dimensionality reduction for very
high-dimensional radiomics (and other) datasets, with the
potential for considerable streamlining of the workflow and
improved “explainability”. Future investigations will help
gauge the effectiveness of this general approach to other
radiomics use-cases, as well as to other high-dimensional
medical data.
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