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The goal of the present study is to study the p-η-Ricci soliton and gradient almost p-η-Ricci
soliton within the framework of para-Kenmotsu manifolds as a characterization of Einstein
metrics. We demonstrate that a para-Kenmotsu metric as a p-η-Ricci soliton is an Einstein
metric if the soliton vector field is contact. Next, we discuss the nature of the soliton and
discover the scalar curvature when the manifold admits a p-η-Ricci soliton on a para-
Kenmotsu manifold. After that, we expand the characterization of the vector field when the
manifold satisfies the p-η-Ricci soliton. Furthermore, we characterize the para-Kenmotsu
manifold or the nature of the potential vector field when the manifold satisfies the gradient
almost p-η-Ricci soliton.
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1 INTRODUCTION

Consider a pseudo-Riemannian manifold (M, g). We can say that the metric g is a Ricci soliton if
there exists a smooth vector field V and a constant λ such that

1
2
LVg + S + λg � 0,

where LV denotes the Lie derivative along V and S is the manifold’s Ricci tensor. The vector field V is
called the potential and λ is the soliton constant. Taking V to be zero, or a Killing vector, the
condition reduces to the Einstein equation, and the soliton is called trivial.

A Ricci soliton is a self-similar solution of Hamilton’s Ricci flow [1]: zg(t)zt � −2S(g(t)), where g(t)
is a one-parameter family of metrics starting at g (0) = g. The potential V and the constant λ play a
fundamental role in determining the soliton’s nature. A soliton is called shrinking, steady, or
expanding according to whether λ < 0, λ = 0, or λ > 0. If V is zero or Killing, then the Ricci soliton
reduces to an Einstein manifold and the soliton is called a trivial soliton.

If the potential vector field V is the gradient of a smooth function f, denoted by Df then the soliton
equation reduces to

Hessf + S + λg � 0,

where Hessf is Hessian of f. Perelman [2] proved that a Ricci soliton on a compact manifold is a
gradient Ricci soliton.

In 2009, J. T. Cho and M. Kimura [3] introduced the concept of the η-Ricci soliton, which is
another generalization of the classical Ricci soliton, and is given by the following:
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Lξg + 2S + 2λg + 2μη ⊗ η � 0,

where μ is a real constant and η is a 1-form defined as η(X) = g (X,
ξ) for any X ∈ χ(M). Note that if μ = 0, then the η-Ricci soliton
reduces to a Ricci soliton.

In 2014, Kaimakamis and Panagiotidou [4] modified the
definition of a Ricci soliton using the p-Ricci tensor Sp, which
was introduced by Tachibana [5], in place of the Ricci tensor S.
The p-Ricci tensor Sp is defined by

Sp X,Y( ) � 1
2

trace ϕ · R X, ϕY( ){ }( ),
where for all vector fields X and Y onM, ϕ is a (1,1) − tensor field.
The aforementioned study used the concept of a p-Ricci soliton
within the framework of real hypersurface of a complex
space form.

In 2020, S. Dey et al. [6] defined the p-η-Ricci soliton as
follows:

Lξg + 2Sp + 2λg + 2μη ⊗ η � 0.

To the authors’ knowledge, the results concerning the p-η-
Ricci soliton were studied in the case in which the potential vector
field V is the characteristic vector field ξ. Motivated from this, we
generalized the definition by considering the potential vector field
as an arbitrary vector field V and defined it as follows:

LVg + 2Sp + 2λg + 2μη ⊗ η � 0, (1.1)
where the manifold is considered as (2n + 1)-dimensional. Next,
if we consider the potential vector field V as the gradient of a
smooth function f, then the p-η-Ricci soliton equation can be
rewritten as follows:

Hessf + Sp + λg + μη ⊗ η � 0. (1.2)
Here, the term “gradient almost p-η-Ricci soliton” denotes a

gradient p-η-Ricci soliton for which we considered λ as a smooth
function.

