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In this work, a CMFS method based on the analogy equation method, the radial basis
function and the method of fundamental solutions for linear and nonlinear convection-
diffusion equations in anisotropic materials is presented. The analog equation method is
utilized to transform the linear and nonlinear convection-diffusion equation into an
equivalent one. The expressions of the homogeneous solution and particular solution
are derived by utilizing the radial basis function approximation and the method of
fundamental solutions, respectively. By enforcing the desired solution to satisfy the
original convection-diffusion equation with boundary conditions at boundary and
internal collocation points yield a nonlinear system of equations, which can be solved
by using the Newton-Raphson iteration or the Picard method of iteration. The error
convergence curves of the proposed meshless method have been investigated by using
different globally supported radial basis functions. Numerical experiments show that the
proposed CMFS method is promising for anisotropic convection-diffusion problems with
accurate and stable results.

Keywords: radial basis function, meshless method, convection-diffusion problems, nonlinear partial difference
equation, boundary value problem

1 INTRODUCTION

Partial differential equations (PDEs) are generally utilized in understanding and modeling of a
considerable lot of realismmatters show up in applied science and material science. The PDEmodels
are utilized in numerous fields, for example, plasma physics, hydrodynamics, finance, biology and
nonlinear optic [1–3]. It is pointed that it is hard to tackle nonlinear problems most of the cases,
especially analytically. Numerous strategies have been developed by the researchers for the numerical
solution of complex problems (see [4–6] and the references therein). Among these techniques, one of
the most attractive group of techniques is radial basis function (RBF) based techniques.

The RBF techniques are attractive in numerical simulation thanks to their simple, flexible, and
truly meshfree features. These techniques have been successfully applied to diverse problems in a
simple-to-implement fashion. The popular RBF-based numerical methods include the Kansa’s
method [7, 8], the method of fundamental solution (MFS) [9–12], the boundary knot method
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[13–15], the modified method of fundamental solutions [16–18]
which have been well-developed and applied to a variety of
boundary value problems.

In previous literatures, the polynomial RBFs, thin plate spline,
Gaussians, and Multiquadrics are often used [19–21]. It is noted
that the traditional RBF-based schemes are indirect and global in
the sense that the expansion coefficients are used as the basic
variables in the numerical solution procedure, while the global
RBF interpolation leads to the full matrix. Roughly speaking, the
RBF-based approaches can be classified as two types. The first
category uses RBFs to approximate the particular solution of a
partial differential equation (PDE) of interest, and the
homogeneous part is obtained by means of numerical
methods, like the boundary element method, the MFS, or the
boundary knot method. The second category is the domain-type
collocation methods. According to this approach, the RBF
expansion is utilized directly for the unknown solution, and
the collocation satisfies the governing equation and boundary
conditions. The Kansa’s method is a typical domain-type RBF
approach. In this paper, we will develop a RBF-based technique of
the first type to investigate anisotropic materials.

Anisotropic materials, characterized by varied material
properties along different directions, are ubiquitous in nature
and difficult to be analyzed. If non-linear property is included, the
problems become even more complicated. Previously, Shin and
Elman [22] studied the effect of various element discretization
strategies and iteration algorithms for nonlinear convection-
diffusion problems with variable velocity in isotropic materials.
Torsten [23] used the anisotropic streamline-diffusion finite
element method to analyze homogeneous convection-diffusion
problems with dominant convection. Onyejekwe [24] applied
Green element method to 2D transient convection-diffusion
problems with linear reaction and variable velocity. The lattice
Boltzmann method is proposed for general nonlinear anisotropic
convection-diffusion equations [25,26]. The anisotropic
nonlinear convection-diffusion equations are also investigated
by the finite volume method [27], the finite element method [28],
the finite difference method [29], the virtual element method
[30]. Shang et al. [31] proposed a discrete unified gas kinetic
scheme for a general nonlinear convection-diffusion equation.
Cao and Zhang studied a nonlinear diffusion-convection-
reaction equation with a variable coefficient which has
applications in many fields [32].

