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The development of microbubble contrast agents has broadened the scope of medical
ultrasound imaging. Along with dedicated imaging techniques, these agents provide
enhanced echoes from the blood pool and have enabled diagnostic ultrasound to
assess and quantify microvascular blood flow. Contrast-enhanced ultrasound is
currently used worldwide with clinical indications in cardiology and radiology, and it
continues to evolve and develop through innovative technological advancements. In
this review article, we present an overview of the basic microbubble physics and
bubble-specific imaging techniques that enable this modality, and follow this with a
discussion on new and emerging applications.
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1 INTRODUCTION

Ultrasound imaging is a well-established clinical tool for the morphological assessment of soft
tissues, employed frequently in obstetrics, cardiology, and radiology [1]. As an ultrasonic wave
(which is a longitudinal wave) is transmitted into the body, reflections are generated from tissue
interfaces that are characterized by different acoustic properties, i.e., speed of sound and density.
These scattered signals are recorded by the same transmitting transducer and used to generate an
image. At typical diagnostic frequencies (≈1–10 MHz), the intrinsic scattering from the blood
pool, however, is typically several orders of magnitude lower than tissue due to the size and
properties of red blood cells [2]. Consequently, blood appears dark on conventional ultrasound
images and blood flow characteristics cannot be readily assessed. For larger vessels, the relative
motion of red blood cells compared to the surrounding tissue can be exploited to assess blood
velocity using Doppler techniques [3], a strategy employed in many clinical applications (e.g.,
obstetrics [4], assessment of peripheral artery disease [5], cardiology [6]). This technique has
limitations however when dealing with regions of slow blood flow, large tissue motion and/or low
hematocrit percentage [1, 7].

Ultrasound contrast agents comprise of a suspension of small spheres of gas with a low
solubility in blood (e.g., perfluorocarbon), typically ranging in size from below 1 to 8 µm in
diameter. Unlike contrast agents used in other modalities, such as MRI and CT, the relatively
large size of ultrasound contrast agents ensures that they remain strictly intravascular and act as
red blood cell tracers [8]. Due to the compressibility of their gas cores, microbubbles vibrate
about their equilibrium radius in an ultrasound field and possess scattering cross-sections
several orders of magnitude higher than a solid particle of the same size [9]. The bubbles are
stabilized by a thin bio-compatible encapsulation layer—typically a phospholipid monolayer, to
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offer a sufficient compromise between bubble vibration
flexibility and resistance to dissolution in-vivo over
timescales relevant for imaging, e.g., half-lives of minutes
[10, 11].

Microbubble suspensions, typically on the order of
109 bubbles/ml, are injected intravenously into a peripheral
vein in the arm [8], with a whole-body dose ranging from 0.2
to 2 ml [12]. There have been millions of diagnostic injections of
contrast agent microbubbles worldwide [12], and they are
accompanied by an excellent safety profile. Recent meta-
analysis surveying microbubble tolerance indicates that the
dominant cause of severe adverse effects is pseudoanaphylaxis
(CARPA), with an estimated rate on the order of 0.004%–0.009%
[13]. This rate is comparable to most analgesics and antibodies
(0.005%–0.015% [14]), and similar if not lower than for other
contrast imaging agents, e.g., CT with a rate of 0.04% [15], MR
with a rate of 0.002%–0.005% [16, 17]. Table 1 lists the clinical
contrast agents, along with details on their salient characteristics
and clinically approved applications. Microbubbles are approved
in over 70 countries, predominately for cardiac applications,
whereby their strong echo signal in the heart chambers
improves left ventricular opacification (LVO). Recently,
Lumason™ was approved for liver imaging and in various
pediatric applications [18]. Aside from the clinical uses listed
here, microbubbles are currently in use worldwide in many off
label clinical imaging applications, including assessment of
microvascular perfusion (e.g., myocardial [19], angiogenesis
imaging [20]), imaging of the carotid to assess vascular
stenosis [21] and plaque stability [22], lesion and flow
characteristics in the abdominal region [23, 24], breast lesion
detection [25], evaluation of inflammatory bowel disease [26],
and assessment of ovaries [27], prostate [28] and thyroid [29].

In this review, we present an overview of this established yet
evolving imaging modality. First, we present a brief summary of
the fundamental physics of microbubble behaviors that are

critical for the effectiveness of this approach, followed by an
introduction to the main conventional pulse sequences that are
designed to exploit these behaviors to generate bubble-specific
images. Next, we discuss exciting advancements in the techniques
and applications of ultrasound contrast imaging, including the
development of emerging contrast agents, novel imaging and
image analysis techniques, and the implementation of contrast
ultrasound as a therapy monitoring technique. Note that this is
not a comprehensive review, rather an overview of the critical
work that has defined this modality and salient investigations into
new and ground-breaking applications.

2 ULTRASOUND-MICROBUBBLE
INTERACTIONS

A gas-filled microbubble vibrates when traversing through an
acoustic beam, contracting and expanding about its equilibrium
radius R0. Almost all the current models that explain the
oscillation dynamics of a bubble have their origin in Rayleigh-
Plesset-type equations [30], which describe the radial motion of
an isolated, unencapsulated bubble. This equation, which only
incorporates spherical vibrations, can be derived by applying
Newton’s third law to the surface of a bubble and equilibrating the
pressure on the bubble wall from the gas inside and the
surrounding fluid media outside, resulting in the following
equation:

R€R + 3
2
_R
2 � 1

ρ
⎡⎢⎢⎢⎢⎢⎢⎣PG0(R0

R
)3γ

+ Pv − 2σ
R

− 4ηL
_R
R
− P0 − Pac(t)⎤⎥⎥⎥⎥⎥⎥⎦, (1)

where R is the radius of the bubble, ρ is the density of the liquid,
PG0 � P0 − Pv + 2σ/R0 is the pressure inside the bubble with P0

the atmospheric pressure, Pv the vapor pressure inside the bubble
and σ is the surface tension at the gas-liquid interface, γ is the

TABLE 1 | Current clinical contrast agent microbubbles, their salient characteristics, and their approved uses.