As for further literature study, Ricci solitons on paracontact
geometry have been studied by many authors ([7–10]). In
particular, Calvaruso and Perrone [9] explicitly studied Ricci
solitons on 3-dimensional almost paracontact manifolds. In 2018,
Ghosh and Patra [11] first studied the p-Ricci soliton on almost
contact metric manifolds. Very recently, the p-Ricci soliton and its
generalizations were investigated by Dey et al. [6, 12, 13, 15-21].
The case of the p-Ricci soliton in a para-Sasakian manifold was
treated by Prakasha and Veeresha in the study mentioned in
reference [22]. Furthermore, in 2019, V. Venkatesha et al. [23]
considered the metric of an η-Einstein para-Kenmotsu manifold
as a p-Ricci soliton and proved that the manifold is Einstein. In
another study performed in 2019, I. K. Erken [24] considered
Yamabe solitons on a 3-dimensional para-cosymplectic manifold
and proved some vital results, including the fact that the manifold
is either η-Einstein or Ricci flat. Several authors have also studied
the η-Ricci soliton and its abstraction on paracontact metric
manifolds; for instance, Dey et al. [25] considered a paracontact
metric as a conformal Ricci soliton and a p-conformal Ricci
soliton, Deshmukh et al. [26] studied certain results on Ricci

almost solitons, Sarkar et al. [27] examined a conformal η-Ricci
soliton on a para-Sasakian manifold, and Naik et al. [28]
considered a para-Sasakian metric as an η-Ricci soliton. In
[29], Welyczko introduced the notion of the para-Kenmotsu
manifold, which is analogous to the Kenmotsu manifold [30]
in paracontact geometry; this topic was studied in detail by
Zamkovoy [31]. Furthermore, Blaga studied certain aspects of
η-Ricci solitons on para-Kenmotsu and Lorentzian para-Sasakian
manifolds (see [32–34]). Motivated by these results, we
considered a para-Kenmotsu metric as p-η-Ricci solitons and
gradient p-η-Ricci solitons.

Based on the above facts and discussions in the research of
contact geometry, a natural question arises:

Are there paracontact metric almost manifolds whose metrics
are p-η-Ricci solitons?

In later sections, we have shown that the answer to this
question is affirmative. The article is organized as follows: in
Section 2, the basic definitions and facts about para-Kenmotsu
manifolds are given. In the next section, we have explained that if
the metric g represents a p-η-Ricci soliton and if the soliton vector
field V is contact, then V is a strictly infinitesimal contact
transformation and the manifold is Einstein. We have
demonstrated some results in which a p-η-Ricci soliton admits
a para-Kenmotsu manifold and determined the nature of the
soliton and Laplacian of the smooth function. We have also
considered that the manifold is η-Einstein when the manifold
satisfies p-η-Einstein soliton and the vector field is conformal
Killing. Furthermore, we have provided some examples to
support our findings in that section. In Section 4, we have
considered the gradient almost p-η-Ricci soliton and have
shown that if the metric g represents a gradient almost p-η-
Ricci soliton, then either M is Einstein or there exists an open set
where the potential vector field V is pointwise collinear with the
characteristic vector field ξ.

2 SOME PRELIMINARIES ON
PARA-KENMOTSU MANIFOLDS

A (2n + 1)-dimensional smooth manifold M is said to have an
almost paracontact structure if it admits a vector field ξ, (1, 1)-
tensor field ϕ, and 1-form η satisfying the following conditions:

i)ϕ2 � I − η ⊗ ξ, (2.1)
ii)η ξ( ) � 1, (2.2)

iii) ϕ induces an almost paracomplex structure P on the 2n-
dimensional distribution D ≡ ker(η), that is, P2 ≡ Iχ(M) and the
eigensubbundles D+ and D−, corresponding to the eigenvalues 1,
− 1 of P, respectively, have equal dimension n; hence, D �
D+ ⊕ D+.

As an example of the paracontact structure, consider M = Sn

×Sn, the product of two copies of unit sphere Sn. Let P be the
product structure on M, which is defined by the following:

P U,V( ) � U,−V( ),
where (U, V) is a vector field on M. Then P satisfies the following:
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P2 � I, TrP � 0.

Moreover, with respect to the product of Riemannian metric g
on M, we can see that P is a symmetric operator. Now,
considering the product �M � M × S1, let ξ be the unit vector
field globally defined on S1 and let η be 1-form dual to ξ on �M.
Then for a vector field E on �M, we have the following:

E � X + η E( )ξ,
where X = (U, V) is a vector field onM = Sn ×Sn. Next, we defined
a (1, 1) tensor field ϕ on �M as follows:

