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Diffusion-weighted magnetic resonance imaging (DW-MRI) is a non-invasive technique to
probe tissue microstructure. Conventional Stejskal–Tanner diffusion encoding
(i.e., encoding along a single axis), is unable to disentangle different microstructural
features within a voxel; If a voxel contains microcompartments that vary in more than
one attribute (e.g., size, shape, orientation), it can be difficult to quantify one of those
attributes in isolation using Stejskal–Tanner diffusion encoding. Multidimensional diffusion
encoding, in which the water diffusion is encoded along multiple directions in q-space
(characterized by the so-called “b-tensor”) has been proposed previously to solve this
problem. The shape of the b-tensor can be used as an additional encoding dimension and
provides sensitivity to microscopic anisotropy. This has been applied in multiple organs,
including brain, heart, breast, kidney and prostate. In this work, we discuss the advantages
of using b-tensor encoding in different organs.
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1 INTRODUCTION

1.1 Background
Diffusion magnetic resonance imaging (dMRI) sensitizes the signal to the random motion of the
water molecules in the tissue [1]. By probing the water motion in the tissue, one can infer information
about the underlying microstructure [2–6]. Some basic features of the tissue, such as fiber orientation
or anisotropy can be captured using the diffusion weighted signal. In tissue that is highly ordered on
themicron-scale, water molecules experience fewer boundaries along one direction and travel further
per unit time than along other directions [7,8]. Altered microstructure is the hallmark of many
diseases, which manifests itself in altered diffusion properties. [9] showed the reduction in the
apparent diffusivity by increase in cell density in tumors. The first clinical application of diffusion
MRI was on detection of early stage cerebral ischemia [10,11], which at that time could not be
depicted with computed tomography (CT) or other MRI contrasts. Since then, diffusion MRI has
been used in diagnosis of other diseases, such as epilepsy, stroke, tumors in central nervous system,
breast and prostate, as well as surgical planning [12–22]. Diffusion MRI has also been invaluable in
the study of brain development [23], learning [24,25], and connectivity [26,27]. More recently,
diffusionMRI of the heart has regained some significant interest, enabled by advances inMR scanner
hardware and experimental design [28–31]. DiffusionMRI has been also used in the imaging of other
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organs with skeletal muscle such as breast [32,33], kidney [34,35],
and prostate [36,37]. In this review, we briefly explain different
diffusion encoding schemes and the advantages of using
advanced diffusion encoding in brain and body imaging are
discussed.

1.2 Different Acquisition Schemes
In this section, we briefly explain single, double, and triple diffusion
encoding (SDE, DDE, and TDE), as well as free gradient waveforms
and b-tensor encoding with the special cases of linear, planar, and
spherical tensor encoding (LTE, PTE, and STE).

FIGURE 1 | Illustration of various diffusion encoding schemes (A–F) (all waveforms are effective). In each row, an exemplary diffusion weighting gradient waveform
is shown on the left (x, y, and z components are shown in blue, green, and red, respectively) and its corresponding b-tensor shape is shown on the right. The diffusion
encoding schemes shown here include: (A) SDE design by Stejskal and Tanner [38] for LTE, (B) DDE [48] design for PTE, (C) TDE [71] design for isotropic/spherical
diffusion encoding, (D–F) free gradient waveform encoding [86,87], (D), LTE, (E) PTE, and (F) STE. Subfigures (G–I) show the plots of the MR signal versus b-value
measured in three synthetic environments; (G) fast and slow isotropic compartments, (H) randomly oriented anisotropic compartments, and (I) randomly oriented
anisotropic compartments with different anisotropies using linear, planar, and spherical b-tensors (the microenvironments are all assumed Gaussian components and
therefore time dependence and microkurtosis (μK) [62,102–104] are considered negligible). Subfigures (J–N) show examples of brain [92], prostate [37], cardiac [96],
breast [33], and kidney [35] images. (The images (J–N) are taken with permission from [33,35,92,96,98]).
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Most diffusion MRI studies in the literature are based on
conventional Stejskal–Tanner acquisitions [38], which has one
pair of pulsed field gradients that encode diffusion along a single
axis. In the nomenclature proposed by [39] this is referred to as
Single Diffusion Encoding (SDE). A drawback of this technique is
that the effect of microscopic anisotropy, orientation dispersion,
and isotropic variance are entangled. This means different
combinations of these factors lead to the same signal
attenuation with SDE-so one may need to change the signal
attenuation properties to separate them [40–47].