Name Gas
core

Shell
material

Conc.
(109

bub/ml)

dN

(µm)
dV

(µm)
fres

(MHz)
Approved

uses
Region Company

Definity
(Luminity)

C3F8 DPPA, DPPC,
MPEG5000 DPPE

8–13
[190–192]

<1.0
[190,
193]

6–8
[190,
191,
194]

~10 [190,
191,

193, 195]

-LVO/EBD (adults) United States,
Canada, Europe,
India, NZ, Australia

Lantheus

Lumason
(Sonovue)

SF6 DPSC, DPPG-Na,
palmitic acid

0.1–0.5
[192]

1.5–2.5
[196]

6 [197] ~2 [197] -LVO/EBD (adults and
pediatric patients)

United States,
Canada, Europe,
China, Brazil

Bracco

-Characterization of liver
lesions (adults and
pediatric patients)
-Evaluation of suspected
or known vesicoureteral
reflux (pediatrics)

Optison C3F8 Albumin 2–8
[192, 198]

3–4.5
[50, 192]

6–7
[50,
192]

2–4 [198] -LVO/EBD (adults) United States,
Europe

GE

Sonazoid C4F10 Hydrogenated egg
phosphatidylserine
sodium, sucrose

1.2 [199] 2.1
[192,
199]

2.6
[199]

4–6 [200] -Myocardial perfusion Japan, South Korea,
China, Norway,
Taiwan

Daiichi-
Sankyo/GE-Living imaging

-Focal breast lesions
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polytropic exponent of the gas; ηL is the dynamic viscosity of the
liquid; Pac is the driving acoustic pressure due to the ultrasound
field and dots denote differentiation with respect to time. From
fundamental fluid dynamic principles, including conversation of
mass andmomentum, the microbubble scattered pressure Psc due
to its vibration can be approximated by

PSC ≈ ρ
€RR2 + 2R _R

2

r
, (2)

where r is the observational distance from the bubble surface. In
the context of ultrasound imaging, bubble activity is commonly
separated into two acoustic regimes that give rise to distinct
spectral features. Under low amplitude driving conditions at
frequency f, microbubbles undergo periodic oscillations about
their equilibrium size resulting in echoes that possess a rich
resonant structure, exhibiting energy at harmonic
(nf, n � 2, 3 . . .), sub-harmonic (f/(n + 1), n � 1, 2, . . .) and
ultra-harmonic ((2n + 1)f/2, n � 1, 2 . . .) frequency bands
(Figures 1A,B). This type of cavitation is called stable (or
non-inertial) cavitation, which is typically desired in routine
contrast examinations. When the acoustic pressure is increased
above a threshold value, microbubbles can rapidly expand and
collapse during the compression phase of the ultrasound wave
resulting in a transient, high-amplitude echo characterized by
broadband emissions. As this bubble collapse is dominated by the
inertia of the surrounding fluid, it is often referred to as inertial
cavitation [31]. Quantitative indicators of inertial cavitation on an
individual microbubble scale have been suggested, including
when the maximum bubble radius Rmax ≥ 2R0 otherwise
known as the Flynn criteria [32]. The disruption of
microbubbles results in an immediate loss of gas and thus in a
time-dependent loss of contrast signal. On clinical scanners, the

mechanical index MI � P / ��
f

√
, where P is the peak-negative

pressure amplitude in MPa and f is the centre frequency in
MHz, is a metric used to estimate the likelihood of inertial
cavitation and is generally maintained at low values to
minimize bubble destruction [33]. Indeed, across the broad
spectrum of all clinical contrast imaging applications, it is
recommended to start at the manufacturers default contrast
MI. If perfusion is still not well visualized after exhausting
other image-enhancing strategies (e.g., receiver gain), then the
MI should be increased by the smallest increment allowed on the
given clinical system [18], with a maximum recommended MI
between 0.2–0.3 [34–36]. However, specific techniques have been
developed (e.g., disruption-replenishment [37, 38]) whereby
short duration, large MI pulses (e.g., high MI flash under the
FDA limit of MI = 1.9) are employed to purposefully disrupt
microbubbles in the focal volume, followed by a rapid switch back
to low MI imaging pulses. The rate at which these bubbles
replenish the imaging plane can be used to assess blood flow
characteristics upon application of relatively simple models [37,
38]. The specific MI that elicits microbubble disruption has been
the subject of much investigation [39–43] and has been shown to
be dependent on microbubble formulation, size, and surrounding
environment.

Ultrasound-driven microbubble response is resonant in
nature, and the resonance frequency is one of the important
factors in agent design and optimization. Under low acoustic
driving conditions, the nonlinear equation of motion Eq. 1 can be
reduced to one of a harmonic oscillator with a linear resonance
frequency f0 given by:

f0 � 1
2π

���������������
3γP0

ρR2
0

+ 2σ(3γ − 1)
R3
0

√
, (3)

FIGURE 1 | Illustrative microbubble simulations depicting its resonant and nonlinear behaviour. (A) Radius versus time of an oscillating microbubble and (B) it is
corresponding frequency content. Note the presence of subharmonic (0.5), ultraharmonic (1.5, 2.5, 3.5) and harmonic (2, 3) energy, as well as energy at the fundamental
frequency band (1). (C) The presence of an encapsulating shell serves to increase the resonance frequency and dampen the vibrational amplitude of an otherwise
identical microbubble. (D) Under large forcing conditions, microbubbles exhibit asymmetrical resonance, including a shift down in resonance frequency with
increasing forcing amplitude. Note here the inherent skewing of the resonance response, typical of a strain-softening resonator.
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where an inverted relationship between resonance frequency and
size can be observed.