ϕ E( ) � P X( ), E � X + η E( )ξ.
Then it follows that

ϕ2 E( ) � P2 X( ) � X � E − η E( )ξ,
and that ϕ(ξ) � P(0) � 0 and η◦ϕ = 0. Hence, (ϕ, ξ, η) is an
almost paracontact structure on the (2n + 1)-dimensional
manifold �M. If a manifold M with an almost paracontact
structure (ϕ, ξ, η) admits a pseudo-Riemannian metric g of
signature (n + 1, n) such that

g ϕX, ϕY( ) � −g X, Y( ) + η X( )η Y( ), (2.3)
holds for any X, Y ∈ χ(M), then g is called a compatible metric and
the manifold (M, ϕ, ξ, η, g) is called an almost paracontact metric
manifold. If an almost paracontact metric manifold satisfies the
following:

∇Xϕ( )Y � g ϕX,Y( )ξ − η Y( )ϕX, (2.4)
then the manifold is called an almost para-Kenmotsu manifold.
The normality of an almost paracontact structure (M, ϕ, ξ, η) is
equivalent to the vanishing of the(1,2)-torsion tensor defined by
Nϕ(X, Y) = [ϕ, ϕ](X, Y) − 2dη(X, Y)ξ, where [ϕ, ϕ] is the Nijenhuis
torsion tensor of ϕ and is defined by [ϕ, ϕ](X, Y) = ϕ2 [X, Y] + [ϕX,
ϕY] − ϕ[ϕX, Y] − ϕ[X, ϕY] for any X, Y ∈ χ(M). A normal almost
para-Kenmotsu manifold is called a para-Kenmotsu manifold.

On a (2n + 1)-dimensional para-Kenmotsu manifold, the
following properties hold:

ϕ ξ( ) � 0, (2.5)
η◦ϕ � 0, (2.6)
∇Xξ � X − η X( )ξ, (2.7)

∇Xη( )Y � g X, Y( ) − η X( )η Y( ), (2.8)
Qξ � −2nξ, (2.9)

R X,Y( )ξ � η X( )Y − η Y( )X, (2.10)
R X, ξ( )Y � g X, Y( )ξ − η Y( )X, (2.11)

Lξg( ) X,Y( ) � 2 g X, Y( ) − η X( )η Y( )[ ], (2.12)
for any X, Y ∈ χ(M), where L and ∇ are the operators of Lie
differentiation and covariant differentiation of g, respectively. Q
denotes the Ricci operator associated with the Ricci tensor S
defined by S (X, Y) = g (QX, Y) and R denotes the Riemannian
curvature tensor.

A (2n+1)-dimensional Kenmotsu metric manifold is said to be
a η-Einstein Kenmotsu manifold if there exist two smooth
functions a and b that satisfy the following relation:

S X,Y( ) � ag X, Y( ) + bη X( )η Y( ), (2.13)
for all X, Y ∈ χ(M). Clearly, if b = 0, then η-Einstein manifold
reduces to an Einstein manifold. Now, considering X = ξ in the
last equation and using 2.10, we have a + b = − 2n. Contracting
(2.13) over X and Y, we obtained r = (2n + 1) a + b, where r
denotes the scalar curvature of the manifold. Solving these two,
we have a � (1 + r

2n) and b � −(2n + 1 + r
2n). Using these values,

we can rewrite 2.13 as follows:

S X, Y( ) � 1 + r

2n
( )g X, Y( ) − 2n + 1 + r

2n
( )η X( )η Y( ). (2.14)

3 p-η-RICCI SOLITON ON
PARA-KENMOTSU MANIFOLDS

In this section, we have considered that the metric g of a (2n + 1)-
dimensional para-Kenmotsumanifold represents a p-η-Ricci soliton.
We recalled some important lemmas relevant to our results.

Lemma 1. ([25]) The Ricci operator Q on a (2n + 1)-dimensional
para-Kenmotsu manifold satisfies the following:

∇XQ( )ξ � −QX − 2nX, (3.1)
∇ξQ( )X � −2QX − 4nX, (3.2)

for an arbitrary vector field X on the manifold.

Lemma 2. Venkatesha et al. [23] deduced the expression of the
p-Ricci tensor for a para-Kenmotsu manifold as follows:

Sp X,Y( ) � −S X, Y( ) − 2n − 1( )g X, Y( ) − η X( )η Y( ). (3.3)
In addition, we plugged X = ei and Y = ei into the above

equation, where ei denotes a local orthonormal frame, and sum
over i = 1, 2, . . ., (2n + 1) to arrive at the following equation:

rp � −r − 4n2, (3.4)
where rp is the p-scalar curvature of M.

