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Rapid advances in Biophotonics are revolutionizing the illumination of several diseases
and, among them, the monitoring of cancer pathogenesis and therapy. Today, several
efforts aim to miniaturize the Biophotonics tools, leading to the namely Nanobiophotonics.
This scientific field refer to the development of novel technologies, biosensors, and drug
delivery systems for prevention, diagnosis, and treatment of diseases at the nanoscale, in
sub-cellular and molecular level. Modern non-invasive laser-based techniques are applied
in different domains, from practical, clinical applications to molecular and cellular biology
fundamental research. Among the plethora of photon-based techniques, optical trapping
is a very promising tool for improving the understanding of cancer at cellular level. Recently,
optical tweezers are revived as a potential technique for cell characterization, tracking cells
behavior and probing interactions forces between cells, cells-biomolecules, and cells-
nanoparticles. In this review, we aim to exhibit the state-of the art advances of
Biophotonics in the diagnostic and therapeutic field of cancer focusing on the role of
optical tweezers.
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INTRODUCTION

Biophotonics is an emerging multidisciplinary research area, embracing all light-based technologies
applied to the life sciences and medicine. The expression itself is the combination of the Greek
syllables’ “bios” standing for life and “phos” standing for light [1]. In Biophotonics, the
“conventional” light is monochromatic laser or laser-like non-ionizing radiation and the basic
biomedical applications to all levels of biological structures are divided into twomajor fields. The first
is devoted to diagnostic and imaging applications (in vivo and in vitro, in cellular or molecular level)
and the second to therapy or surgery using photon radiation (e.g., biostimulation, tissue removal-
surgery, photodynamic therapy, cell micromanipulation) [2]. Modern non-invasive laser-based
optical research techniques prove to be more and more useful in the biomedical field, covering very
different domains, from practical, clinical applications to molecular and cellular biology fundamental
research [3, 4].

Today, several efforts aim to the miniaturization of Biophotonics tools, leading to
Nanobiophotonics [5, 6]. This advanced scientific field refers to the research and development
of novel technologies, biosensors, and drug delivery systems for prevention, diagnosis, and treatment
of diseases at the nanoscale, in sub-cellular and molecular level and for the dream of personalized
therapy [7]. Moreover, laser-based techniques and instrumentation have driven to a new era in cell
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biology, the intracellular nanosurgery [8]. This technology has
allowed the ability to perform precise nano-incisions in cells and
manipulation of intracellular structures or even at the level of
individual genes within the nucleus [9]. Laser nano-surgery
combined with monitoring devices can lead from intracellular
ablations to in vivo subcellular dissections [10, 11].

Among the plethora of photon-based techniques, optical
tweezers, with the ability of applied Biophotonics interventions
in living cells, is a very promising tool in cancer field [12, 13].
Optical tweezers technique is a non-invasive biomedical tool with
advanced applications in biology [14], medicine [15], and
nanotechnology [16]. The ability to “touch” the microcosmos
non-invasively, while performing nanometer-precision and
submicrometric analysis, using a single optical tool, is a
revolutionary technique. Optical tweezers can manipulate cells,
viruses, bacteria and macromolecules. Using the optical trapping
technique, a cell can be selectively, non-invasively and non-
destructively manipulated to a phagocyte, attached to its
surface cell receptor and trigger the initiation of the
phagocytosis process [17]. Optical tweezers are capable to
grab, tracking and manipulate small virus such as influenza
[18]. This review highlights the novel photon-based
theranostics modalities for cancer confrontation focusing on
the role of optical tweezers. The advanced applications of
optical tweezers in biology and Nanomedicine are presented.
New potential prospects of the optical tweezers in the cancer field
are also provided.

BIOPHOTONICS AND THERANOSTICS IN
CANCER

Biophotonics in Diagnosis of Cancer
Biophotonics is a relatively novel interdisciplinary discipline that
integrates lasers, optoelectronics, photonics and biomedical
sciences, dealing with the interaction between non-ionizing
light quanta and biological materials, including tissues, cells
and even sub-cellular structures and molecules in living
organisms [19]. In the literature, there are a variety of
research and clinical studies based on cellular and sub-cellular
diagnosis via flow cytometry [20], light-microscopy techniques
and laser-induced fluorescence spectroscopy such as:
Epifluorescence microscopy [21], immunofluorescence
microscopy [22], optical coherence tomography [23], confocal
microscopy [24], Total Internal Reflection Fluorescence - TIRF
microscopy [25], Two-Photon Laser Scanning
Microscopy–TPLSM [26], Fluorescent Resonance Energy
Transfer–FRET [27], PhotoActivated Localization Microscopy
- PALM [28], nanolaser confocal spectroscopy [29]. These
techniques enable real-time and/or in situ imaging of living
tissue at high resolution and high contrast, without physically
dissecting the tissue. These imaging techniques can find great
applications in Nanomedicine.