The addition of an encapsulating shell has led to adjustments
of Eq. 1, which incorporate the viscoelastic properties of the thin
shell, i.e., shell stiffness and viscosity. While many models have
been developed to capture various aspects of microbubble
physics, under low-amplitude transmit pressure conditions
they are all in agreement with experimental observations
which confirm that the encapsulating layer serves to increase
the resonance frequency and the vibration dampening of an
otherwise identical bubble (Figure 1C). As driving amplitudes
increase, microbubbles display nonlinear resonance phenomena,
including strain-softening behavior resulting in asymmetric
resonance curves shifting to lower resonance frequencies [44,
45] (see Figure 1D). While these nonlinear behaviors can be
generated by unencapsulated gas bubbles [46], the surface
rheology of the encapsulation material at megahertz
oscillations plays a key role in amplifying these effects [47]. As
such, there have been extensive efforts to understand the
underlying physics of encapsulated microbubble vibration
dynamics, including asymmetric oscillations [48], nonlinear
resonance [49], multiple scattering [50], and boundary
effects [51].

3 CONTRAST PULSE SEQUENCES

Nonlinear behavior of vibrating microbubbles is central to their
effectiveness as an ultrasound contrast agent. These emissions
provide a means to separate bubble signals within small vessels
from those of the surrounding (approximately linear) tissue
(Figure 2). Original methods of bubble detection consisted of
harmonic imaging, whereby energy at the second harmonic
(twice the driving frequency) was collected and filtered from
the receive signal. Since microbubbles generate much larger
second harmonic signal than tissue, this results in better

signal-to-noise ratios than that from the fundamental energy.
This approach however requires long-duration (narrowband)
transmit pulses in order to ensure separation of the spectral
components at f and 2f, as well as to fit within the transducer
bandwidth. These conditions result in decreased axial resolution
and ultimately a trade-off between image resolution and contrast
quality. Multi-pulse contrast imaging pulse sequences, consisting
of pulse inversion (PI [23]), amplitudemodulation (AM [52]) and
combinations thereof (contrast pulse sequences, CPS [53]), have
been developed to circumvent these issues to specifically image
the blood pool with high specificity and sensitivity. The following
sections briefly outline these two main approaches; for a more
exhaustive survey of microbubble-specific imaging methods, the
reader is referred to a recent review article [54].

3.1 Pulse Inversion
The generalized scattered signal from a scatterer O(x(t)) can be
modeled by a polynomial expansion:

O(x(t)) � ∑∞
m�1

amx
m, (4)

where x(t) is the transmit waveform. The contributions of the
nonlinear components are defined by the coefficients am,
whereby for linear systems only a1 is nonzero. As ultrasound
pulses consist of sinusoidal transmit sequences, e.g., x(t) �
cos(ωt) with ω � 2πf the angular transmit frequency, the
nonlinear echo can be approximated by

O(x(t)) ≈ a1 cos(ωt) + a2
2
[1 + cos(2ωt)] + a3

4
[cos(ωt)

+ cos(3ωt)] + a4
8
[3 + 4 cos(2ωt) + cos(4ωt)] + . . . (5)

Note from the above equation that even-order terms create
echoes at even harmonics (and DC), while the odd-order terms
account for echoes at the fundamental frequency and odd-order

FIGURE 2 |Microbubble-specific imaging sequences capture nonlinear signal from contrast agent while rejecting linear scattering tissue. (A) Schematic diagram
depicting the pulse inversion technique. Two pulses that are 180° out of phase will result in tissue echoes that are similarly out of phase. However, this is not the case for
microbubbles due to their nonlinear behavior. The summed echo results in near complete cancellation for linear tissue and significant signal from echoes generated from
microbubbles. (B) B-mode and (C) contrast-specific imaging of an 8 mm vessel phantom highlights the increased vessel contrast due to microbubble-specific
imaging. This was acquired with a Philips iU22 scanner using a C5-2 probe and Definity™ contrast agent.
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harmonics. The pulse inversion multi-pulse sequence consists of
sending in two transmit pulses that are 180° out of phase with
each other (Figure 2A). Upon summation of the resulting echoes
s(t), the linear contributions are removed and only even order
harmonic signal is retained:

s(t) � O1(x(t)) + O2(−x(t)) � 2∑∞
m�1

a2mx
2m. (6)

While this technique suppresses fundamental signal, it still
requires careful selection of transmit frequency to be able to
sensitively detect even order harmonics with the given
transducer.

3.2 Amplitude Modulation
In a similar attempt to preserve nonlinear contributions, amplitude
modulation consists of transmitting a sequence of pulses that are
scaled by a constant factor. Typically, the echoes received from x1(t)
and x2(t) � 1 /

2x1(t) (referred to as “full amplitude” and “half-
amplitude” pulses respectively) are scaled and subtracted, resulting
in a residual signal s(t) defined as:

s(t) � O1(x1(t)) − 2O2(12x1(t)). (7)

This results in a signal that partially retains all harmonics,
including signal at the fundamental frequency; shown here to
third order:

s(t) ≈ a2
4
[1 + cos(2ωt)] + 3a3

16
[cos(ωt) + cos(3ωt)] + . . . (8)

It is important to note here that the signal component within Eq.
8 at the driving frequency ω represents the scaled difference in the
fundamental component due to different amounts of nonlinear
signal in the two driving pulses. This “nonlinear fundamental”
signal results from the fact that microbubbles exhibit nonlinear
resonance characteristics, specifically an amplitude dependent
resonance frequency (Figure 1D). As such, the fundamental
microbubble response will not necessarily be linearly proportional
to the input transmit pressure, e.g., the response from x(t) will not
be twice that of 1

2x(t). Indeed, bubble-specific strategies are
currently under development that exploit the accompanying echo
phase lag associated with this phenomenon [55]. While this
approach retains less even-order harmonic energy than PI, the
residual “nonlinear fundamental” is particularly useful as it can
be well detected within the transducer bandwidth.