Theorem 1. Let M(2n+1) (ϕ, ξ, η, g) be a para-Kenmotsu manifold.
If the metric g represents a p-η-Ricci soliton and if the soliton
vector field V is contact, then V is a strictly infinitesimal contact
transformation and the manifold is Einstein.

Proof 1. Because the metric g of the para-Kenmotsu manifold
represents a p-η-Ricci soliton, both of Eqs. 1.1, 3.3 are satisfied.
Combining these two, we have the following:

LVg( ) X,Y( ) � 2S X, Y( ) − 2λ − 4n + 2( )g X, Y( )
−2 μ − 1( )η X( )η Y( ). (3.5)

Taking the covariant derivative in the previous equation w.r.t. an
arbitrary vector field Z and using 2.8, we obtained the following:

∇ZLVg( ) X,Y( ) � 2 ∇ZS( ) X,Y( ) − 2 μ − 1( ) g X,Z( )η Y( ){
+g Y, Z( )η X( ) − 2η X( )η Y( )η Z( )},

(3.6)
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for all X, Y, Z ∈ χ(M). Again, from Yano [35], we have the
following commutation formula:

LV∇Zg − ∇ZLVg − ∇ V,Z[ ]g( ) X,Y( ) � −g LV∇( ) X,Z( ), Y( )
−g LV∇( ) Y,Z( ), X( ),

where g is the metric connection, that is, ∇g = 0. Thus, the above
equation reduces to the following:

∇ZLVg( ) X,Y( ) � g LV∇( ) X,Z( ), Y( ) + g LV∇( ) Y,Z( ), X( ),
(3.7)

for all vector fields X, Y, and Z on M. Combining (3.6) and (3.7)
through a straightforward combinatorial computation and applying
the symmetry of (LV∇), the previous equation yields the following:

g LV∇( ) X,Y( ), Z( ) � ∇ZS( ) X,Y( ) − ∇XS( ) Y,Z( ) − ∇YS( ) Z,X( )
−2 μ − 1( ) g X,Y( )η Z( ) − η X( )η Y( )η Z( ){ },

for arbitrary vector fields X, Y, and Z on M. Using 3.1, 3.2, the
previous equation yields the following:

LV∇( ) X, ξ( ) � 2QX + 4nX, (3.8)
for all X ∈ χ(M). Now, covariantly differentiating this with respect
to an arbitrary vector field Y, we obtained the following:

∇YLV∇( ) X, ξ( ) � 2 ∇YQ( )X − LV∇( ) X,Y( ) + η Y( )
× 2QX + 4nX( ). (3.9)

We know that (LVR)(X,Y)Z � (∇XLV∇)(Y,Z)
−(∇YLV∇)(X,Z). In view of 3.9 in the previous relation, we
acquired the following:

LVR( ) X,Y( )ξ � 2 ∇XQ( )Y − ∇YQ( )X{ } + 2η X( ) QY + 2nY( )
−2η Y( ) QX + 2nX( ),

(3.10)
for arbitrary vector fields X and Y on M. Setting Y = ξ in the
aforementioned equation and using 2.10, 3.1, 3.2, we obtained
the following:

LVR( ) X, ξ( )ξ � 0. (3.11)
Now, taking 3.5 in account, the Lie derivative of g (ξ, ξ) = 1

along the potential vector field V yields the following:

η LVξ( ) � λ + μ. (3.12)
Plugging Y = ξ and noting 2.2, Eq. 3.5 provides the following:

LVη( )X − g X,LVξ( ) � − 2λ + 2μ( )η X( ), (3.13)
which holds for an arbitrary vector field X on M. From 2.10, we
computed R (X, ξ)ξ = η(X)ξ − X. Taking the Lie derivative along
the potential vector field V and inserting 3.12 and 3.13 in
account, this reduces to the following:

LVR( ) X, ξ( )ξ � 2 λ + μ( ) X − η X( )ξ( ), (3.14)
for all X ∈ χ(M). Finally, comparing 3.1 and 3.14, we have 2 (λ +
μ) (X − η(X)ξ) = 0. This holds for an arbitrary X ∈ χ(M); thus, we
inferred the following:

