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Screening of osteochondral lesions of the talus (OLTs) from MR imags usually requires
time and efforts, and in most case lesions with small size are often missed in clinical
practice. Thereore, it puts forward higher requirements for a more efficient OLTs
screening method. To develop an automatic screening system for osteochondral
lesions of the talus (OLTs), we collected 92 MRI images of patients with ankle pain
fromQilu Hospital of Shandong University and proposed an AI (artificial intelligence) aided
lesion screening system, which is automatic and based on deep learning method. A two-
stage detection method based on the cascade R-CNN model was proposed to
significantly improve the detection performance by taking advantage of multiple
intersection-over-union thresholds. The backbone network was based on ResNet50,
which was a state-of-art convolutional neural network model in image classification task.
Multiple regression using cascaded detection heads was applied to further improve the
detection precision. The mean average precision (mAP) that is adopted as major metrics
in the paper and mean average recall (mAR) was selected to evaluate the performance of
the model. Our proposed method has an average precision of 0.950, 0.975, and 0.550
for detecting the talus, gaps and lesions, respectively, and the mAP, mAR was 0.825,
0.930. Visualization of our network performance demonstrated the effectiveness of the
model, which implied that accurate detection performance on these tasks could be
further used in real clinical practice.

Keywords: osteochondral lesions, automatic diagnosis system, artificial intelligence, deep learning method,
cascade R-CNN model

1 INTRODUCTION

Osteochondral lesions of the talus (OLTs) represent a common disease that affects about 1.6 million
people per year around the world [1]. The OLT term covers a spectrum of pathological conditions of
articular cartilage and subchondral bone, with multiple treatment options [2, 3]. The proposed
causes for OLT include acute traumatic insult, repetitive chronic microtrauma to the ankle joint and
localized ischemia of the talus [2, 4]. For patients who did not benefit from nonoperative
management, surgical treatment is indicated, depending on the size, location and chronicity of
the lesion. Lesions less than 1 cm in diameter are associated with better outcomes and are amenable
to arthroscopic bone marrow stimulation techniques, such as microfractures or subchondral drilling.
For large OLTs with or without bone loss, osteochondral autograft or allograft transplantation may
be performed. However, disadvantages also emerged such as donor pain, joint surface mismatching
and gap of mosaic bone graft nonunion. Eventually, the patient might need talus replacement or
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ankle replacement which would be a great burden not only for
patients but also for health insurance. Therefore, early screening
and intervention should be given sufficient emphasis.

The diagnosis of OLT requires acknowledging patient’s
comprehensive medical history, physical examination and
radiography examination. MRI was one of the most effective
method to evaluate OLTs due to its application of estimating the
size of the lesion which has been accepted as a fundamental tool
for OLT diagnosis nowadays. However, the MRI-based diagnosis
procedure highly relies on the experience level of the radiologist,
which dramatically introduces interobserver disagreements.
Furthermore, up to 50% of OLTs may not be visualized on
radiographs alone [5]. Subsequently, developing standardized
computer-based methods to detect osteochondral lesions based
on MRI would be beneficial to maximize the diagnostic
performance while reducing the subjectivity, variability and
errors due to distraction and fatigue that are associated with
human interpretation.

Nowadays, deep learning (DL) [6] methods using
convolutional neural networks (CNNs) have become a
standard solution for automatic biomedical image analysis [7].
The use of these methods has been proven to be an efficient way
to overcome the shortcomings of traditional image analysis on
many sub-specialty applications. DL methods in medical image
analysis have been applied in MRI tumor grading [8–10], thyroid
nodule ultrasound classification [11–13] and CT pulmonary
nodule detection [14–16]. However, only a limited number of
studies have been performed to analyze the musculoskeletal
imaging associated with the lesion. In 2018, Liu et al. [17]
proposed a deep learning method to detect cartilage lesions
within the knee joint on T2-weighted 2D fast spin-echo MRI
images and achieved an area under the receiver operating
characteristic (ROC) curve (AUC) of 0.92, with a sensitivity of
84% and a specificity of 85%. In 2019, Pedoia et al. [18] employed
a U-net network to segment patellar cartilage using sagittal fat-
suppression (FS) proton density-weighted 3D fast spin-echo
(FSE) images and achieved an AUC of 0.88 for detecting
cartilage lesions with the sensitivity and specificity both
being 80%.