Double Diffusion Encoding (DDE) which contains two pairs of
pulsed-field gradients that are separated from each other with a
mixing time τ [39,48] has been used to disentangle the effect of
microscopic anisotropy from orientation dispersion
[46,47,49–55]. The encoding direction of each pair can be
controlled independently and therefore facilitates measuring
the diffusivity along two directions using a single preparation
of the signal. The principles of DDE-based approaches have been
described in several studies [45,56–59].

Varying the relative gradient directions of the two SDE blocks,
one can estimate microscopic diffusion anisotropy
[44,46,52,60,61] whereas varying the gradients’ strengths while
keeping them orthogonal to each other reveals compartmental
kurtosis [62,63]. To estimate exchange, e.g., through the
membrane between extra-cellular and intra-cellular spaces,
parallel gradients with variable mixing time can be used
[64–69]. Another application of DDE is the estimation of
compartment size using parallel and antiparallel gradients with
a short mixing time [61,70].

Triple Diffusion Encoding (TDE) allows for disentangling
microscopic anisotropy from isotropic diffusion, which is not
feasible using SDE alone and also the advantage of TDE over
DDE is that the isotropic diffusivity can be obtained from TDE
using a single measurement [40,71–74].

Isotropic diffusion encoding was introduced by [75] and [71]
for fast measurement of mean diffusivity. [76] used the
combination of SDE and spherical/isotropic diffusion encoding
to probe microscopic anisotropy, while [77] developed the
method to quantify it (See Figure 1 as an example). The
difference between the signals from SDE and isotropic
diffusion encoding is related to the microscopic anisotropy.
The non-monoexponential decay of the diffusion weighted
signal as a function of b-value from isotropic diffusion
encoding can show the presence of multiple compartments
within a voxel [42,43,77,78].

Although SDE, DDE, and TDE are the most common gradient
waveforms there is no reason to limit the shape of the gradient to
a rectangular/trapezoidal waveform. Free gradient waveforms
may be more useful than the trapezoidal ones, as explained
below [79–81].

[82] proposed a general framework to describe diffusion
encoding for arbitrary gradient waveforms. In this framework,
the b-value and encoding direction were replaced by the “b-
tensor”, which includes the shape of the diffusion encoding
[74,82–85]. In this framework, SDE is just a special realization
of linear tensor encoding (LTE) where the b-tensor has only one
non-zero eigenvalue as all gradients are in the same orientations.

DDE can yield encoding with up to two non-zero eigenvalues and
can be designed to be Planar Tensor Encoding (PTE), some
asymmetric rank-2 b-tensor or LTE. In spherical tensor encoding
(STE) the gradients point in all directions at some time giving rise
to a rank-3 b-tensor.

Optimization of gradient waveforms in terms of echo time
(providing the maximum b-value in a given echo time) has
allowed for b-tensor encoding to be used across many clinical
systems [86,87]. It has been used to study the tissue
microstructure in the healthy brain [43,88–91], brain tumors
[78,92], multiple sclerosis [93,94], epilepsy [95], as well as other
organs such as breast [33], heart [96], kidney [35], and prostate
[36,37]. It has shown the improvement of parameter estimates in
biophysical models [91,97–100] and fiber dispersion
quantification [101]. The extra dimensionality provided by
b-tensor encoding helps to improve model fitting in situations
where the analysis based on LTE alone has resulted in ambiguities
in model parameters.

1.3 Diffusion Biomarkers
Each imaging voxel contains an ensemble of microenvironments
(over a million cells for brain tissue). The diffusion within each
microenvironment can be modeled by a microscopic diffusion
tensor (assuming R1.1 multiple Gaussian components (MGC),
i.e. no time dependence and microscopic kurtosis, μK = 0
[62,102–104]) and therefore the whole voxel has a distribution
of diffusion tensors [46,77,83,105,106]. Single diffusion tensor [3]
from a voxel is equivalent to the average of the microscopic
tensors. Although the voxel level diffusion tensor has a lot of
applications [107], it does not provide information about the
underlying distribution of microscopic diffusion tensors. To
obtain such information, the distribution of the microscopic
diffusion tensors can be parametrized in terms of mean
diffusivity (MD) and two components of diffusional variance;
anisotropic and isotropic variance [43,77]. Isotropic and
anisotropic mean kurtosis (MKI and MKA) are proportional to
isotropic and anisotropic variances respectively (for more details
see [78,106]). Fractional anisotropy (FA) reflects the average
anisotropy of the voxel [108] whereas microscopic fractional
anisotropy (μFA) is not influenced by the orientational order
of the tissue [43,46,49,77]. Apparent diffusion coefficient (ADC)
can show the macro heterogeneity (across many voxels) or the
local average (in one voxel) [109,110], however, it cannot capture
microheterogeneity within a voxel.