Both PI and AM methods can be performed using three or
more pulses, offering some advantages in tissue rejection at the
cost of temporal resolution. The combination of these two
approaches (PIAM, or CPS) retains similar levels of odd-order
nonlinear energy as AM while preserving more even-order
harmonics, albeit less than the PI technique alone.

4 EMERGING TECHNOLOGIES

Contrast-enhanced ultrasound imaging is employed in many
clinically approved and off-label applications worldwide.

Cutting-edge advancements in this area are being made
simultaneously on many fronts, including contrast agent
synthesis, the design of novel pulse sequences and image
processing techniques, device development, and on the
development of remote monitoring for ultrasound therapeutics
(Table 2).

4.1 Contrast Agents
Microbubbles are currently the only clinically approved
ultrasound contrast agent. One of the strengths of these
bubbles is that they remain intravascular due to their size,
allowing for diagnostic measurements that would be otherwise
difficult with diffusible tracers. However, there is a growing focus
to extend the use of these ‘traditional’ ultrasound contrast agents
towards other applications, including molecular-based imaging,
imaging of the extravascular space, and as a dual imaging and
therapeutic delivery platform.

4.1.1 Molecularly Targeted Microbubbles
Non-invasive imaging of pathophysiological events has recently
been shown feasible with ultrasound due to the synthesis of
functionalized microbubbles [56], i.e., microbubbles with one or
more targeting moieties incorporated into the phospholipid
encapsulation [57]. Due to the strictly intravascular nature of
microbubbles, target sites have aimed at processes that occur
within the vasculature, such as inflammation [58], angiogenesis
[59], and thrombus formation [60]. This technique has shown
significant pre-clinical promise, with agents synthesized to target
key endothelial biomarkers involved in disease, e.g., ICAM-1 [61],
VCAM-1 [58], αVβ3 [62], E-selectin [63]. Clinical trials to assess
safety and tumor detection sensitivity have shown encouraging
results using microbubbles functionalized for vascular endothelial
growth factor receptor 2 (VEGFR2) in ovarian, breast and
prostate cancer [64, 65]. Indeed, this technique can be used as
a means for early differential disease detection, as pathological
molecular expression often occurs at an earlier timepoint in
relation to anatomical changes—but it can also be used as a
tool for non-invasive therapy monitoring [66]. In either case, the
objective is to establish a proportional relationship between
detected bound bubble signal and the level of target molecule
expression. Part of this strategy is therefore to preferentially
detect signals from bound bubbles, as distinct from freely
circulating, or non-bound stationary agent. While there have
been some suggestions of novel echo characteristics that would
specifically indicate a bound versus unbound bubble [67, 68],
imaging techniques to exploit this behavior are not yet used
robustly in practice. Instead, a number of approaches have been
developed to estimate adherent bubble signal, one of which is to
exploit the increased persistence of bound bubbles. Exploiting the
relatively short half-life of freely circulating microbubbles, image
acquisition ~10 min post injection will preferentially capture
bound bubble signal [69]. Another strategy is to first acquire a
baseline image consisting of all bubbles (both bound and
unbound) and to apply a large magnitude pulse to disrupt
them [56]. Contrast images are then acquired immediately
post-disruption to monitor the reperfusion of circulating
microbubbles into the imaging plane. The bound-bubble
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specific image is then estimated as the difference between the pre-
and post-burst images. A third approach is to exploit the
increased decorrelation due to motion associated with
circulating bubbles relative to stationary ones. While this has
shown significant promise in pre-clinical testing [70], it is
expected to have limitations in regions of substantial tissue
motion.

Despite the relative success of the aforementioned bound
bubble quantification techniques, only a small fraction the
injected microbubbles bind to the activated endothelium, on
the order 1–2% [71]. A clever approach to increase the
number of microbubbles that make direct contact with the
endoluminal border is through the use of acoustic radiation
force, originally postulated for such a purpose over two
decades ago [72, 73]. Acoustic radiation forces, otherwise
known as Bjerknes forces, are the forces imparted to a small
object within an acoustic beam by the acoustic wave [7]. In the
context of ultrasound-stimulated microbubbles, the primary
Bjerknes force magnitude F directed away from the transducer
experienced by a resonating microbubble in a pulsed field of duty
cycle D and pulse repetition interval T can be estimated as [74].

F � P2R0

δρcf0
(D
T
), (9)

where δ is the damping coefficient [75] and c is the speed of
sound. Secondary Bjerknes force, which is the force ascribed to
the translational dynamics between two vibrating microbubbles,
can also be shown to be highly dependent on microbubble size
and separation distance [74].While the physical acoustics of these
phenomena have long been investigated [76, 77], it has been since
utilized as an approach to increase microbubble binding efficiency
[74, 78, 79]. Quantification of acoustic radiation force (ARF)-
enhanced microbubble imaging can be performed using a relative
measure of bubble signal pre- and post-ARF burst, allowing for an
attenuation-independent measure of quantification (i.e., one that
does not rely on the absolute signal intensity) [80, 81].