All these previous works [19–22] focused on independent
training of the disease classification and risk region segmentation.
However, this is not reasonable by nature due to the association
between the risk region and the disease possibility. Besides, as a
common injury, early screening of OLT should be given priority.
In this study, we propose an automatic OLT screening method
based on multi-task deep learning, which could simultaneously
provide the evidence of the disease and detecting risk area.

2 MATERIALS AND METHODS

2.1 Dataset Preparation and Preprocessing
This study was performed in compliance with theHealth Insurance
Portability and Accountability Act regulations, with approval from
our institutional review board. Due to the retrospective nature of
the study, informed consent was waived. MRI data of 119 patients
were recruited into this study. Inclusion criteria:①All the patients
whose main diagnosis was OLT; ② main complaint is ankle pain;
③ First time for medical consultation in our hospital without
surgery. Exclusion criteria: ①infection in ankle; ②tumor in talus;
③ MRI data was missing. ④ Poor image quality or poor
annotation quality. MRI datasets were obtained from 119
patients with ankle pain (67 men and 52 women, with an
average age of 49.84 years and an age range of 24–71 years)
who underwent a clinical MRI examination of the ankle at our
institution between 15 January 2017, and 15 October 2020 (as
shown in Table 1). 27 patients were excluded due to poor image

TABLE 1 | Demographics and clinical characteristics of patients.

Variables Patients (n = 119)

Gender (n/%)
Men 67/56.30
Women 52/43.70
Age (years) 49.84 ± 11.75

Data are expressed as numbers and percentages or as mean ± SD.

FIGURE 1 | Flowchart of OTL detection using deep learning method.
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quality or poor annotation quality, resulting in 92 patients finally
included in this research. The same 1.5-T MRI unit (Lian Ying,
uMR560) and eight-channel phased-array extremity coil were used
for all patients. The MRI datasets consisted of coronal FS proton
density-weighted FSE sequence. All the lesion parts were
determined by hand drawing in order to facilitate the AI to learn.

Before model training, images were preprocessed as following:
Firstly, MR dataset was divided into training dataset and
validation dataset at a ratio of 8:2 at the patient level. As a
result, training dataset contains 73 3D MR images and validation
dataset contains 19 3D MR images. Secondly, in order to expand
the sample size, a total 517 2D slices from 92 MR images with
lesions manually segmented by specialists were used, and the size
of each slice is about 320*320 (Specific may be slightly different).
As a result, our training dataset contained 415 2D slice images
and validation dataset contained 102 2D slice images. All 2D slice
images were then intensity-normalized to a range of 0–255.
Thirdly, to increase the size of the targets in the images, all
2D slice images are resized 512*512 with ratio kept. Fourthly, to
generate 2D object ground-truth bounding boxes, an approach to
get the maximum bounding box of the mask is implemented by

using OpenCV library. Finally, the dataset was reorganized into
COCO format. The whole pipeline is shown in Figure 1.

2.2 Cascade R-CNN Model
Taking the importance of locate target precise into consideration,
we introduced a cascade method to address the problem. Due to
the mechanism of exploiting the cascade information across
multiple cascade layers, cascade learning could refine the object
detection result and make the data distribution of inference closer
to the training and hence is efficient in the scenarios that target is
difficult to locate. In our study, we adopted the Cascade-R-CNN as
the original object detection framework.

The improved Cascade-R-CNN model contains 3 parts:
backbone network, region proposal network and detector. In the
first part, the backbone network of the Cascade-R-CNN is used to
extract feature map from 2D slice images. To improve the detection
performance of the Cascade-R-CNN on muti-scale Object, a
Residual Neural Network (ResNet50) with feature pyramid
network (FPN) is utilized as the backbone of the Cascade-R-
CNN. The ResNet50 consist of 5 stages, and it is called C1, C2,
C3, C4, and C5 respectively. The FPN combined with the ResNet50
could extract feature maps from muti-stages of the backbone, and
the size of feature map is getting smaller from the C2 to C5 and
meanwhile the receptive field of each pixel of the feature map is
getting larger. FPN is composed of 3 parts, and it is bottom-up
pathway, top-down path and lateral connections respectively. The
bottom-up pathway is the feed-forward propagation of the
ResNet50. The feature maps from different stages are employed
to form the feature maps of different size that is also called pyramid