Based on the above-mentioned investigations, we aim to apply
the MFS, in combination with the RBF and the analog equation
method (AEM) [33], to analyze anisotropic nonlinear
convection-diffusion problems. First, the AEM is utilized to
transform the PDE into an equivalent one. Then, the
expressions of the homogeneous and particular solutions are
derived by utilizing RBF approximation and the MFS,
respectively. Finally, enforcing the desired solution to satisfy
the original PDE with boundary conditions at boundary and
internal collocation points yield a nonlinear system of equations,
which can be solved by using the Newton-Raphson iteration or
the Picard method of iteration. Here, we will focus on the
construction of Picard method of iteration, which should be
carefully constructed to reach convergence.

The structure of this paper is arranged as follows. In Section 2,
we give the depiction of nonlinear convection-diffusion problems
in anisotropic media. Followed in Section 3, the detailed
processes are derived to construct the proposed CMFS.
Numerical investigation and results analysis are carried out in
Section 4. Section 5 concludes this paper and provides some
comments on the CMFS.

2 NONLINEAR CONVECTION-DIFFUSION
PROBLEMS IN ANISOTROPIC MATERIALS

Consider an open-bounded domain Ω ⊆ Rd, where d represent
problem’s dimension. Assuming thatΩ is bounded by a piecewise
smooth boundary Γ which is consist of numerous sufficiently
smooth segments in the Liapunov sense. The space coordinate
X ∈ Ω ⊆ Rd is utilized to denoted position of an arbitrary point.
The description of convection-diffusion problems in anisotropic
media can be expressed as partial differential equation

∑d
i�1

∑d
j�1
kij

z2u(X)
zxizxj

− v · ∇u(X) � f(X), X ∈ Ω (1)

subjected to Dirichlet boundary condition

u(X) � �u(X), X ∈ Γ1 (2a)
and Neumann boundary condition related boundary flux

qn(X) � �qn(X), X ∈ Γ2 (2b)
where v denotes a velocity vector and u is the desired field. K �
[kij] is the constant material tensor. Particularly, the material
constant tensor for 2D cases is given by

K � [ k11 k12
k12 k22

].
The boundary flux is defined as qn � −∑d

i�1∑d
j�1kij zuzxj ni,

where ni represent components of the unit outward normal
vector n to the boundary Γ. f(X) stands for the internal forcing
function, �u and �qn are specified values on the Dirichlet and
Neumann boundary, respectively. For a well-posed problem,
Γ � Γ1 ∪ Γ2.

It is observed that the smaller the determinant of K, the more
asymmetric and anisotropic are the field and flux vectors, the
more difficult it is to get an accurate numerical solution. Specially,
if K is a diagonal matrix with completely equivalent diagonal
elements, Eq. 1 reduces to an isotropic convection-diffusion
equation. In general, when material tensor K or velocity vector
v is dependent on the unknown filed u, Eq. 1 shows nonlinearity.
Here, we restrict our attention to research such nonlinear cases,
velocity v is considered as a function related to the desired field u,
that is, v � v(u).

3 THE CMFS MESHLESS METHOD

For the previous nonlinear problems, the proposed CMFS
method is based on the combination of the AEM, globally
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supported RBF approximation and the MFS. Detailed processes
are given below.

3.1 The Analog Equation Method
The AEM, which was improved by Burlon et al [34], was first
proposed by Katsikadelis for the solution of nonlinear
problems. Using the analog equation method, Eq. 1 can be
converted into a Poisson type equation. Suppose u(X) is the
sought solution of Eq. 1, which is a continuously differentiable
function with up to two orders in Ω. Apply the Laplacian
operator to u(X), we can derive

∇2u � b(X). (3)
If the source distribution b(X) is known, then the solution of

Eq. 1 can be produced by solving the linear Eq. 3 under the same
boundary conditions (2a)-(2b), namely, Eq. 3 is equivalent
to Eq. 1.