λ � −μ. (3.15)
Invoking the relation 3.15 in 3.12, we easily obtained

η(LVξ) � 0. Because we have considered the potential vector
field V as a contact vector field, there must exist a smooth
function f such that LVξ � fξ. Making use of this in 3.12, we
obtained f = λ + μ. Therefore, by using the relation 3.15, we
obtained f = 0 and thus LVξ � 0. Finally, the Eq. 3.13 reduces to
the following:

LVη � 0. (3.16)
Thus, V is a strictly infinitesimal contact transformation.
Next, we considered the well-known formula given by Yano

[35] as follows: (LV∇)(X,Y) � LV∇XY − ∇XLVY − ∇[V,X]Y.
Inserting Y = ξ and using 2.7, LVξ � 0 and 3.16 yields
(LV∇)(X, ξ) � 0. Substituting this into 3.8, we deduced QX =
− 2nX ∀X ∈ χ(M), which settles our claim.

The p-η-Ricci soliton is a generalization of the p-Ricci soliton,
where we considered μ = 0 in 1.1 to obtain the p-Ricci soliton
equation. We can rewrite the above theorem as follows:

Corollary 1. Let M(2n+1) (ϕ, ξ, η, g) be a para-Kenmotsu manifold.
If the metric g represents a p-Ricci soliton and if the soliton vector
field V is contact, then V is a strictly infinitesimal contact
transformation and the manifold is Einstein.

Theorem 2. If the metric g of a (2n+1)-dimensional para-
Kenmotsu manifold satisfies the p-η-Ricci soliton (g, ξ, λ, μ),
where ξ is the Reeb vector field, then the soliton constants λ and μ
are related by λ = − μ.

Proof 2. Let M be a (2n+1)-dimensional para-Kenmotsu
manifold. Considering V = ξ in the equation of a p-η-Ricci
soliton 1.1 on M, we obtained the following:

Lξg( ) X,Y( ) + 2Sp X,Y( ) + 2λg X, Y( ) + 2μη X( )η Y( ) � 0,

(3.17)
for all vector fields X, Y, ∈ χ(M). We combined the above equation
with the identities 2.12, 3.3, 3.4 to yield the following:

λ − 2n + 2[ ]g X, Y( ) − S X, Y( ) + μ − 2( )η X( )η Y( ) � 0. (3.18)
Now, we fed Y = ξ into the previous equation and used the

identity 2.9 to infer the following:

λ � −μ, (3.19)
as η(X) ≠ 0, which finishes the proof.

Also, we see that if μ = 0, then 3.19 gives λ = 0. Thus, we can
state the following:

Corollary 2. If the metric g of a (2n+1)-dimensional para-
Kenmotsu manifold satisfies the p-Ricci soliton (g, ξ, λ), where
ξ is the Reeb vector field, then the soliton is steady.

Theorem 3. If the metric g of a (2n+1)-dimensional para-
Kenmotsu manifold satisfies the p-η-Ricci soliton (g, V, λ, μ),
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where V is the gradient of a smooth function f, then the Laplacian
equation satisfied by f is as follows:

Δ f( ) � r + 4n2( ) − λ 2n + 1( ) − μ.

Proof 3. Now, we considered a p-η-Ricci soliton (g, V, λ, μ) on M
as follows:

LVg( ) X,Y( ) + 2Sp X,Y( ) + 2λg X, Y( ) + 2μη X( )η Y( ) � 0,

(3.20)
for all vector fields X, Y, ∈ χ(M).

We set X = ei and Y = ei, in the above equation, where ei
denotes a local orthonormal frame; we then sum over i = 1, 2, . . . ,
(2n + 1) and use 3.4 to obtain the following:

divV − r + 4n2( ) + λ 2n + 1( ) + μ � 0. (3.21)
If we assume that the vector field V is of gradient type, that is,

V = grad(f), where f is a smooth function on M, then the Eq. 3.21
provides the following:

Δ f( ) � r + 4n2( ) − λ 2n + 1( ) − μ, (3.22)
where Δ(f) is the Laplacian equation satisfied by f. This completes
the proof.

If we replace the value of μ from 3.19 into the identity 3.21, λ
takes the following form:

λ � r + 4n2( ) − divV

2n
. (3.23)

In view of 3.23, 3.19 becomes the following:

μ � divV − r + 4n2( )
2n

. (3.24)

Thus, we can state the following.