FIGURE 2 | Illustraion of Cascade R-CNN architecture. The backbone network extract feature map from 2D slice images. A Residual Neural Network (ResNet50)
with feature pyramid network (FPN) is utilized as the backbone of the Cascade-R-CNN. After processing by FPN, a 3*3 convolution layer is added after merging feature
maps to get the feature maps, and it is called P2, P3, P4, P5 respectively. In addition, the feature map that is called P6 is got by sub-sampling P5 by a factor 2. The final
feature maps are composed of P2, P3, P4, P5, and P6. A window slide over feature maps of multi-scale to obtain a set of predefined bounding boxes that is also
called anchors. Anchors is 8* 8, 16*16, 32*32, 64*64, and 128*128 respectively. The featuremaps aremapped to a 256-dimensional vector by a 3*3 convolution layer. At
last, the anchors that have Intersection-over-Union (IOU) ratio of the anchors and ground-truth boxes, which is greater than 0.5 are selected as proposals boxes. In the
third part, the feature map of any box’s proposal is transformed into fixed size by the RoIAlign algorithm. The feature map is fed into 2 concatenated fully connected layers
followed by 2 parallel fully connected layers, one of which is used for classification and the other for bounding-box regression.

TABLE 2 | Quantitative prediction result analysis.

Prediction task Average precision

Talus 0.950
Gaps 0.975
Risk Region 0.550
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levels. In the top-down pathway, the feature maps have stronger
semantic information, but the detailed information is coarser. The
feature maps of higher stages are up-sampled by a factor 2 to acquire
larger size feature maps. Then, to make the information of the
feature maps more complete, the feature maps from top-down
pathway are added in element-wise with the feature maps of the
same spatial size from the bottom-up pathway by lateral connections
to get merged feature maps. Finally, a 3*3 convolution layer is added
after merging feature maps to get the feature maps, and it is called
P2, P3, P4, P5 respectively. In addition, the feature map that is called
P6 is got by sub-sampling P5 by a factor 2. The final featuremaps are
composed of P2, P3, P4, P5, and P6. In the start of training model,

the backbone of the Cascade-R-CNN is initialized with a pre-trained
model that was trained on Imagenet-1k.

In the second part, the feature maps from the multi-stages of the
backbone network is used as the input of the region proposal
networks to get region proposals bounding boxes that may
contain lesion, gap or talus. A window slide over feature maps of
multi-scale to obtain a set of predefined bounding boxes that is also
called anchors. Because of the difference of size of the receptive field
across multi-stages, the size of anchors is 8*8, 16*16, 32*32, 64*64
and 128*128 respectively. In addition, to improve Cascade-R-CNN
generalization performance, anchors that havemultiple aspect ratios
1:2, 1:1 and 2:1 is applied at each featuremap frommulti-stages. As a
result, each sliding window on the feature maps can get 5*3 anchors
that have different size simultaneously. Then the featuremaps which
is contained by anchors corresponding sliding window are mapped
to a 256-dimensional vector by a 3*3 convolution layer. The vector is
used as the input of following 2 parallel 1*1 convolution layers to
obtain the results of bounding box regression and binary
classification respectively, and bounding box regression is used to
get the coordinates of the boxes proposal and binary classification is
used to determine whether the box contains an object. Therefore, the
size of outputs of bounding box regression is 4*15 and the size of
outputs of binary classification is 2*15. At last, the anchors that have
Intersection-over-Union (IOU) ratio of the anchors and ground-
truth boxes, which is greater than 0.5 are selected as proposals boxes.

In the third part, the feature map of any box’s proposal is
transformed into fixed size by the RoIAlign algorithm. Then
following 3 cascade layers that each contains 2 branches is
constructed for classification and bounding-box regression. For
each 2 branches of first 2 cascade layers, the feature map is fed into
2 concatenated fully connected layers followed by 2 parallel fully
connected layers, one of which is used for classification and the

FIGURE 3 | ThemAP curve in trainingmodel alongwith epoch. ThemAP
curve rises steadily alongwith the rounds of epoch.