Using to the principle of superposition, the solution of linear
PDE Eq. 3 can be written in the form of the sum of the particular
solution upar and the homogeneous solution uhom, which is
given as

u � uhom + upar, (4)
Accordingly, uhom and upar should satisfy

∇2upar(X) � b(X), X ∈ Ω, (5)
and ⎧⎪⎨⎪⎩ ∇2uhom(X) � 0, X ∈ Ω

uhom(X) � �u − upar(X), X ∈ Γ1
qhomn (X) � �qn − qparn (X), X ∈ Γ2

(6)

respectively. Furthermore, we must note that the particular
solution upar satisfying Eq. 5 does not need to satisfy
boundary conditions, so it is not unique and must be coupled
with the homogeneous solution uhom and related boundary
conditions. However, our aim is just to obtain the
approximating expression rather than detailed numerical
methods.

3.2 Radial Basis Function Approximation to
the Particular Solution
This step is to derive the particular solution by RBF
approximation. There are two schemes to fulfill this
procedure. The standard approach to obtain the particular
solutions is to integrate an operator by means of selected RBF.
This scheme is just suitable to some simple operators and RBFs
which is mathematically reliable. Another approach is a
reverse differential process, which has no restriction on
certain operators and RBFs, but the selected RBFs must be
continuously differentiable with high orders. Here, the
introduction of AEM replaces the original complicated
operator with a simpler Laplacian operator, so it is feasible
to evaluate the particular solution using the integrating
process. To this end, the fictitious term introduced in Eq. 3
can be approximated by

b(X) � ∑M
m�1

αmϕ(X,Xm), (X, Xm ∈ Ω) (7)

whereM is the number of interpolation points inside the domain
Ω. αj(j � 1, 2, ...,M) denote coefficients to be determined, and ϕ
represents the radial basis function.

Similarly, it is reasonable to express the particular solution
upar as

upar(X) � ∑M
m�1

αmû(X,X)m, (8)

if the following relationship

∇2û(X,Xm) � ϕ(X,Xm), (9)
holds, where û is a corresponding particular basis function
depending on the radial basis function ϕ and can be obtained
by repeated integration.

The accuracy and efficacy of the interpolation depend on
the choice of the radial basis function ϕ, which should
provide an accurate approximation to b so that Eq. 9 can
be derived analytically. During the past several decades,
polynomial RBFs, MQs and TPS interpolation have got
hot attention from the science and engineering
communities. They have been investigated for Laplacian
operator in R2 and R3. It is noted that the MQs converge
exponentially, TPS in R2O(h|log h|), and traditional
1 + rO(h1/2), where h is minimum separation distance
[35]. As is known to all, the better the approximation
properties of RBFs corresponds with the worse
conditioning. For example, MQs are spectrally convergent
whereas their condition number increases exponentially
when the data density increases. Additionally, the
selection of shape parameter in MQs is also an important
factor to approximation and its small variation may cause
severe differences to solutions. Thus, we consider the
implementation of polynomial RBFs and MQs
approximation in this paper.

3.3 The Method of Fundamental Solutions
for the Homogeneous Solution
Before introducing the MFS [36, 37], it is necessary to give the
definition of the fundamental solutions. The fundamental
solution up(X,Y) for the Laplacian operator is defined to satisfy

∇2up(X,Y) + δXY � 0, (10)
in an infinite domain, where δXY denotes the Dirac delta function
which goes to infinity for the case of X � Y and equals to zero
elsewhere. The detailed expression of up(X,Y) for Laplace
equation is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

up(X,Y) � 1
2π

ln
1

r(X,Y) , d � 2

up(X,Y) � 1
4πr(X,Y) . d � 3

(11)
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The fundamental idea of the MFS is to place a virtual
boundary outside the domain interested. Here, to obtain a
weak solution of Laplace Eq. 6, collocation points
Xn (n � 1, 2, L/, N) and source points Yn (n � 1, 2, L/, N)
are distributed on the physical boundary and the virtual
boundary, respectively. Furthermore, suppose that there is a
virtual source load φn (1≤ n≤N) at each fictitious source
point. The difference between the physical and virtual
boundaries means that the homogeneous part uhom at
arbitrary field points X in the domain or on the physical
boundary can be constructed by a linear combination of
fundamental solutions in terms of fictitious sources
φn (1≤ n≤N), that is,

uhom(X) � ∑N
n�1

φnu
p(X,Yn), (X ∈ Ω, Yn ∈ Γ′) (12)

which exactly satisfies Eq. 6.
The proper usage of the MFS must concern three

problems. The first case is the number of collocation
points distributed on the physical boundary. However, too
many collocation points may aggravate the ill-conditioned
matrix. The virtual boundary shape is another important
aspect. Theoretically, the virtual boundary shape can be
arbitrarily chosen in the calculation. In practical
computation, the virtual boundary shape is usually
selected as a circle or similar shape to the actual boundary
to keep algorithm versatile [38]. For example, for the
rectangular domain, the rectangular or circular virtual
boundaries can be used (see Figure 1).