Corollary 3. If the metric of an 2n + 1-dimensional para-Kenmotsu
manifold admits a p-η-Ricci soliton (g, V, λ, μ), where V is the
gradient of a smooth function f, the soliton constants λ and μ take the
forms of λ � (r+4n2)−divV

2n and μ � divV−(r+4n2)
2n , respectively, where divξ

is the divergence of the vector field ξ.

Theorem 4. Let the metric g of a (2n+1)-dimensional para-
Kenmotsu manifold satisfy the p-η-Ricci soliton (g, V, λ, μ). Then
the vector field V is solenoidal if λ � r+4n2

2n and μ � −(r+4n2)
2n .

Proof 4. consider the vector field V as solenoidal, that is, divV = 0;
then, 3.23 and 3.24 provides the following:

λ � r + 4n2

2n
, (3.25)

μ � −r + 4n2

2n
. (3.26)

Again, if we insert the value of λ and μ into the identity 3.21,
we can obtain the following:

divV � 0, (3.27)

that is, V is solenoidal, which ends our proof.
A vector field V is said to be a conformal Killing vector field if

the following relation holds:

LVg( ) X,Y( ) � 2Ωg X,Y( ), (3.28)
where Ω is some function of the coordinates (conformal scalar).
Moreover, if Ω is not constant, the conformal Killing vector field
V is said to be proper. In addition, whenΩ is constant, V is called
a homothetic vector field, and when the constantΩ becomes non-
zero, V is said to be a proper homothetic vector field. If Ω = 0 in
the above equation, then V is called a Killing vector field.

Lemma 3. If the metric g of a (2n+1)-dimensional para-
Kenmotsu manifold satisfies the p-η-Ricci soliton (g, V, λ, μ),
where V is a conformal Killing vector field, then the manifold
becomes η-Einstein.

Proof 5. Let (g, V, λ, μ) be a p-η-Ricci soliton on a (2n+1)-
dimensional para-Kenmotsu manifold M, where V is a conformal
Killing vector field. Then from 1.1, 3.3, 3.4, 3.28, we can achieve
the following:

S X, Y( ) � λ + Ω − 2n + 1[ ]g X, Y( ) + μ − 1( )η X( )η Y( ), (3.29)
which leads to the fact that the manifold is η-Einstein.

Lemma 4. Let the metric g of a (2n+1)-dimensional para-
Kenmotsu manifold satisfy the p-η-Ricci soliton (g, V, λ, μ),
where V is a conformal Killing vector field. Then V is one of the
following cases:

(1) proper vector field if − [λ + μ] is not constant;
(2) homothetic vector field if − [λ + μ] is constant;
(3) proper homothetic vector field if − [λ + μ] is a non-zero

constant;
(4) Killing vector field if λ + μ = 0.

Proof 6.We combined Y = ξ with identity 3.29 and used 2.9 and
3.4 to finally arrive at the following conclusion:

Ω � − λ + μ[ ], (3.30)
because η(X) ≠ 0. Now, using the properties of a conformal Killing
vector field, we obtained our result.

4 GRADIENT ALMOST p-η-RICCI SOLITON
ON PARA-KENMOTSU MANIFOLDS

In this section, we have studied gradient almost p-η-Ricci solitons
on para-Kenmotsu manifolds.

Theorem 5. Let M(2n+1) (ϕ, ξ, η, g) be a para-Kenmotsu manifold.
If the metric g represents a gradient almost p-η-Ricci soliton, then
either M is Einstein or there exists an open set where the potential
vector field V is pointwise collinear with the characteristic vector
field ξ.
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Proof 7. In view of 3.3, in the definition of the gradient almost
p-η-Ricci soliton given by Eq. 1.2, we acquired the following:

∇XDf � QX − λ − 2n + 1( )X − μ − 1( )η X( )ξ,
for any vector field X on M. We took the covariant derivative
in the previous equation along an arbitrary vector Y and used
2.7 and 2.8 to yield the following:

∇Y∇XDf � ∇YQ( )X + Q ∇YX( ) − Y λ( )X − λ + 2n − 1( ) ∇YX( )
− μ − 1( ) g X, Y( )ξ − 2η X( )η Y( )ξ{
+η ∇YX( )ξ + η X( )Y}.