FIGURE 5 | The mAP of different models including the improved
cascade rcnn, the improved cascade rcnn without soft-nms, the improved
cascade rcnn without optimized anchor size. The blue curve indicates the
improved cascade rcnn. The orange curve indicates the improved
cascade rcnn without soft-nms. The green curve indicates the improved
cascade rcnn without optimized anchor size. The red curve indicates the
faster rcnn.

FIGURE 4 | The loss curve in training model along with iters. The loss
denotes the sum of all loss of the model, moreover s0, s1, s2 denote stage1,
stage2 and stage3 of the model detector head, in addition loss_cls and
loss_bbox denote classification loss and bounding box begression loss.
The blue curve is the summary of the other six curves.
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other for bounding-box regression. The outputs of the
classification layer separately are probably different predictions,
and the regression layer is used to refine bounding-box positions
for 4 subgroups and be the input of next layer. The last layer adopts
the previous layer outputs of bounding-box regression and the
feature map as input, and the outputs of the 2 branches of the last
layers is the model last results. The detail of the structure of cascade
R-CNN is shown in Figure 2.

2.3 Training Details
The network was implemented using PyTorch and trained on one
RTX3090 with 24 GB memory. The anchor size of the model is
optimized to the sizes [8*8, 16*16, 32*32, 64*64, 128*128], The
optimizer for the network was set as SGD (stochastic gradient
descent) and the initial learning rate was 0.0125 with a momentum
of 0.9. Furthermore, we sat one weight decay of 0.0001 to help with
the training stability. To achieve a better model performance, we
employed the warm-up training strategy in the training procedure,
using an epoch iteration of 5 with an increasing ratio of 0.01. We
decreased the learning rate with CosineAnnealing decay strategy
and make the learning rate gradually decay from start to finish to
fine-tune the final model. Previous research has shown that soft
non-maximum suppression (soft-nms) could achieve superior
performance on such tasks due to the softer conditions for
filtering out boxes. Thus, we implemented soft non-maximum
suppression in the inference stage to improve the sensitivity of the
model. The property could further help to achieve a good

performance of our model. In training, we use online data
augmentation that image scale ranges from 0.9 to 1.2 and rotate
range from −90 to 90. The total training took 80 epochs to achieve
stable convergence results.

2.4 Model Evaluation
In this study, we employed the mean average precision (mAP) as
the parameter to evaluate the performance of the proposed model.
AP is the area under the precision-recall curve, defined as follows:

AP � ∫1

0
P(r)dr

where P(r) is the precision-recall curve, and r is the IoU threshold.
Then, mAP corresponds to the mean value of AP for multiple-
class detection, defined as follows:

mAP � 1
N

∑APi

AR is two times the area under the recall-IoU curve and it reflects
the sensitivity of the model to the target, however in the paper AR is
only computed in the case that IoU = 0.5, defined as follows:

AR � Recall(IoU), IoU � 0.5

Then, mAR corresponds to the mean value of AR for multiple-
class detection, defined as follows:

mAR � 1
N

∑ARi

3 RESULTS

Our proposed method for automatic OLT screening based on
Cascade R-CNN showed a good performance in predicting the
possibility of the disease and detecting the risk areas. Here we
detected the osteochondral lesions (Risk Region), the whole talus

TABLE 3 | The comparison of experimental results of optimization method.

mAP in
all

mAP in
small

mAP in
medium

mAP in
large

mAR in
all

mAR in
small

mAR in
medium

mAR in
large

Improved cascade rcnn 0.825 0.225 0.894 1.000 0.930 0.325 0.992 1.000
Above without softnms 0.828 0.223 0.916 1.000 0.908 0.304 0.968 1.000
Above without optimized
anchor

0.820 0.225 0.876 1.000 0.897 0.289 0.968 1.000

Faster rcnn 0.819 0.211 0.904 1.000 0.884 0.271 0.968 1.000

TABLE 4 | The comparison of class-wise AP of optimization method.