Multiple imaging modes can offer complementary
information and overcome the limitations of each single
modality. The combination of optical imaging with computed
tomography (CT), magnetic resonance imaging (MRI), Positron

Emission Tomography (PET) and Single-photon emission
computed tomography (SPECT) can enhance size resolution
and penetration depth [30]. Near-Infrared Fluorescence
(NIRF) imaging is highly attractive for early non-invasive
detection of cancer due to its high penetration depth and low
autofluorescence [31]. Different types of multicomponent
nanoparticles like PEGylated Au/SiO2 nanocomposites
conjugated with Fluorescein isothiocyanate (FITC) [32], Iron
Oxide NPs encapsulating in Human Serum Albumin (HAS)
[33] etc. have been designed to act as dual contrast agents
offering multimodal imaging (Figure 1). The combination of
CT, MR, PET and SPECT modalities with fluorescence imaging
modalities can allow extension of imaging across the dynamic
range of size resolution and penetration depth from deep-body
with size resolution of ~ 1 mm to thin penetration depths of few
hundred microns or millimeters with size resolutions to single-
cell or even subcellular resolution [34–36].

In recent years, the biophotonics techniques have been
integrated with machine learning methodologies based on
artificial neural networks (ANNs) [37–39]. This will give a
boost in the Biophotonic fields to obtain real-time decision-
making systems for doctors, biologists, pathologist etc. by
analyzing a large datasets of image data and spectral data [37].
For example, ANNs were used to diagnose tongue squamous cell
carcinoma based on the difference in Raman Spectral signature
between healthy and malignant cells for the accurate
intraoperative discrimination between healthy and cancerous
margins [40]. Figure 2 shows a schematic image of the
workflow of the combination of Raman spectroscopy with
machine learning models for tissue discrimination. ANNs have
been applied to Scanning Enhanced Raman Spectroscopy opto-
physiology data to probe metabolite gradients in a variety of cell
lines such as HeLa and HUVEC [41]. Machine learning models
have been created to identify DNA damage in a nasopharyngeal
carcinoma cell line (CNE2) after x-ray radiation [42] from
spectral data obtain by silver nanoparticle-based surface-
enhanced Raman scattering (SERS) [43]. Deep learning models
have been applied in γ-Η2AΧ immunofluorescence images to
quantify the number of γ-H2AX foci for the detection of DNA
double-strand breaks. The γ-H2AΧ foci is a sensitive biomarker
for the quantification of the DNA damage [44]. These foci are
formed specifically at sites of DNA double-strand breaks after
ionizing radiation exposure as a cellular response of the
lymphocytes in peripheral blood [45, 46].

Biophotonics in Therapeutics of Cancer
Recent theranostics techniques are combined with nano-imaging
and nanomaterial-based drug delivery techniques for an effective
and targeted disease management [47–49]. Metallic
nanoparticles, semiconductor quantum dots and carbon
nanotubes have been used as photosensitizer agents for photo-
triggered diagnosis and photo-triggered therapy [50, 51].
Antibodies, peptides and small molecules can be labeled with
fluorescence dyes and conjugated to nanoparticles producing
targeted optical imaging probes for cancer detection [52, 53].
Nanocarriers can be served as multi-modal theranostics systems
[54] or as “Trojan Horses” [55] carrying multiple therapeutic and
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imaging agents directed to tumors. They can provide
simultaneously diagnostic information and targeted drug
delivery by photon-based stimulus through fluorescence [56],
photodynamic [57, 58] and photothermal treatment [57].