Applying this in the expression of the Riemannian curvature
tensor, we obtained the following:

R X,Y( )Df � ∇XQ( )Y − ∇YQ( )X + Y λ( )X −X λ( )Y
− μ − 1( ) η Y( )X − η X( )Y{ }. (4.1)

Moreover, considering an inner product w.r.t. ξ and using 3.1,
3.2 yields the following:

g R X,Y( )Df, ξ( ) � Y λ( )η X( ) −X λ( )η Y( ), (4.2)
for X, Y ∈ χ(M). Furthermore, the inner product of 2.10 with the
potential vector field Df provides the following:

g R X, Y( )Df, ξ( ) � η Y( )X f( ) − η X( )Y f( ), (4.3)
for arbitrary X and Y on M. Comparing 4.2 and 4.3 and plugging
Y = ξ, we have X (f + λ) = ξ(f + λ)η(X). From this, we achieved the
following:

d f + λ( ) � ξ f + λ( )η. (4.4)
So, if (f + λ) is invariant along the distribution Ker(η), that is, if

X ∈ Ker(η), then X (f + λ) = d (f + λ)X = 0.
Now, if we take the inner product w.r.t. an arbitrary

vector field Z after plugging X = ξ into 4.1, we obtained
the following:

g R ξ, Y( )Df,Z( ) � S Y,Z( ) + 2n − ξ λ( ) + μ − 1( )g Y, Z( ) + Y λ( )η Z( )
− μ − 1( )η Y( )η Z( ).

(4.5)
Again, from 2.10, we can easily deduce the following for

arbitrary vector fields Y and Z on M:

g R ξ, Y( )Df,Z( ) � ξ f( )g Y, Z( ) − Y f( )η Z( ). (4.6)
Comparing Eqs. 4.5, 4.6 and applying 4.4, we obtained the

following:

S Y, Z( ) � ξ f + λ( ) − μ − 2n − 1{ }g Y, Z( )
− ξ f + λ( ) − μ − 1{ }η Y( )η Z( ). (4.7)

As the above equation holds true for arbitrary Y and Z, the
manifold is η-Einstein. Now, contracting 4.7, we inferred the
following:

ξ f + λ( ) � r

2n
+ μ + 2n + 2. (4.8)

Plugging this into 4.7, we acquired the following:

S Y, Z( ) � r

2n
+ 1( )g Y,Z( ) − r

2n
+ 2n + 1( )η Y( )η Z( ),

for arbitrary vector fields Y and Z on M, which is exactly the
same as 2.14. Now, contracting 4.1 w.r.t. X reduces to the
following:

S Y,Df( ) � 1
2
Y r( ) + 2nY λ( ) − 2n μ + 1( )η Y( ), (4.9)

which holds for any Y ∈ χ(M). Now, taking into with 2.14, we
computed the following:

r + 2n( )Y f( ) − r + 2n 2n + 1( )( )η Y( )ξ f( ) − nY r( )
−4n2Y λ( ) + 4n2 μ + 1( )η Y( ) � 0,

(4.10)
for all Y ∈ χ(M). Now, setting Y = ξ and then in view of 4.8, we
easily derive the following relation:

ξ r( ) � −2 r + 2n 2n + 1( )( ). (4.11)
Because d2 = 0 and dη = 0, from 4.4, it follows that dr ∧ η = 0, that

is, dr(X)η(Y)− dr(Y)η(X) = 0 for arbitraryX, Y ∈ χ(M). After inserting
Y = ξ and applying 4.11, it reduces toX(r) = − 2 (r + 2n (2n + 1))ξ. As
X is an arbitrary vector field, we conclude the following:

Dr � −2 r + 2n 2n + 1( )( )ξ.
Let X be a vector field of the distribution Ker(η). Then, 4.10

provides the following:

r + 2n( )X f( ) − 4n2X λ( ) � 0.

Invoking 4.4 and 4.8 we obtained (r + 2n (2n + 1))X(f) = 0.
From here we concluded the following:

r + 2n 2n + 1( )( ) Df − ξ f( )ξ( ) � 0.

If r = − 2n (2n + 1), then from 2.14 we can determine that
the manifold is Einstein with Einstein constant − 2n.

If r ≠ − 2n (2n + 1) on some open set O of M, then Df = ξ(f)ξ on
that open set, that is, the potential vector field is pointwise collinear
with the characteristic vector field ξ, which finishes the proof.

Corollary 4. Let (g, V, λ, μ) be a gradient p-η-Ricci soliton on a
(2n+1)-dimensional para-kenmotsu manifold. Then the potential
vector field V is pointwise collinear with the characteristic vector
field ξ.
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