4.1.2 Sub-Micron Contrast Agents
Motivated by the enhanced-permeability and retention effect
[82], whereby small nanometer sized particles locally
extravasate from leaky blood vessels and accumulate in the
perivascular space of solid tumors, there are numerous
ultrasound-sensitive sub-micron agents currently under
investigation. These mainly include phase-shift droplets [83],
nanobubbles [84], gas vesicles [85], echogenic liposomes [86],
and polymeric nanoparticles [87]. Perhaps the most well-studied
of these are volatile, phase-shift sub-micron droplets synthesized
from perfluorocarbons (PFCs). As a liquid, droplets provide
limited acoustic contrast and are generally not detectable with
conventional ultrasound. However, under externally applied
ultrasound conditions, these droplets can be acoustically
vaporized into detectable, micrometer-sized bubbles
approximately 5–10 times their precursor size [91]. Droplet
compositions generally consist of PFCs due to their low
toxicity, low solubility and their boiling points near
physiological temperatures [83], allowing the design of
droplets in or near a superheated state. As these superheated
droplets are thermodynamically unstable, they are stabilized
through phospholipid encapsulation—reducing surface tension
and inhibiting diffusion of the PFC into the surrounding
medium. Indeed, droplets can be synthesized directly from
pre-cursor microbubbles, e.g., commercially employed agents
such as Definity™ [88, 89]. While the physics of acoustic
droplet vaporization is still an active area of research, the
process likely involves both intrinsic (e.g., PFC, encapsulation
material) and extrinsic (e.g., sound and its propagation medium)
factors. The vaporization threshold of individual droplets
empirically exhibits a size-dependence, with larger, micron-
sized droplets requiring lower pressures to vaporize [90–92].
Further, there is an increasing threshold with decreasing
frequency [93]—indeed these two factors make the
vaporization of small, sub-micron droplets at clinically
relevant frequencies a challenge. However, recent translational
studies using pre-clinical and programmable array systems have

TABLE 2 | Summary of emerging ultrasound-microbubble based techniques. See text for references and further details.

Emerging technology/
Technique

Concept Applications

New contrast agents To design novel acoustically-sensitive agents that allow for the
extraction of diagnostic information otherwise impossible with
standard microbubble contrast agents

Targeted microbubbles: Molecular imaging of vascular-based markers
of disease (e.g., thrombosis, angiogenesis, ischemia)
Droplets/nanobubbles: Extravascular imaging in cancer applications
Gas vesicles: Acoustic reporter genes, environmentally-triggered
acoustic reporters

Super-harmonic Imaging To use higher order harmonic signal unique to microbubble vibrations
to generate high contrast-to-tissue ratio contrast images

Tumor vasculature imaging

Non-invasive pressure
estimation

To extract ambient pressure information from microbubble acoustic
signatures

Portal vein hypertension, intra-cardiac measurements

Ultrasound Localization
Microscopy

To use bubble localization information to generate images that surpass
the diffraction limit

Tumor vasculature imaging, neurological

Microbubble-therapy
monitoring

To extract qualitative and quantitative microbubble emission
characteristics as a surrogate for therapeutic endpoints

Cardiovascular and cancer-based applications of focused ultrasound
therapy, immunotherapy, and microbubble-mediated therapeutic
delivery
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shown the feasibility of in-vivo image-guided vaporization and
extravascular imaging [94, 95], see Figure 3.

As an alternative to phase-shift low-boiling point droplets,
recent studies have begun to explore nanobubble contrast agent,
typically on the order of several hundred nanometers in size [96].
According to classical models (e.g., Eq. 1 and Eq. 3), nanobubbles
are not expected to undergo significant vibrations and scattering
at clinically relevant frequencies (e.g., 1–10 MHz). However,
studies have demonstrated scattered emissions from
nanobubbles at both low [97, 98] and high frequencies [99].
The increased concentration of nanobubbles per unit volumemay
compensate for the weak scattering from an individual
nanobubble, and bubble coalescence (multiple nanobubbles
combining to form a microbubble) may also play a role in the
observed signal. In addition to these aspects, recent surface
modifications (surfactants, e.g., Pluronic) to nanobubble
encapsulation layers has been suggested as a potential
mechanism to further reduce surface tension and increase
flexibility [96, 97]. Regardless of the mechanism, observations
of intact nanobubbles in the extravascular space have very
recently been documented [100, 101].

Recently, a new and exciting type of biologically-derived, sub-
micron ultrasound contrast agent has been developed by
harnessing gas vesicles (GVs) [85]. These vesicles, which were
originally identified within gas vacuoles of cyanobacteria,
function natively to regulate cellular buoyancy for optimal
exposure to light and nutrients [102]. GVs are inert, hollow,
gas-filled structures formed entirely from protein. The main
consistent is a small protein (GVpA) arranged in a linear
crystalline array along ribs that form the GV shell and conical
caps. A second protein (GVpC) adheres to the outside of the ribs
and stabilizes the structure. These vesicles are freely permeable to
gases and liquid water is kept out due to surface tension at the
hydrophobic inner surface. GVs have been found in many
prokaryotes (e.g., bacteria and archaea), and extensive research
has concluded that these GVs possess similar morphology and are
constructed from a homologous protein. The size and shape of
GVs is a function of the species that generate them, but they are
typically cylindrical or spindle-liked shaped, with lengths ranging

from 0.1 to 2 µm and widths between 45–200 nm [103]. While
similar in principle to other pre-formed sub-micron agents, GVs
are rigid, non-spherical structures. In the pioneering work by
Shapiro et al [85], purified GVs generated from Halobacterium
salinarum (Halo) produced robust contrast using a pre-clinical
scanner, including nonlinear harmonic content in-vitro and in
mouse liver using an amplitude modulation pulse sequence (e.g.,
Eq. 7). Since then, many experimental and theoretical
investigations have confirmed that GVs are able to elicit
nonlinear signal and acoustically-mediated collapse in vitro
and in-vivo [104, 105], which highlight the potential of GVs to
serve as background-subtracted imaging agents. However,
perhaps the greatest differentiator between GVs and
traditional ultrasound contrast agents is their ability to be
genetically modified. Indeed, the acoustic properties of GVs
can be modified at the level of their constituent proteins [106],
which enables the concept of environmentally-modulated
nonlinear contrast signal (e.g., detecting the presence of
specific proteases [107]). Further, recent work has
demonstrated the capacity of GVs to act as an acoustic
reporter gene in mammalian cells (e.g., an acoustic version of
an optical reporter like green-fluorescent protein), whereby
contrast signal can be correlated to genetic expression [108].