Talus AP Gap AP Lesion AP

Improved cascade rcnn 0.950 0.975 0.550
Above without softnms 0.947 0.980 0.557
Above without optimized anchor 0.950 0.980 0.531
Faster rcnn 0.950 0.980 0.526

TABLE 5 | The comparison of experimental results in different conditions.

mAP in
all

mAP in
small

mAP in
medium

mAP in
large

mAR in
all

mAR in
small

mAR in
medium

mAR in
large

Improved cascade rcnn 0.825 0.225 0.894 1.000 0.930 0.325 0.992 1.000
Above without rotate of
data

0.804 0.216 0.861 1.000 0.885 0.280 0.957 1.000

Above with epcoh 24 0.794 0.186 0.887 1.000 0.921 0.313 0.992 1.000
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(Talus) and the gaps (Gaps) at the same time. The AP of
predicting Talus, Gaps and Risk Region reached 0.950, 0.975
and 0.550 respectively (Table 2), and the mAP, mAR was 0.825,
0.930 respectively.

The quantitative results of our model were shown in Table 2.
All these parameters indicate that our model achieved an accurate
detection performance, suggesting that it could be used for real
clinical applications.

The changes of mAP in training model was shown in
Figure 3. There are 414 graphs in the training set. Learning
the 414 graphs once means an epoch. One mAP value is
obtained when each epoch is verified using the verification
set once. We tested epoch for 80 times. When the epoch
reached the 80th time, the mAP value was approaching 1.0.
Figure 3 showed that the rising trend is relatively stable
without much fluctuation indicating that the model has
been approaching the most optimal solution, and there
has been no overfitting phenomenon. In fact, the effect of
learning is not becoming better alongwith more rounds of
verification because overfitting may occur. In this experiment,
because the number of samples is not large, we set the batchsize
to 1 to maintain the largest difference of data to resist
overfitting.

The loss of the training model was shown in Figure 4. The loss
denote the sum of all loss of the model. The s0, s1, s2 denote
stage1, stage2 and stage3 of the model detector head, in addition
loss_cls and loss_bbox denote classification loss and bounding
box begression loss. This figure shows the change of loss function
in the training model. The blue curve is the sum of the other six
curves. So, the blue curve represents the overall loss trend of the
model. It can be seen that the curve shows a downward trend. It
suggested that less and less information is lost in the training
model meaning that the model training is effective. In sumary, we
can know that the model alreadly learned something and
converged. In addition, model got the nice performance on
the validation set.

The comparative data between the improved cascade RCNN,
which without soft-nms, which without optimized anchor size
and faster rcnn was shown in Figure 5 and Tables 3, 4. Small,
medium and large denote area of object in range less than 36,
36–96 and greater than 96 repectively. In Figure 5, improved
cascade RCNN reach higher value than other models in the last
several epochs. In Table 3, the “mAP in all” of “improved cascade
RCNN without soft-nms” is highest (0.828). The “mAP in small”
of both “improved cascade RCNN” and “improved cascade
RCNN without optimized anchor” is heghest (0.225). The
“mAP in all” of “improved cascade RCNN without soft-nms”
is highest (0.916). However, each mAR categories of “improved
cascade RCNN” is highest (0.930, 0.325 and 0.992). In Table 4,

talus AP of “improved cascade RCNN” is highest (0.950).
Meanwhile, the gap AP and lession AP of “improved cascade
RCNNwithout soft-nms” is highest (0.980 and 0.557). The results
showed that the best mAP appeared in training of improved
cascade rcnn without softnms, which is higher than the improved
cascade rcnn slightly. However, improved cascade rcnn has
higher mAR. According to practical application scenarios of
the model, the model sensitivity regarding to lesion is of great
importance as well. Under the condition that mAP of former is
higer than the latter slightly, we can draw a conclusion that the
performance of improved cascade rcnn is better than improved
cascade rcnn without softnms. In addition, the performance of
improved cascade rcnn is better than another model except
improved cascade rcnn without softnms.

Furthermore, In the method we use, there are two changes that
may have a greater impact on the results. One is the random
rotation of data enhancement during training, and the other is the
number of epochs. we also compared the mAP and mAR of
different changes. In Table 5, all the mAP and mAR categories of
“improved cascade RCNN” reached the highest value (0.825,
0.225, 0.894, 0.930, 0.325, 0.992). In Table 6, both talus AP, gap
AP and lession AP of ‘improved cascade RCNN’ is highest (0.950,
0.975 and 0.550). Combined with Tables 5, 6, it can be seen from
the experiment that the final result of the blue line (i.e. the method
we use) is significantly higher than the other two changes
(Figure 6). The epoch number 24, is the number of rounds
commonly used from imagenet-1k data which was used to get
baseline value for training.