Inmodern anti-cancer modalities, themajority approaches the
delivering of new drugs which are behaving as a “Trojan horse”,
by introducing the active, cytotoxic compound in a nanoparticle
and “decorating” its surface with a ligand that trigger the cancer
cell into taking it up. Imaging can be used to trace the delivery of
the drug inside the body and simultaneously to activate the
release of the drug by an external stimulus such as laser light
[59, 60]. Functionalized nanoparticles can act both as contrast
agents and photosensitizers for photothermal (PT) [61] or
photodynamic treatment (PDT) [62]. Among the large variety
of NPs, metal NPs (AuNPs) are in the cutting edge of the
nanomedicine due to their unique physical, optical and
electronic properties [63, 64]. When metal NPs excited by
visible or infrared monochromatic light with laser wavelength
corresponding to their Surface Plasmon Resonance (SPR), the
conduction electrons of the metal can be subjected to coherently
oscillation and convert the electromagnetic energy into heat
providing targeted tumour disruption via hyperthermic
damage [65]. Photodynamic therapy has come again to the
forefront due to the new class of photosensitizers (PS) which
enhance PTD efficiency. The encapsulation of PS such as

verteporfin or methylene blue into nanocarriers seems to
overcome some of the barriers of the PS i.e., poor selectivity to
the target tissues, the low extinction coefficients, their
lipophilicity, the photobleaching of the PS etc. The synergia of
nanomedicine with biophotonic techniques could lead to a
localized “surgery” causing tumor disruption or removal
without invasiveness [62].

Nano-image guided surgery plays an emerging role in the field of
personalized tumour surgery [65, 66]. Fluorescence-imaging guided
surgery can be used for sentinel lymph node mapping or to
distinguish the margins of a tumor in microscopic scale and in
real time. Using fluorescence imaging in the near-infrared (NIR)
window (700–1,300 nm) is superior to visible light due to high
penetration depth, negligible tissue autofluorescence, low scattering
offering higher sensitivity and better signal-to-noise ration.
Nanoparticles like quantum dots, liposomes or supermagnetic
NPs can be conjugated with NIR fluorescence dyes acting as
targeted optical imaging probes to offer high selectivity and
specificity [67]. Recently, Upconverting Nanoparticles (UCNPs)
have been introduced in Biophotonics and nanophotonics as very
promising theranostic intratissue probes in biological tissues [68, 69].
Their unique property to convert near-infrared (NIR) light into
visible or ultraviolet light via photon upconversion mechanism will
permit interventions to deeper tissues pathologies with minimum
healthy cells destruction.

FIGURE 1 | (A–C) In vivo magnetic resonance (MR)–near-infrared fluorescent (NIRF) dual-modality imaging of SCC7-bearing mice. Cy5.5-chitosan nanoparticle-
Gd(III) nanoparticles were injected into the SCC7-bearing mice, and the mice were visualized by using MR and NIRF imaging. Red circles indicate tumor sites. (A) In vivo
MR imaging showed T1-positive contrast effects 1 h after injection at the tumor sites. (B) Both NIRF and T1-weighted MR images were simultaneously observed after
1 day post injection of Cy5.5-CNP-Gd(III). In vivo NIRF imaging showed brighter NIRF intensity at the tumor site. In vivo MR imaging 24 h after injection showed
bright contrast effects at the tumor site. (C) In vivo NIRF imaging showed the accumulated Cy5.5-CNP-Gd(III) nanoparticles over time at the tumor sites. Reprinted
(adapted) with permission from [44], Nam et al., 2010). Copyright (2021) American Chemical Society.
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THE ROLE OF OPTICAL TWEEZERS IN
BIOPHOTONICS

Over 30 years of exploration after the first report of damage-free
optical trapping of virus and bacteria by Ashkin [70], optical
tweezers have found innumerable applications in cell biology and
living systems studies [71]. The optical trapping technique uses
one or more laser beams to selectively manipulate position,
motion, and dynamics of micro- and nanostructures. This
phenomenon is based on the optical forces of the order of few
piconewtons exerted as the electromagnetic radiation (photons)
changes its momentum when it interacts with matter. For the
theoretical and experimental study of the optical forces, two
models have been developed, considering the particle diameter
(d) compared to the wavelength (λ) of the incident light: the
geometric model that refers to the case where the dimensions of
the particle are much larger than the wavelength (Mie particle,
d>>λ) [72, 73] and the electromagnetic model for particles of
dimensions much smaller than the wavelength (Rayleigh particle,
d<<λ) [74, 75]. In case of d ~ λ, generalized electromagnetic
theories have been applied such as the generalized Lorentz-Mie
theory, which describes the scattering of a flat electromagnetic
wave by a sphere of any size, in the case of Gaussian bonds [76].
The optical force exerted on a cell depends on the particle’s shape,
size, its surface and the cytoplasmic refractive index. Therefore,

the biochemical changes that happens in the cell cytoplasm or
membrane are reflected to its behavior under the optical trap [77].