4.2 Super-Harmonic Imaging
As microbubble vibrations possess a rich resonant structure
(Figure 1B), there have been recent developments towards
generating contrast images using microbubble super-harmonic
frequency components, defined as third-order harmonics and
higher (nf; n � 3, 5, 6 . . .). An extension of traditional second
harmonic imaging techniques, the selective reception of these
higher-frequency signals results in higher image resolution and
contrast-to-tissue ratios compared to standard contrast imaging
sequences. Due to the bandwidth of standard clinical transducers,
which limits its ability to transmit and receive signals at both the
fundamental and super-harmonic energy bands, the
implementation of this approach requires multiple,
independent transducer elements. This can be accomplished
by designing novel phased arrays with interleaved elements for

FIGURE 3 | Estimated droplet extravasation signal is larger in tumor than in kidney. (A) Two successive vaporization sequences (Vaporization 1 and 2) separated by
30 s were transmitted to both the kidney (highly intravascular organ) and tumor xenograft (intravascular and extravascular components) in a mouse model, outlined in the
dashed lines. The white arrowheads denote the lack of signal enhancement from the second vaporization pulse within the tumor, suggesting droplet extravasation. Scale
bar is 5 mm. (B)Quantification of extravasation signal (p < 0.001). Reprinted by permission of Elsevier fromHelfield et al Ultrasound andMedicine and Biology, 2020
[94], see the reference for more details.
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transmit and receive [109, 110], and confocally aligned dual-
element transducers [111, 112]. Recent incarnations of this
approach, termed acoustic angiography [113], performs super-
harmonic imaging using transmit frequencies between 2–4 MHz
and receives echo signal from 25–30 MHz. Using this device, an
in-vivo resolution of 150–200 µm and a contrast-to-tissue ratio of
20 dB has been demonstrated [114, 115]. To date, this technology
has been employed to image and assess tumor microcirculation
[116, 117] and remains mostly pre-clinical; although very recent
work highlights its potential for clinical translation [118, 119] and
is currently an active area of research.

4.3 Non-Invasive Pressure Estimation
Local blood pressure estimation provides valuable clinical
information on the physiology of many organs, and can be
employed in the diagnosis of disease in the heart and kidneys.
Most current clinical techniques to assess blood pressure within
non-limb vessels use catheter-based manometers, which is an
invasive approach and introduces changes to the local blood
circulation and thus the blood pressure. Perhaps one of the most
impactful applications of non-invasive pressure estimation would
be for the early detection of clinically significant portal vein
hypertension, defined as an increase in the pressure gradient
between the portal vein and hepatic veins exceeding 10 mmHg
[120]. As noted almost four decades ago [121], bubble response is
a direct function of the ambient hydrostatic pressure and may, in
principle, be used as a pressure sensor to detect fluctuations in
local blood pressure. An increase in ambient pressure effectively
compresses the microbubble, resulting in a shift upwards in
resonance frequency. For a given transmit frequency, this will
manifest itself in the amplitude of the resulting scattered echo.
These original works performed on unshelled bubbles resulted in
large uncertainties (as much as 30%, or 50 mmHg compared to
reference standards [122]) due to the challenge of detecting the
relatively small shift in resonance frequency (~1 kHz shift from a
change in 10 mmHg). While the rheological characteristics of
phospholipid encapsulated microbubbles results in much larger
resonant shifts (~0.07–0.24 MHz per 10 mmHg [123]) that may
be sufficiently detectable for clinical utility, major advances in this
application of remote blood pressure estimation are derived from
investigations into the modulation of subharmonic scattering.
Based on earlier works on commercially available contrast
microbubbles that indicate a decrease in subharmonic
scattering with increasing hydrostatic pressure [124],
subharmonic-aided pressure estimation efforts (referred to as
SHAPE [125]) have met initial success in pre-clinical models
[126, 127] and in clinical trials for portal hypertension [128] and
intra-cardiac measurements [122].

4.4 Ultrasound Localization Microscopy
A flourishing research area within diagnostic ultrasound is the
development, implementation and interpretation of ultrafast
ultrasound imaging, in which up to 20 kHz frame rates
(compared to 10–100 Hz using conventional scanners) can be
achieved through advances in hardware and software. This
concept is based off the transmission of an ultrasonic plane
wave (i.e., unfocused beam), which avoids the time-consuming

process of sequential scanning and beamforming conducted by
traditional focused-mode imaging. The echoes from a single
plane wave transmission are received by the transducer
elements and subsequently processed and beamformed in
parallel. While the use of a single, unfocused transmit beam
results in poor image resolution, SNR can be markedly increased
by transmitting multiple plane waves at different angles and
compounding the coherent beamformed images. Despite this
slight subsequent reduction in frame rate, this still results in a
very fast acquisition relative to conventional focused beam,
limited in principle only by the two-way speed of sound in
tissue. Ultrafast plane wave imaging has opened an array of
contrast and non-contrast ultrasound applications that take
advantage of such increased temporal resolution, including
ultrafast elastography [129], cardiac [130], and Doppler-based
applications [131].