From Figures 7–9, we could intuitively observe that our
network provided a comparable detection result (red bounding
boxes) with that of senior radiologists (blue bounding boxes).
Noticeably, our model achieved stable detection results on all
three detection tasks, which shows the effectiveness of our

TABLE 6 | The comparison of class-wise AP in different conditions.

Talus AP Gap AP Lesion AP

Improved cascade rcnn 0.950 0.975 0.550
Above without rotate of data 0.934 0.960 0.519
Above with epcoh 24 0.942 0.972 0.469

FIGURE 6 | The mAP of different models including the
improved_cascade_rcnn, the improved_cascade_rcnn_epoch_24, the
improved_cascade_rcnn_without_rotate. The blue curve indicates the
improved_cascade_rcnn. The orange curve indicates the
improved_cascade_rcnn_epoch_24. The green curve indicates the
improve_cascade_rcnn without_rotate.
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method. More examples are shown in the Supplementary
Figures S1–S3.

4 DISCUSSION

For patients who did not benefit from nonoperative management,
surgical treatment is indicated, depending on the size, location
and chronicity of the lesion. Lesions less than 1 cm in diameter
are associated with better outcomes and are amenable to
arthroscopic bone marrow stimulation techniques, such as
microfractures or subchondral drilling. Autologous
chondrocyte implantation (ACI) is indicated for lesions larger
than 1 cm in diameter, but it requires 2 stages. Arthroscopy or

arthrotomy may be used for the second-stage implantation. For
large OLTs with or without bone loss, osteochondral autograft or
allograft transplantation may be performed which will cause
greater damage and economic burden to patients. Therefore,
early screening and early intervention are particularly important.

The initial evaluation of OLTs includes standard radiographs
of the ankle and MRI. CT scans are also useful as an adjunct to
MRI when evaluating subchondral cysts. Affected by doctors’
experience, the diagnostic accuracy of the same MRI among
doctors at various levels is different, which will lead to
escaping diagnosis and misdiagnosis. If we can interpret MRI
through artificial intelligence, it will greatly improve the
diagnostic efficiency and accuracy of patients and reduce the
error caused by human factors. The application of artificial

FIGURE 7 | The bounding box visualization. Prediction result (red) vs. the ground truth (blue) of the osteochondral lesions. All the images (A–I) were selected from
testing group to determine the AI recognition accuracy of ROI. AI detection result was labeled by red rectangular. The ground truth wasmanually depicted and labeled by
blue rectangular.
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intelligence in the field of medical imaging is gradually increasing.
In foreign countries, it is mainly divided into two parts: one is
image recognition, which is applied to perception whose main
purpose is to analyze image data, ROI (region of interest) of image
acquisition. The second part is deep learning. Applying deep
learning to the studying and analysis is the core segment of AI.
Continuous training and deep learning of neural networks
through a large number of image data and diagnostic data
could achieve a diagnostic model which could enable the AI to
master the ability of “diagnosis.” AI will greatly reduce the
workload of doctors if better accuracy and specificity can be
achieved.

Currently, there are two typical methods to implement the
detection project, including the one-stage and two-stage detection

methods [23]. Compared with the one-stage method, the two-
stage method could achieve a higher detection performance, but
at the expense of speed [24]. In order to achieve a higher detection
performance, we utilized the two-stage detection methods in this
work. Many methods have been proposed in two-stage detection
fields, including Mask-R-CNN [25], Fast-R-CNN [26] and
Faster-R-CNN [27]. For all the two-stage detection methods,
one intersection-over-union (IoU) threshold is required to
classify the predicted positive bounding box with the negative
bounding box. However, it has been shown that a lower IoU
threshold could provide more bounding boxes with a lower
precision, which induces a lower recall rate, while a higher
IoU threshold could provide fewer bounding boxes with a
higher precision, which induces the under detection [28]. To

