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Wederive an effective three-orbital model for the infinite-layer nickelates based on the band
structure obtained by the GW approximation (GWA), where we consider the Ni 3dx2−y2 and
O 2p orbitals forming the σ-bond. In the GWA, the self-energy correction to the local
density approximation (LDA) increases the energy difference between Ni 3dx2−y2 and O 2p,
which reduces the bandwidth of the antibonding 3dx2−y2 orbitals. The isolation of the Ni
3dx2−y2 around the Fermi level suppresses the screening effect. As a result, the correlation
effect becomes more significant than that in the model constructed by the LDA-based
downfolding. Furthermore, the Mott-Hubbard type character is enhanced in the GWA-
based effective model, because the charge-transfer energy increases more rapidly
compared to the increase in the interaction parameters.
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INTRODUCTION

The discovery of nickel superconductors [1] has attracted renewed attention to
superconductivity in strongly correlated electron systems [2–7]. So far, superconductivity has
been found in film samples of doped infinite-layer nickelates RNiO2 (R = Nd, Pr, and La) [1,
8–16] and a quintuple-layer nickelate Nd6Ni5O12 [17]. Although the nature of the
superconductivity is largely unknown, the pairing mechanism is likely to be unconventional:
Theoretically, a phonon calculation for NdNiO2 has shown that the electron-phonon coupling is
too weak to explain the superconductivity with a transition temperature on the order of 10 K
[18]. Experimentally, both U- and V-shaped spectra have been observed using the scanning
tunneling microscopy, depending on the location of the inhomogeneous surface of the doped
NdNiO2 film [9]. Although the origin of the coexistence of the two different signals is
controversial [19–23], the presence of the V-shape spectrum is consistent with an
unconventional d-wave pairing. In fact, unconventional pairing mechanisms have been
discussed since the early stages of the research [24–26].

In contrast with the conventional phonon-mediated superconductivity for which ab initio
calculation based on density functional theory (DFT) plays a crucial role [27, 28], construction of
low-energy models with few degrees of freedom is critically important for unconventional
superconductivity since a detailed analysis of the correlation effects is mandatory. In the
standard approach to derive a low-energy effective model from first principles, we first
calculate the electronic structure with the local density approximation (LDA) or the
generalized gradient approximation (GGA) in the framework of DFT. We then construct the
maximally localized Wannier function (MLWF) [29, 30] for the low-energy states around the
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Fermi level and derive a tight-binding model. Next, we
calculate the effective Coulomb interaction by the
constrained random phase approximation (cRPA) [31, 32].
The matrix elements of the (partially) screened interaction
are calculated for the Wannier basis, from which we
estimate the Hubbard U and Hund coupling J in the multi-
orbital Hubbard model [18, 24, 33, 34]. The cRPA is formulated
in such a way that RPA calculation for the derived low-energy
effective model reproduces a one-shot GW (G0W0) result [31,
32, 35].

To improve the accuracy of the parameters in the low-energy
model, we can replace the Green’s function (G0) constructed
from the DFT/LDA eigenenergies with the dressed Green’s
function in the GW approximation (GWA).1 Such a
derivation based on the GWA has been recently performed
for the celebrated cuprate superconductors [37, 38]. While two
types of orbitals, i.e., the Cu 3d and O 2p orbitals, form low-
energy bands near the Fermi level, the GW self-energy
correction increases the energy difference between the d and
p orbitals and reduce the bandwidth of the d band. With these
modifications, it has been shown with an extensive variational
Monte Carlo (VMC) calculation that the experimental values of
the Mott gap and magnetic moment of La2CuO4 are successfully
reproduced [38, 39]. Given that the differences in the band
structure between the DFT/LDA and that in the GWA are
commonly seen in transition metal oxides where 3d and 2p
orbitals with different correlation strengths coexist near the
Fermi level, it would be of great interest to derive an effective
low-energy model for infinite-layer nickelates based on
the GWA.