Optical tweezers are used extensively for studying living cells,
e.g., for hemorheology studies, blood microcirculation and
biomechanical properties [77, 78]Click or tap here to enter
text. They can be used as passive “force clamps” to induce and
study elastic deformations in individual cells [79]Click or tap here
to enter text. They are a tool for calculating the stiffness and
torsion rate by measuring sub-micrometric cell deformations,
which are caused by optical forces. Researchers used optical
tweezers to elongate human erythrocytes through the dual
optical trapping of silicone spheres attached to the cell
membrane or by line optical tweezers (Figure 3) and to
determine their degree of torsion. The shear modulus was
calculated by measuring the cell membrane deformation in
function with the optical forces exerted to the membrane via
small optically trapped silica beads [80]Click or tap here to enter
text. The bending modulus of the membrane was estimated by
measuring erythrocyte’s folding time in function with laser power
under the effect of line optical tweezers [81]Click or tap here to
enter text. Optical tweezers have been used to induce rotation and
folding of erythrocytes to study their elastic properties and
diagnose malaria in them [78, 82]. Click or tap here to enter
text. Zhao et al [83]Click or tap here to enter text. proposed and
implemented an optical shield scheme, based in far-field Bessel

FIGURE 2 | A schematic illustration of machine learning methodology applied in Raman spectroscopy. Image features or spectral images are used as inputs to the
artificial intelligence algorithm and the class output can be normal or tumour for discrimination between healthy and cancerous tissues.
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beam, for manipulating individual cells in a crowded
environment (e.g., single blood cell, individual lymphocytes
from an inguinal lymph node). Holographic optical tweezers
have been developed by using spatial light modulators to trap and
move many cells simultaneously [84, 85]. This offers the
opportunity to create arrays of living cells into gel matrix or
microfluidic networks and potentially to create artificial tissues
[86]. Line optical tweezers created with holographic optical
trapping technique have been used for measuring the effective
interaction potential for pairs of colloidal particles [87].

In addition to other biomedical areas, there have been great
advances in optical trapping and its combination with other
Biophotonics tools in neuroscience research, for studying the
physical properties and intrinsic forces of neurons, their
communication modalities, as well as some of the fundamental
neuronal growth and dynamics function [88]. Optical tweezers
can be combined with Raman spectroscopy to characterize and
monitor the physical and chemical properties of cells. For
example, Laser tweezers Raman spectroscopy was used to
monitor the changes in the oxygenation state of human red
blood cells while they were stretched by the optical forces [89,
90]Click or tap here to enter text.

So far, no clinical application in human has been implemented
by using optical tweezers. Infrared optical tweezers have been
used to trap and manipulate erythrocytes in the blood capillaries
in the ear of a mouse. Optical tweezers were capable to interfere to
the blood stream by trapping erythrocytes or removing a blockage
[91]Click or tap here to enter text. A very challenging also
demand is the miniaturization of the biophotonic set-ups
opening new, fascinating possibilities for in vitro single cell
experiments like flow cytometry, laser induced fluorescence
and for in vivo detection of diseases. Optical tweezers can be
coupled with nanophotonic biosensor devices based on integrated
fiber optics and microfluidics devices for the implementation of
lab-on-a-chip platforms. They can probe complex biophysical
and biomechanical processes governing cell-cell interactions,
cell–surface interactions, cell sorting and drug delivery/testing
[92–94]Click or tap here to enter text. Figure 4 illustrates a simple
implementation of an advanced optical tweezes system

integrating with microfluidics devices to perform single cell
manipulation and sorting between target with NPs cancer cells
and healthy cells. Moreover, the selective observation of cells-
nanoparticles interactions will lead to a better understanding of
the interaction mechanisms and to more targeted treatments.