Perhaps the most disruptive technique derived from a
microbubble-based application of this technology to date is
ultrasound localization microscopy (ULM, see Figure 4) [132].
As a super-resolution imaging technique, it has begun a paradigm
shift in biomedical ultrasound imaging applications despite many
previous investigations into methods to improve ultrasound
imaging resolution. In standard imaging techniques, image
resolution is bound by diffraction to the scale of the
wavelength; for example, in a 6-MHz ultrasound imaging
system (λ � 250 µm), the diffraction limit is 125 µm (λ/2). The
ULM approach exploits the localization of microbubbles to finely
sample and image the microcirculation beyond the limit imposed
by diffraction, showing impressive results in the areas of oncology
[116, 133] and neurology [134, 135] that result in an
improvement of the resolving power of ultrasound up to a
factor of 10 compared to the diffraction limit [136, 137]. It is
an approach inspired by the light microscopy counterpart;
photoactivated localization microscopy (PALM) and stochastic
optical reconstruction microscopy (STORM). These cutting-edge
light microscopy techniques, which can image beyond the
diffraction limit by an order of magnitude [138–140], rely on
photoactivatable fluorescence probes that display unique spectral
features upon exposure to different wavelengths of light. These
reversible, “photo-switchable” probes in combination with fast-
frame imaging cameras enable the rapid acquisition of frames in
which only a subset of the sources is visible. With knowledge of
the point-spread function of the imaging system, the collection of
many sub-wavelength localizations can be reconstructed with
resolution lower than the diffraction limit. Indeed, the
development of these techniques was so important that it led
to the attribution of the 2014 Nobel prize in Chemistry to Eric
Betzig, Stefan Hell and William E. Moerner.

An ultrasonic version of super-resolution is achieved by
replacing the fluorescent markers with microbubbles (which
are sub-wavelength, individual acoustic sources), and the fast
cameras with plane-wave, programmable ultrasound imaging
systems. These programmable systems give access to the pre-
beamformed time-domain data (RF data), whereby assuming a
single source, the signal time delay τ as a function of array
position x produced by a single microbubble echo propagating at
a constant speed c is given by:
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τ �
������������
z20 + (x − x0)2

√
c

, (10)
where z0 and x0 are the depth and lateral position of the
microbubble, respectively. One approach to microbubble
localization is to fit this delay function (i.e., a parabolic
function), the peak of which will provide the position of the
microbubble at much higher resolution than the wavelength
[132]. Alternatively, even on beamformed images acquired
from conventional ultrasound scanners, various algorithms
have been developed to estimate the intensity-weighted
centroid of an individual microbubble and has shown success
in dilute microbubble applications [141, 142].

The general concept of acquiring a super-resolution imaging
using ULM will next be outlined here. After injection of a dilute
suspension of contrast agent, video acquisition of the location of
interest, either using B-mode or contrast-specific sequences, can be
taken using either conventional beam or fast-frame plane wave
techniques. Since the resulting ULM image is constructed point by
point, a sufficient quantity ofmicrobubbles is required to reconstruct
the vasculature, on the order of 1 million events [135] depending on
the vessel density and field of view. Given the relatively slow blood
velocities in the microvasculature, this often requires long image
acquisition times and results in a vast amount of data for processing.
Motion correction algorithms are next applied to minimize motion-
related localization artefacts, which present a particular challenge
due to these long scan times. Various techniques have been
demonstrated within the context of the ULM workflow, including
phase-correlation approaches between successive B-mode images, all
of which result in corrections on the order of hundreds of

micrometers for in-plane motion [143–145]. While out-of-plane
motion correction is not possible using this 2D approach, 3D ULM
techniques are currently being assessed [146]. Following this, a
microbubble-filtering processing step is introduced, which can
include isolating nonlinear emissions [134, 141] as well as
alternative image processing strategies including spatiotemporal-
based filtering algorithms [135, 145, 147]. Microbubble
localization is then performed by estimation of its centroid using
either the rawRF data or the beamformed image. A critical challenge
here is the reliable separation of one microbubble from another. The
most direct way of localizing a single microbubble is to use a low
concentration of contrast agent (e.g., 106 bubbles/ml) [134, 141,
148], which guarantees an inter-bubble spacing (e.g., 100 μm) of
several imaging wavelengths at traditional transmit frequencies.
Even in such instances, the robust SNR generated from an
individual microbubble is of paramount importance, and will
ultimately affect the ULM resolution. Recent work [149] has
suggested that exploiting the phase response of vibrating
microbubbles, a property linked to their resonant nature [75],
can increase ULM image quality. However, there are emerging
alternative strategies that allow for higher local doses of
microbubbles, attempting to circumvent the spatial resolution
versus acquisition time trade-off inherent to ULM. Increased
local microbubble concentrations not only shorten the scan time,
but increase the SNR. In order to overcome the overlapping of the
point-spread functions, spatiotemporal filtering algorithms to
separate overlapping microbubble signals [150, 151] have been
introduced. Recently, algorithms based on deep learning (Deep-
ULM) have been proposed, offering the advantage of acquiring high
resolution images with high microbubble concentrations and lower

FIGURE 4 | (A) An example of ULM applied in a rat brain through a thinned, intact skull providing a resolution of 10 µm × 8 µm in depth and lateral direction,
respectively. (B) In-plane velocity map from parts of the vessel from panel A. Scale bar runs from −14 mm/s (blue) to +14 mm/s (red). Reprinted from [135] with
permission from the authors and Nature Publishing Group.
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computation load compared to other techniques. This AI-based
approach is capable of learning the nonlinear image domain
implications of overlapping point-spread functions originating
from populations of closely spaced microbubbles [152]. Finally,
tracking of microbubble trajectories, using simple or more
complex algorithms [145, 153], allows not only for the estimation
of super-resolved blood flow velocities [135, 144], but for improved
image quality due to the fact that a single microbubble can
reconstruct several pixels during its trajectory. Indeed, as
adequate sampling of microbubble location is critical for the
success of tracking algorithms, ultrafast imaging techniques offer
a major advantage over conventional imaging approaches. Images
are often then reconstructed by projecting the detected tracks on a
sub-wavelength grid matrix. True estimates of vessel diameter,
therefore, cannot rely on sparse tracks but require them in
sufficient number to ensure mapping of the entire lumen, a track
density determined by the width of the vessel divided by the super-
resolved pixel size [154].