Figures 1A–F provides an overview of various diffusion
encoding schemes. As shown in this figure, b-tensor encoding
allows for the data to be acquired in a shorter echo time compared
to DDE and TDE. Figures 1G–I shows the plots of the MR signal
versus b-value measured in three synthetic environments using
linear, planar, and spherical b-tensors. The three synthetic cases
represent three distinct scenarios with different distributions of
microenvironments (fast and slow isotropic compartments,
randomly oriented anisotropic compartments, and randomly
oriented anisotropic compartments with different
anisotropies). Fitting a diffusion tensor to the signal from
these examples will lead to a spherical diffusion tensor on the
macroscopic level for all of them, while the difference between the
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LTE, PTE, and STE signal shows the difference in the underlying
microstructure [74,77]. Figure 1 (j-R1.4n) show examples of
brain [92], prostate [37], cardiac [96], breast [33], and kidney
[35] images (The images (j-n) are taken with permission from
[33,35,92,96,98]).

2 TENSOR-VALUED DIFFUSION
ENCODING: APPLICATION IN THE BRAIN

In this section, the advantages of using tensor-valued diffusion
encoding in healthy brain, schizophrenia, brain tumor,
epilepsy, multiple sclerosis, and Parkinson’s disease will be
reviewed.

2.1 Healthy Brain
Tensor-valued diffusion encoding has been used to study the
tissue microstructure in healthy brain [43,88,91,97,98,111–116].
Because of fiber crossings and the orientation dispersion, the
FA measure extracted from conventional diffusion MRI is
not able to show the changes in the microscopic level
properly. Therefore microscopic anisotropy can be used to
show the changes in the underlying microstructure
independent of fiber architecture. In the normal brain,
microscopic anisotropy is high in white matter and low in
cortex [41,99,113,117,118].

2.2 Schizophrenia
[83] used tensor-valued diffusion encoding and extracted the
scalar maps representing the mean and variance of the diffusion
tensor distribution, to study the changes in schizophrenia
compared to normal brains. An increase in the variance of
mean diffusivity (VMD, the variance in mean diffusivities
between local microenvironments) was observed. This cannot
be explained by a homogeneous increase in the local mean
diffusivity but it shows a higher fraction of free water (water
molecules that diffuse freely, only likely to be found in the
extracellular space). This indicated the elevated extracellular
water content due to the neuro-inflammatory process, which is
the porposed primary mechanism to explain the changes in the
white matter diffusion in schizophrenia [119]. Reduction in the
microscopic anisotropy in schizophrenia patients could indicate
axonal degeneration at the microscopic level. The advantage of
using tensor-valued diffusion encoding for the study of
Schizophrenia is that the changes in the microstructure of the
tissue, such as axonal degeneration can be reflected in the
microscopic anisotropy while this was not necessarily clear in
the macroscopic anisotropy.

2.3 Tumor
[78] used the combination of LTE and STE to investigate the link
between diffusional variance and tissue heterogeneity in
meningiomas and gliomas. The eccentric cells in meningiomas
lead to high structural anisotropy which can be captured by
anisotropic mean kurtosis (MKA) [78]. These structures are not
present in gliomas. Normal white matter has high microscopic
anisotropy and low tissue heterogeneity, while tumours have low

to intermediate microscopic anisotropy and low to high tissue
heterogeneity (Meningioma contains microscopically
anisotropic tissue [78]). High tissue heterogeneity can be
captured by the variation of the diffusivity (MKI) within the
voxel. This can be explained by partial necrosis within the
voxel which means in some parts of the voxel there is high cell
density and low apparent diffusivity while other parts are
necrotic with high diffusivity. [92] extended the exploration
to other tumour types and with better waveforms and a shorter
acquisition scheme.

2.4 Epilepsy
One of the main causes of drug-resistant epilepsy is
malformations of cortical development (MCD) [120]. It can
produce seizures that are mostly treated through surgical
resection. [95] used tensor-valued dMRI to obtain information
about tissue microstructure on MCD. In MCD, the variation in
microscopic anisotropy is consistent with variations in axonal
content reported in the previous studies [121–125].