THE APPLICATION OF OPTICAL
TWEEZERS IN CANCER FIELD AND
FUTURE PERSPECTIVES
The ability to selectively manipulate single cells can have many
advantages in vivo for the diagnosis and treatment of metastatic
cancer cells which can travel through the bloodstream and the
lymph system [79, 95]Click or tap here to enter text. The
understanding the biophysics of individual cell deformation
offers the means for new perspectives in cancer prognosis,
diagnosis, and treatment. Changes in the ability to deform cell
shape [96] combined with changes in cell adhesion affect cell
reproduction, cell signal transmission, and cell metastasis
potential [97]. Qian Zhao et al. demonstrated the optical
manipulation of two lymphocytes under living conditions. The
lymphocytes were optically trapped directly as they isolated from
a lymph node using a Bessel beam created by an axicon and a lens
[83]. Trapping and manipulation of single cells in living
environments is expected to help the study of how natural
killer cells react to cancer cells or to selectively bring killer
cells into contact with other target cells [83].

Researchers have reported the use of optical trapping as a tool
to measure the minimum cell-cell adhesion time as a line cell is
trapped and brought into proximity to another [95]. They
observed that the average minimum adhesion time increases
significancy in neural tumor cells compared to healthy cells.
Moreover, they induced chemically differentiation in various
cell line and tumors and proved that optical tweezers are able
to assess the differentiation status of cancerous cells by measuring
the minimum cell-cell adhesion time. Discrimination of
individual cancer cells have been also reported by using Laser
Tweezers Raman Spectroscopy coupling with a microfluidic flow

FIGURE 3 | (A) Three red blood cells under a line optical tweezers. The RBCs are trapped simultaneously, (B) are folded gradually and (C) orient its long axis in the
direction of the electric field of incident beam. Dotted red line is the direction of the line optical trap. Optical tweezers act as a tool for the evaluation of erythrocyte’s
deformability which is an important biomarker for circulation efficiency.

Frontiers in Physics | www.frontiersin.org February 2022 | Volume 10 | Article 8121925

Spyratou Advanced Biophotonic Techniques

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


chamber [98]. Single cells are optically trapped, analyzed and
discriminate according to the differences in their spectral
fingerprint [98, 99].

Holographic optical tweezers can be used to discriminate
normal, cancerous and drug-treated cancerous leucocytes by
measuring the trapping forces using escape force method
[100]. This method could become equivalent with the
conventional methods such as flow cytometry without using
fluorescent-based markers. Moreover, holographic optical
tweezers can be combined with upconversion luminescence
encoding for screening cancer biomarkers [101]. A bead array
of carboxyl functionalized polystyrene beads was formed and stay
stable with holographic optical tweezers. The beads were labelled
with upconverting nanoparticles probes (UCNPs) of two
different emission colors for the detection of two liver cancer
biomarkers, carcinoembryonic antigen and alpha fetal protein.
UCNPs are able to excited from near-infrared (NIR) light region
and emitted in the visible region with extremely low background
luminescence. This imaging-based stable suspension array offers
the detection of dual cancer biomarkers with quite sensitivity and
specificity providing a new alternative method for cancer
diagnosis [101].

The mechanical properties of cancer cells membranes such
as bending modulus [102] and fluidity [103] have been also
measured by using optical tweezers and the standard
stretching methods with the microbeads attached to the cell
membrane [80]. The biomechanical properties of living cells
are closely related to the health status and function of human
cells [96, 102, 104]. Guo et al. measure with accuracy the
bending modulus and the surface membrane tension of breast
cancer cells [105]. Moreover, decreased elongation times are
recorded when cells were treated with cytochalasin D or the
membrane protein caveolin was over-expressed. Xuanling Li
et al. showed that the fluidity and the invasiveness in the
membrane of small cell lung cancer cell line SHP77 increased
significancy after the transfection with small RNA miR-92b-

3p. This could help to understand better cancer cell metastasis/
invasion [106].

High-precision optical tweezers have been developed for protein
folding experiments. Optical tweezers were used to applymechanical
forces and to monitor proteins unfolding [107]. Recent studies
correlate the folding and misfolding of human membrane
proteins with cancer [108]. The way that proteins fold from
linear chains to three-dimensional structures or vice versa is
under great interest in biology [109, 110]. Single proteins or
protein complex can be tethered between two microbeads by
using DNA linkers or antibody linkers. The beads are trapped by
using a dual optical tweezers and can be pulled away by alter the
distance between the laser traps. Thus, protein unfolding is induced
by the mechanical forces and the kinetics of the protein can be
monitoring [107, 111] The mechanical forces at which folding
transitions take place depend on the pulling speed [111].