The location of the fictitious source points is also an
interesting issue. It has been investigated in several literatures
[39–41]. In this paper, we consider a new way to find out the
proper location of the virtual boundary, a ratio parameter λ is
introduced and can be defined as follows

λ � characteristic length of the virtual boundary
characteristic length of the physical boundary

(13)

For example, in Figure 1, if the length and height of the
rectangle domain are a and b, respectively, the location of circular
and similar rectangular virtual boundary can be measured by
diameter λ

������
a2 + b2

√
, λa and λb correspondingly. From the

computation perspective, mathematical accuracy will decrease
if the distance between the virtual and physical boundary turns
out to be close, because of the singular disturbance of the
fundamental solutions. Then again, in case when the source
points are far away from the physical boundary then round-
off error in floating point arithmetic may be a major issue in such
case, the coefficient matrix of the system of equations is closely to
zero [38]. Therefore, parameter λ is commonly chosen to be in the
range of 1.8–4.0 and 0.6–0.8 for internal and external problems
respectively. Unless otherwise specified, a circular virtual
boundary will be employed and parameter λ � 3.0 is used to
determine its location in this paper.

3.4 The Construction of Solving Equations
According to the above process, the solution u � u(X) to Eq. 3
can be expressed as

u(X) � ∑N
n�1

φnu
p
n(X) + ∑M

m�1
αmûm(X), (X ∈ Ω) (14)

which is also the solution of Eq. 1. Differentiating Eq. 14 yields

zu

zxi
� ∑N

n�1
φn

zup
n(X)
zxi

+ ∑M
m�1

αm
zûm(X)
zxi

, (15)

z2u

zxizxj
� ∑N

n�1
φn

zup
n(X)

zxizxj
+ ∑M

m�1
αm

zûm(X)
zxizxj

, (16)

where i, j � 1, 2, ..., d and upn(X) � up(X,Yn), ûm(X) �
û(X,Xm).

There are two different approaches to determine the
unknowns αj and ϕi for nonlinear cases. If Eqs 14–16
directly satisfy the governing Eq. 1 at M interpolation
points in the domain Ω and corresponding boundary
conditions (2a)-(2b) at N boundary collocation points, a
linear or nonlinear system of N +M equations can be
obtained. The Newton-Raphson iteration [42] is a good
choice to solve the nonlinear system. However, if we first
linearize the nonlinear term, and then make Eqs. (14)-(16)
satisfy Eq. (1) and boundary conditions (2a)-(2b) at related
collocation points, the Picard method of iteration can be
carried out. Compared to the Newton-Raphson iteration,
the Picard method of iteration doesn’t require computation
of Jacobian matrix. However, the linearization of the nonlinear
term in the Picard method of iteration is a key step. This
process should be carefully considered to reach convergence.
In the paper, the Picard method of iteration is constructed as
follows.

(1) Assume an initial guess u(0) at M interpolating points

FIGURE 1 |Geometry of circular and rectangular virtual boundaries for a
simple rectangular domain.
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(2) During an iteration k (k � 0, 1, 2,/), given u(k),
(a) Linearization of Eq. 1:

∑d
i�1

∑d
j�1
kij

z2u(X)
zxizxj

+ v(u(k)) · ∇u � f(X). (17)

(b) Using the AEM-RBF-MFS to produce the following
linear solving equations

∑N
n�1

φn
⎛⎝∑d

i�1
∑d
j�1
kij

z2up
n(Xs)

zxizxj
+ v(u(k)) · ∇up

n(Xs)⎞⎠
+ ∑M

m�1
αm⎛⎝∑d

i�1
∑d
j�1
kij

z2ûm(Xs)
zxizxj

+ v(u(k)) · ∇ûm(Xs)⎞⎠
� f(X), Xs ∈ Ω and s � 1, ...,M

FIGURE 2 | Effect of different interpolating schemes with boundary interpolating points and without boundary interpolating points.