2.5 Multiple Sclerosis
[94] and [93] showed that microscopic fractional anisotropy
(μFA) improves the microstructural imaging of cerebral white
matter in multiple sclerosis (MS) compared to standard diffusion
tensor imaging. MS lesions are areas with demyelination and
axonal degeneration. A considerable reduction in μFA was
reported by [94] in the MS patients compared to healthy
controls. In the presence of crossing fibers, the degeneration in
one set of fibers may cause an increase in the FA value [126] while
the anisotropy is decreased microscopically. Reduced μFA
suggests a change in the volume fraction of the cellular spaces
due to demyelination or axonal degeneration. In addition, more
supporting cells such as glial cells in the microstructural
environment may cause a decrease in μFA [127] (however, if
we have glial processes, these will be picked up as microscopic
anisotropic domains).

2.6 Parkinson Disease
[128] used DDE to investigate white matter degeneration in
Parkinson disease (PD). In PD, mean diffusivity (MD)
increases, while FA, mean kurtosis (MK), anisotropic mean
kurtosis (MKA) and μFA decrease [128–134]. Some features of
the neurodegeneration in PD include neuroinflammation,
degeneration of myelin sheath, axonal swelling/beading, and
axonal loss [135,136]. The analysis of kurtosis in [128] shows
that the reductions of MK in PD are likely from the reduction in
microscopic anisotropy. The increase of isotropic mean
kurtosis (MKI) and decrease of MKA have different time
trajectories during PD progression. [137] suggest that the
increase in MKI is related to early neuroinflammation and
the decrease of MKA is associated with the subsequent
degeneration, so MK may have a non-monotonical
trajectory, increasing in the beginning followed by a
decrease. A large free-water fraction reported by [137] can
explain the decrease in microscopic anisotropy although this is
not the only reason and other factors such as axonal loss and
demyelination may have the same effect on μFA.
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3 TENSOR-VALUED DIFFUSION
ENCODING: APPLICATION IN BODY
IMAGING
In this section, we describe some advantages of using tensor-
valued diffusion encoding in the imaging of the heart, breast,
prostate, and kidney.

3.1 Breast Imaging
Diffusion weighted imaging is increasingly used in breast cancer
imaging [14,33]. In the presence of pathology, microstructural
features of tissue such as cellular density, membrane permeability,
shape and orientation may change. These alterations are reflected
in the diffusion weighted signal that is obtained from tissue. [33]
studied the feasibility of non-invasive microstructural
characterization of normal and neoplastic breast tissue using
b-tensor encoding. They aimed for potential use of b-tensor
encoding in the clinic to disentangle the fibroglandular breast
tissue (FGT) from breast cancer. Their findings show that the
breast cancer tissue has low isotropic diffusivity and high
anisotropy, while normal FGT exhibited a low amount of
anisotropy and high isotropic diffusivity which means the
normal breast tissue has non-hindered isotropic environment
where the water molecules can diffuse fast.The average of
isotropic diffusivities in a voxel is equivalent to some
conventional imaging biomarkers such as ADC that is useful
to disentangle healthy tissue from benign and malignant lesions
[138]. Previous studies in breast lesions showed that the tissue
cellularity is inversely correlated with MD. [33] showed that
isotropic diffusivity in FGT (Ħ 2 × 10−3mm2/s) [139–141] were
significantly higher than cancers which is in agreement with
previous findings on MD [142–145].[33] reported that the
fractional anisotropy and microscopic anisotropy values in
FGT were significantly lower than tumors, in line with the
previous literature [139,146].In healthy breast tissue, there are
elongated structures such as lobules, ducts, and stroma in FGT
that have large diameters compared to the mean displacement of
water molecules during the diffusion time [139]. This may lead to
low microscopic anisotropy and FA values in healthy breast
tissue. The limitations of this work are the low resolution of
images that may affect the delineation of small lesions and the
contrast injection which may cause bias in the estimated
diffusivity values.

3.2 Prostate Imaging
ADC and FA have been used as common biomarkers in detection of
prostate cancer [147,148]. However, there is contradiction in the
reported results by different groups as some found higher and others
reported lower FA in normal glandular tissue compared to the
cancerous one [148–150]. This can be explained by different
factors, such as echo time, diffusion time or the spatial resolution
in different studies which all may affect the estimated FA. Especially
the low resolution causes each voxel of image to include cells with
different orientations and leads to lower FA value due to orientation
dispersion [43,108]. This is common in prostate images because of
high orientation dispersion [151]. [37] and [36] used tensor-valued
diffusion encoding to scan the prostate in patients with cancer. They