During the last few years, optical tweezers were proposed as a
tool to probe the Casimir interactions betweenmicrospheres inside
a liquid medium, erythrocytes and membrane proteins [112–114].
The Casimir effect is a quantum phenomenon arising from
quantum fluctuations which can give rise to long-range
attractive forces between two uncharged particles [112]. Recent
studies demonstrate that the Casimir forces between two particles
can be measured by the optical trapping of the particles in
suspensions [115]. Physicists manifest that the proteins of
cellular membranes can communicate with each other by using
Casimir forces. Examples include the force exerted by a singleDNA
molecule and forces in kinesin or other moto proteins [116]. This
finding gives to optical tweezers technique the potential for novel
quantitative applications in molecular biology of cancer.

Nowadays, advanced optical tweezers platforms have been
built-up to operate at single-molecule level without the need of
fluorescence dyes or tethers. Plasmonic tweezers are capable to
manipulate with high sensitivity molecules such as proteins, DNA
etc. [117, 118] attached on metallic nanostructures exploiting the
Localized Surface Plasmon Resonance (LSPR) phenomenon

FIGURE 4 | Schematic representation of dual-beam optical tweezers coupled with microfluidics device to manipulate and recognize targeted with functionalized
NPs tumour cells from healthy cells. The system can be integrated with other spectroscopic set-ups such as a Ramanmicroscope to collect signals for cell discrimination
and characterization.
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which can exist on a dielectric-metal interface [119]. LSPR is a
coherent, collective spatial oscillation of the conduction electrons
in a metal nanostructure, which can be directly excited by visible
and near infrared light. The SPR occurs when the real part εr(ω) of
the complex dielectric constant of the metal and the dielectric
constant of the surrounding medium satisfied the relationship:
εr(ω) = −2εm [120]. Τhis phenomenon enables the incident light
to confine into a region smaller than the light wavelength
enhancing the oscillating electric field of the light which
strengthens the optical forces.

Gordon and his collaborators have developed novel plasmonic
configurations which provide stable and flexible traps for
biomolecules [121, 122]. Very recently, the smallest virus
particle, PhiX174, was optically trapped by using double
nanohole apertures in gold nanofilms. The virus was analyzed
by using Plasmon Tweezers integrating with Raman Spectroscopy
[123]. Plasmonic tweezers have also thermal effects through the
resonated oscillations of the conductive electrons of the metallic
nanostructures which convert the electromagnetic energy into
heat. This might give new perspectives in photothermal cancer
therapy for a more targeted treatment. Already, plasmonic
photothermal therapy was studied extensively based on various
types of metallic nanoparticles as photosensitizers [124, 125].
Moreover, in 2021, Shen et al. reported that UCNPs from highly

doping lanthanide ions in NaYF4 nanocrystals can be optically
manipulated and demonstrate much higher optical trap stiffness
compared to gold nanoparticles [126]. The photoluminescence of
UPCNPs could provide new fascinating theranostic interventions
by single-cell manipulation and sensing. Figure 5 illustrates all
the interconnected multidisciplinary fields of the advanced
Biophotonics techniques for cellular and molecular
manipulation through optical tweezers.

CONCLUSION

Biophotonic techniques have proved to be a powerful tool in the
field of cancer theranostics. Among them, optical tweezers can
spur new approaches to cancer treatment and to the
understanding of cancer mechanisms at cellular and sub-
cellular level. Nowadays, integrated systems based to optical
tweezers are capable to manipulate to each other cells,
biomolecules and nanocarriers with high sensitivity and
selectivity providing information about their biomechanical
properties (e.g., membrane fluidity, elasticity etc), their
biochemical and biophysical properties (e.g., spectral
fingerprints) and tracking their interactions (e.g., adhesion
time, adhesion forces etc). Overall, the unique capabilities of
optical tweezers in combination with the development of
advanced miniaturized devices and artificial intelligence
methodologies will be a boon for the cancer confrontation.
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