While still in its infancy, ULM has already provided a new in-
vivo approach to the study of tissue pathology, providing
quantitative information on the density, tortuosity, and small
modulations of flow patterns within the microvasculature at
depth. The first clinical applications of this technology, using
conventional focused beam acquisition, have been conducted on
breast cancer [155], lower limb assessment [156] and liver
imaging [157]. While there are still limitations to this
approach, including slow scan times, SNR, the use of plane-
wave scanners not typical in clinics, large amounts of data storage

and processing, andmotion artefacts, significant advancements in
all of these areas are currently ongoing.

4.5 Microbubble-Therapy Monitoring
It has long been recognized that ultrasound interactions with
biological tissue induce bio-effects of both thermal and
mechanical origin [158]. On clinical diagnostic scanners,
exposure levels are limited in order to avoid these effects [159].
From a therapeutic standpoint, ultrasound-mediated bioeffects have
been investigated as a desired endpoint: with effects ranging from
tissue ablation [160], microvascular permeability [161],
immunomodulation [162], and vascular occlusion [163]. Recent
works have highlighted that microbubble contrast agents, under
specific acoustic conditions, can generate a wide spectrum of
bioeffects [164–166] that contribute towards the treatment of
many diseases. Due to their intravascular nature, a primary
avenue of research in microbubble-mediated bioeffects is based
on the spatially targeted and temporary enhancement of
microvascular permeability, employed to promote local drug
delivery to regions of disease. One such promising application is
the local and transient opening of the blood-brain-barrier [167, 168]
and blood-spinal cord barrier [169, 170] for targeted therapeutics
into the central nervous system. This technology has recently entered
clinical trials in patients with brain tumors [171–173], Alzheimer’s
disease [174] and amyotrophic lateral sclerosis (ALS) [175].

Despite being met with initial success, widespread clinical
adoption of microbubble-based therapeutics will require the
continued development of online, real-time imaging strategies to

FIGURE 5 | Spatial correlation of ultrafast 3D microbubble cavitation with focused ultrasound (FUS) brain tissue damage in a rabbit model. Baseline T2pw (A) and
T2w MRI (B) images pre-sonication depict target locations for two focused ultrasound treatment conditions (labeled 1 and 2). Axial, coronal and sagittal T2pw MRI images
immediately post-sonication [(panels C–F) respectively] depict hypointense regions indicative of tissue damage (dotted lines) overlaid by the corresponding spatial
microbubble cavitation data (solid lines). The coronal and sagittal slice volumes are indicated in panel B (yellow lines). Scale bar = 5 mm. Figure modified from Jones
et al Theranostics, 2020 [183] with permission from the authors.
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guide and control treatments. While some of these applications
employ MRI guidance, there is increasing interest in employing the
acoustic scattering from themicrobubbles themselves as an indicator
of treatment outcome. Since the spectral echo characteristics can be
indicative of the underlying microbubble vibrations [176], remote
detection of these signals during treatment is under investigation as a
robust and sensitive tool for therapy guidance. Many preclinical
applications of targeted microbubble therapeutics, including
cardiovascular disease [177, 178] and cancer [166], are performed
as a dual imaging and therapeutic technique. Contrast enhanced
ultrasound is applied and interleaved with a therapeutic pulse from
either a separate ultrasound transducer [166] or incorporated by way
of clinical [179] or custom-designed sequence. In this way, the
presence of microbubbles within the anatomical site of interest can
be visually confirmed before, during and after the treatment
sequences. The acoustic emissions detected during microbubble-
based therapies have been identified as potential markers for
treatment outcome in applications including blood-brain barrier
disruption [180, 181], and targeted therapeutic delivery [182]. To
this end, passive cavitation detectors are typically employed to
measure raw acoustic data to extract quantitative metrics. Most
of these methods to date utilize a single element passive transducer,
which does not allow the bubble signal to be localized in space.
Ongoing novel engineering of array transducers, combined with
passive beamforming algorithms, are currently being designed to
spatially map bubble activity and allow for confirmation that elicited
bioeffects are localized to the target site [183, 184], see Figure 5.
Above and beyond these correlative measures, efforts are underway
to establish control feedback algorithms based on the measured
bubble acoustic activity to promote safe levels of vibration and avoid
more violent, disruptive bubble behaviour that leads to unwanted
damage. These algorithms modulate the acoustic transmit
parameters based off the real-time feedback from nonlinear
microbubble emissions, including sub-harmonic energy [185,
186], harmonic energy [187, 188], or both [189].

5 CONCLUSION

Ultrasound contrast imaging using microbubbles is a safe and
reliable technique for many clinical practices, and its application

base is expanding. The tremendous success of this imaging
technology to date is courtesy of increased clinical awareness
of the benefits of ultrasound, and the collaborative research
endeavors between physicists, chemists, engineers, and
clinicians on the investigation of microbubble behavior, signal
processing techniques, contrast agent synthesis, and device
development. In this review, we summarized the fundamentals
of contrast agent microbubble vibration and how it is harnessed
for routine contrast-imaging application. Specific pulse sequences
are employed to extract bubble-specific acoustic signatures and
suppress signal arising from the surrounding tissue to enable
preferential imaging of the vasculature. We then presented an
overview of emerging techniques and technologies associated
with microbubble-based imaging, summarized in Table 2.
These developments span new design efforts on acoustically-
sensitive agents for disease-specific imaging, to new signal
processing techniques to obtain highly resolved vascular
images, to new interpretation techniques to extract
biologically/physiologically relevant data from microbubble
acoustic signatures. With the development of new ultrafast
imaging technology and image processing techniques, along
with increasing interest in targeted ultrasound therapeutic
applications, there are still numerous emerging and exciting
applications that remain to be explored.
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