FIGURE 3 | Convergence curves of average relative error and condition number with M = 64 by using different interpolating RBFs.

FIGURE 4 | Convergence curves of average relative error and condition number with N = 36 by using different interpolating RBFs.
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∑N
n�1

φnu
p
n(Xl) + ∑M

m�1
αmûm(Xl) � �u(Xl), Xl ∈ Γ1 and l � 1, ..., N1,

∑N
n�1

φn
⎡⎢⎢⎣∑d
i�1

∑d
j�1
kij

zup
n(Xl)
zxj

ni⎤⎥⎥⎦ + ∑M
m�1

αm
⎡⎢⎢⎣∑d
i�1

∑d
j�1
kij

zûm(Xl)
zxj

ni⎤⎥⎥⎦
� −�q(Xl), Xl ∈ Γ2 and l � 1, ..., N2

(c) The unknown coefficients φn and αm can be obtained by
solving the above system of linear equations.

(d) Evaluating field values at M interpolating points by
means of

u(k+1)(Xs) � ∑N
n�1

φnu
p
n(Xs) + ∑M

m�1
αmûm(Xs), Xs ∈ Ω and s

� 1, ...,M (18)
(e) Convergence criteria: if |u(k+1) − u(k)|≤ ε, exit loop; else,

let u(k) � u(k+1) for next iteration.

(3) Once the iteration converges, Eq. 14 is used to evaluate
quantities at arbitrary point in the domain and on the
physical boundary.

4 NUMERICAL EXPERIMENTS

In this section, the convergence and accuracy of the CMFS are
numerically examined by solving anisotropic nonlinear convection-
diffusion problems. Since the Kansa’s method is a traditional RBF-
based approach, comparisons are made between the CMFS and the
Kansa’s method. To measure the accuracy of the approximation, the
relative error rerr(u), average relative errorArerr(u) are defined as
below

rerr(u) �
∣∣∣∣∣∣∣∣uj − ~uj

uj

∣∣∣∣∣∣∣∣
j

, Arerr(u) �

����������∑
j�1

L(uj − ~uj)2∑
j�1

L(uj)2
√√√√

, (19)

where uj and ~uj denote the analytical and numerical results,
respectively. L is the total number of tested points. In our
computation, tested points with number L � 10000 are
uniformly distributed in the square domain.

In order to investigate the condition number and convergence
of the proposed CMFS, the linear anisotropic convection problem
is tested in the first case, and then, nonlinear Burger’s equation
and nonlinear anisotropic convection-diffusion equation are
subsequently examined.

4.1 2D Linear Anisotropic
Convection-Diffusion Problems
We first consider the linear anisotropic convection-diffusion
equation in a square domain Ω � {(x, y)|0≤x, y≤ 1}

z2u

zx2
1

+ z2u

zx1zx2
+ z2u

zx2
2

− v · ∇u � 0, (20)

FIGURE 5 | Geometry of a irregular domain for Case 4.2.

FIGURE 6 | Convergence curves of average relative error for nonlinear Burger’s problems with N = 24 by using different interpolation schemes.
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where k11 � k22 � 1 and k12 � 1/2 in the constant tensor K, and
velocity vector v is given by v � [ −

�
3

√
2 −3+ �

3
√
4

]T.
The analytical solution shown is given as

u(x1, x2) � exp(− �
3

√
2
x1) + exp(1

2
x1 − x2), (21)

for this case, which is also used to derive the Dirichlet boundary
condition.

For the selection of interpolating points, different opinions
always exist. Figure 2 shows the average relative error of
polynomial 1 + r3 and MQs whether interpolating points M
include boundary collocation points or not. Form Figure 2,
we can see the MQs is better than 1 + r3.