FIGURE 8 | The bounding box visualization. Prediction result (red) vs. the ground truth (blue) of the talus gaps. All the images (A–I)were selected from testing group
to determine the AI recognition accuracy of talus gap. AI detection result was labeled by red rectangular. The ground truth was manually depicted and labeled by blue
rectangular.
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clarify the concept of these statistical terms, the definitions of
accuracy, precision and recall rate should be well explained. The
predicted condition is usually marked with Positive or Negative.
The actual condition is usually labeled with True or False.
Subsequently, we have four parts in the contingency table:
True positive (TP), False Positive (FP), True Negative (TN)
and False Negative (FN). By the use of multiple IoU
thresholds, the recently proposed two-stage detection method
of the Cascade R-CNN model significantly improved the
detection performance compared with the above-mentioned
two-stage detection methods. Besides, through multiple
regression using cascaded detection heads, the Cascade
R-CNN model could further improve the detection precision.
The backbone network was built using a ResNet-50 network with

pre-trained network weights from the ImageNet dataset, which
allowed to fasten the training of the network and improve the
final performance.

Our study implemented a deep learning-based method for the
automatic detection of osteochondral lesions of the talus for the
first time. Our model has achieved an accurate detection with an
average, mAP of 0.550, 0.975, and 0.950 on the Risk Region, Gaps
and Talus detection tasks, respectively. Compared with other
detection tasks, the mIOU reached a similar value to that in a
previous study on the detection of coronavirus pneumonia [29]
(mIOU, 73.40% ± 2.24%). Furthermore, our model could also
provide accurate detection results on multiple risk region parts in
one single case without missing any of them. All these results
prove that this method could be used by clinical radiologists to

FIGURE 9 | The bounding box visualization. Prediction result (red) vs. the ground truth (blue) of the talus itself. All the images (A–I)were selected from testing group
to determine the AI recognition accuracy of talus itself. AI detection result was labeled by red rectangular. The ground truth was manually depicted and labeled by blue
rectangular.
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overcome the shortness of subjectivity and variability and save the
physician’s valuable time.

5 CONCLUSION

Our research developed a diagnostic model for image
interpretation based on artificial intelligence. The detection
accuracy of this mode reaches mAP = 0.825. It provides a
theoretical basis for the early diagnosis and screening of OLTs
based on artificial intelligence detection in the future.

6 LIMITATION

Although many valuable results have been achieved in this
work, there are still some limitations that need to be
improved in the future. Firstly, only the articular cartilage on
the talar dome was evaluated in our feasibility study, since
evaluating the curved articular surface of the talus on the 3.5-
mm-thick coronal fat-suppressed proton density-weighted FSE
sequence would be challenging. Furthermore, most patients
only accept medical consultation and MRI examination at
outpatient instead of inpatient. They have no chance to get
arthroscopy to make a definite diagnosis. As a result, the
presence or absence of cartilage lesions in each image patch
was interpreted by a musculoskeletal radiologist. Although
arthroscopy has a higher sensitivity for detecting cartilage
lesions, arthroscopy was unable to be used as a reference
standard in this retrospective study. Meanwhile, only the
highest grade of cartilage lesion on each articular surface was
recorded in surgery report. However, the exact location of the
cartilage lesion was not well described. Even though we
extracted 517 slices from 92 patients to implement a deep
learning model in this study, which was sufficient enough to
conduct a detection task, we could have tried some data
augmentation methods to make our model more robust and
avoid overfitting greatly. Additionally, having an accurate
segmentation map is more desired in many clinical
applications to provide a precise treatment plan. However,
due to the low resolution of the lesion parts, it was hard for

the radiologists to acquire accurate boundaries of the risk
region. In future studies, it could be beneficial to include the
unsupervised machine learning methods for segmentation tasks
in the OLT image analysis. Finally, although we performed the
lesions, gaps and talus detection tasks at the same time, some
information that was hidden within this structure was still not
fully explored and the interpretability of our model was still
unknown. In this research, we also conduct a detection task, but
in clinical practice surgeons may be focus on the characteristics
of lesion (XXX for instance) We believe we could further
improve the performance of our model by combining the
clinical information with the current detection methods and
use a multi-task learning method to perform detection,
segmentation, and lesion classification task simultaneously.
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