showed that the tissue with more elongated cell structures has higher
microscopic diffusion anisotropy (microscopic anisotropic kurtosis
(MKA)) and isotropic heterogeneity (microscopic isotropic kurtosis
(MKI)) compared to normal tissue.In the prostate, regions with
stromal smooth muscle have high microscopic anisotropy [151].
This can be detected as high FA if the image resolution is high enough
to avoid the orientation dispersion inside a voxel which is not usually
feasible in in vivo clinical scans. As cancer progresses from Gleason
pattern 3 to pattern 4 the well-formed glands are replaced by fused
glands [152]. This leads to a disorganized and heterogeneous tissue
that has high MKI. Low resolution of the imaging protocol may
prevent the accurate delineation of the lesions. In addition, it may
cause partial volume effect. There is a lack of voxel-to-voxel histology
to match with each voxel of MRI data [153].

3.3 Kidney Imaging
FA has been used in the kidney as a measure of tubular integrity
[154,155]. Several studies have shown higher FA in the kidney
medulla compared to the kidney cortex [156–158]. Comparing
FA in patients and healthy controls showed that FA is reduced in
kidney disease patients [159]. However, FA is not able to disentangle
different pathophysiological features that cause renal dysfunction
[154]. Therefore, more specific biomarkers of renal microstructure
are desirable. [35] used the combination of LTE and STE to extract
the microscopic FA in the human kidney in vivo. The lower bound
for the b-value range that is required to provide microstructural
information about kidney tissue is around 500 s/mm2 [35]. Clear
divergence between LTE and STE curves by increasing the b-value
(due to microscopic anisotropy) in the cortex and medulla of the
kidney was observed without the need for any model fitting [35].

3.4 Cardiac Imaging
Cardiac diffusion weighted imaging is one of the most challenging
medical imaging techniques because of the macroscopic motion of
the beating heart and of respiration, which are several orders of
magnitude larger than the length scale of displacement of water
molecules during the diffusion time. Motion-compensated diffusion
encoding overcomes this limitation [160–163]. Most of the cardiac
dMRI studies are based on single diffusion encoding, which has
already led to interesting insights in the healthy [28,90,96,161,162]
and diseased heart, including myocardial infarction [29],
hypertrophic and dilated cardiomyopathy [164], amyloidosis [165]
and athlete’s heart [166]. Isotropic diffusion encoding can be used to
estimate mean diffusivity (MD) in a shorter time compared to
conventional single diffusion encoding [71,75]. First order nulling
of isotropic encoding was proposed by [71]. [96] proposed b-tensor
encoding with arbitrary order nulling to compensate the higher order
motion in cardiac dMRI [28,90,167]. The nulling of concomitantfield
was also considered, this is done in numerical optimization.

Table 1 represents a summary of the application of tensor-valued
diffusion encoding in the neuro and non-neuro applications.

3.5 Practical Considerations for Use of
B-Tensor Encoding
To use b-tensor encoding, optimized waveforms in terms of
echo time are necessary [86]. However, some hardware limits
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such as slew rate, maximum gradient amplitude and Peripheral
Nerve Stimulation (PNS) are the limiting factors, especially in
designing the motion compensated waveforms [79,96]. In
addition, the effect of Maxwell terms should be considered.
These may cause an extra gradient term, proportional to the G2

(G–gradient strength), which can lead to a signal loss and bias in
the metrics of interest [87,168,169]. Timing of the linear and
spherical encodings are sometimes different (in the design of the
waveforms) which may cause differences in the effective
diffusion time for the two b-tensor encoding schemes, and
therefore confound the measurements
[79,103,104,113,170,171,172,173] and introduce parameter bias.

3.6 Other Approaches for Quantifying
Microstructure
There are approaches other than tensor valued diffusion encoding
for quantifying microstructure such as SDE with different
diffusion times, correlation tensor imaging (CTI) [62],
oscillationg gradient spin echo (OGSE) [174]. Using CTI, one
can disentangle three sources of kurtosis; isotropic, anisotropic,
and intra-component kurtosis [62]. OGSE is useful to investigate
small sizes in the tissue.

4 CONCLUSION

In conclusion, tensor-valued diffusion encoding requires bespoke
waveforms that can be optimized based on the hardware limits. The
results reported in the previous studies show that one of the main
factors in the imaging of the body parts such as heart, prostate, etc. is
the motion that should be considered in designing the waveform. In
most of the diseases studied using tensor-valued diffusion encoding, a
decrease in the microscopic anisotropy is reported compared to the
healthy controls. Tensor-valued diffusion encoding can provide
useful information about tissue microstructure which is not
achievable using conventional diffusion MRI.
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