For definite internal points number M � 64, the solution
accuracy of the CMFS with different RBFs and its condition
numbers with increasing boundary points are shown in
Figure 3. It is observed from Figure 3 that accuracy does not
show significant improvement when the number of interpolating
points maintains. Besides, Figure 4 displays the solution accuracy
of the CMFS with different RBFs and its condition numbers with
increasing boundary points in solving anisotropic convection-
diffusion problems when the number of boundary collocation
points N � 36 is set. We can scrutinize higher convergence rate
of the solution accuracy with increasing internal interpolating
points than convergence rate with increasing boundary points.
Compared to conventional polynomial RBFs, the MQs generally
leads to huge condition number of 1018 with corresponding high
solution accuracy 10−7. As mentioned in pervious literatures, the
better the approximation properties of the RBFs, the worse the
conditioning number [43]. In addition, we note that the solution
accuracy by using MQs is better than using polynomial RBFs with
two or three orders of magnitude. The choice of the RBFs shape
parameter is investigated in some literatures [44].

4.2 Nonlinear Inviscid Burger’s Equation
In this case, the nonlinear form for steady-state situation is
considered

∇2u + u
zu

zx
� 0, (22)

where the variable u represents a velocity term. A particular
solution for this problem is u(x, y) � 2

x, which is also the exact
solution when imposed as a boundary condition. An peanut
irregular domain is considered for this case (Figure 5). The initial
guess of u(0) is selected as one.

Figure 6 shows the convergence curves of the CMFS using the
Picard method of iteration with different RBFs. All convergence
curves can be found with the increase of internal collocation
points M. Meanwhile, we also observe that MQ can reach more
accuracy when a certain boundary points are employed to
implement RBF approximation, instead of pure interior points.
However, this phenomenon seems to disappear for 1 + r and
1 + r3. Furthermore, the usage of pure internal interpolating
points improves accuracy in the case of small M. The similar
fact that MQ have better accuracy than polynomials is observed,
this is eliminated in this case.

4.3 Nonlinear Anisotropic
Convection-Diffusion Problem
Consider a 2D anisotropic convection-diffusion problem
depicted by

k11
z2u

zx2
+ 2k12

z2u

zxzy
+ k22

z2u

zy2
+ u(zu

zx
+ zu

zy
) � f(x, y), (23)

with k11 � k22 � 1 and k12 � 0.5 in the same square domain as
Example 4.2. The analytical expression u � 0.5 sin(x + y) is used
with Dirichlet boundary only, the right-handed source function is
chosen to be

f(x, y) � −1.5 sin(x + y) + 0.25 sin[2(x + y)]. (24)
Here, the similar Picard iteration scheme is employed and the

initial guess of u also is set to one. Figure 7 displays the average
relative error curve at 1,000 test points against the different
interpolating collocation schemes. It is found that whether the

FIGURE 7 | Convergence curves of average relative error for anisotropic nonlinear convection-diffusion problems with N = 24 by using different interpolation
schemes.
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boundary collocation is included or not, the CMFS convergence
curve converges stably and quickly in solving the nonlinear
anisotropic convection-diffusion problem than the polynomial
RBFs 1 + r and 1 + r3. And the solution accuracy of the CMFS is
averagely three orders of magnitude larger than the polynomial
RBFS 1 + r and 1 + r3. However, the instability for RBF 1 + r3

should be observed when the RBF approximation involves the
usage of the boundary collocation points.

5 CONCLUSION

In this paper, the CMFS, which is composed by the analog
equation method, radial basis function approximation, and the
method of fundamental solutions, is applied to the nonlinear
anisotropic convection-diffusion problems. Numerical results
reveal the efficiency and stability of the CMFS for the tested
three cases. In a word, the proposed CMFS has the following
features:

1) For linear cases, the approach is just one-step simple scheme.
Meanwhile, no inverse of a matrix is involved.

2) The simple fundamental solution of Laplacian operator is
employed, rather than one of the original PDE.

3) There are simple process and theoretical basis, so it is easy to
program.

4) The related Picard iteration process is developed for nonlinear
cases in isotropic and anisotropic media, respectively.

5) The proposed method is a truly meshfree method and no
integrals are needed.

6) It can be easily extended to solve anisotropic un-
homogeneous problems with variable parameter or the
other problems [45].
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