In this study, we perform a first-principles derivation of the
effective model for infinite-layer nickelates. In particular, we
mainly focus on the dpp three-orbital models (single-orbital
model is discussed in Appendix) because it is interesting to
investigate how the GWA modifies the charge-transfer energy

and correlation strength compared to the LDA-based
downfolding.2 First, we calculate the band structure in the
DFT/LDA and estimate the parameter of the effective model
using the MLWF and cRPA technique. Next, we calculate the
band structure in the GWA using the Green’s function of the
LDA. We derive the effective model from the GW band structure
and compare the results with those obtained from the LDA. We
find that the GWA-based effective model is predicted to be more
strongly-correlated with enhanced Mott-Hubbard type character.
The model offers an interesting reference to be compared with
that of the cuprates with the charge-transfer type character.

METHODS

In this study, we calculate the parameter of the Hubbard
Hamiltonian for the low-energy degree of freedom,

Heff � ∑
ij

∑
ℓ1ℓ2σ

tℓ1ℓ2σ Ri − Rj( )d†
iℓ1σ

djℓ2σ

+1
2

∑
i1 i2 i3 i4

∑
ℓ1ℓ2ℓ3ℓ4σηρτ

WH
ℓ1ℓ2ℓ3ℓ4σηρτ

Ri1,Ri2,Ri3,Ri4( ){
d†
i1ℓ1σ

di2ℓ2ηd
†
i3ℓ3ρ

di4ℓ4τ).

(1)

Here, the hopping term is represented by

tℓ1ℓ2σ R( ) � 〈ϕ
ℓ10
|H|ϕ

ℓ2R
〉, (2)

where H is the Hamiltonian in the LDA or GWA and ϕℓR is the
MLWF of the ℓth orbital localized at the unit cell R. The
interaction term is given by

WH
ℓ1ℓ2ℓ3ℓ4σηρτ

Ri1,Ri2,Ri3,Ri4( ) � 〈ϕ
ℓ1Ri1

ϕ
ℓ2Ri2

|WH|ϕ
ℓ3Ri3

ϕ
ℓ4Ri4

〉, (3)
whereWH is the effective interaction for the low-energy degree of
freedom,

WH q,ω( ) � v q( )
1 − PH q,ω( )v q( ). (4)

We calculate the effective interaction from the one-shot GWA
band. In the one-shot GWA, we calculate the self-energy from the
Green’s function G and the fully-screened interaction W,

Σ � GW, (5)
where W is calculated from all the polarizations in the RPA P as
follows,

W q,ω( ) � v q( )
1 − P q,ω( )v q( ). (6)

FIGURE 1 | Crystal structure of YNiO2.

1It should be noted that although the cRPA method is free from the double
counting problem for the interaction parameters, we have to apply the constrained
GW (cGW) method to avoid the double counting in the self-energy [36].

2We note that there are several other effective models for infinite-layer nickelates that
have been discussed, including a multi-band model that includes 3d orbitals other
than the 3dx2−y2 orbital [40–52], a model that includes the contribution of rare-earth
4f electrons [53–56], and a model that includes the self-doping bands [57–59]. Here,
we focus on the debate [40, 57, 60–67] on the classification of the Mott-Hubbard or
charge-transfer regimes in Zaanen-Sawatzky-Allen phase diagram [68].
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The quasiparticle approximation of the Hamiltonian in the
GWA is expressed as

HGW � HLDA + Z ϵLDA( ) −Vxc + Σ ϵLDA( )( ), (7)
where HLDA is the Hamiltonian in the LDA, Vxc is the exchange
correlation potential in the LDA, and Z(ϵLDA) is the
renormalization factor of Σ at the eigenenergy ϵLDA:

Z ϵ( ) � 1 − zReΣ
zω

∣∣∣∣∣∣∣ ω�ϵ{ }
−1
. (8)

We calculate the electronic band structure of the YNiO2

using the experimental lattice parameters of LaNiO2, where a �
3.959�A and c � 3.375�A [69]. To exclude the contribution of the
4f orbital, here we use Y as the cation. The computational
conditions for the DFT/LDA and GW are as follows. The
calculation is based on the full-potential linear muffin-tin
orbital implementation [70]. The exchange correlation
functional is obtained by the local density approximation of
the Ceperley-Alder type [71]. We neglect the spin-polarization.

The self-consistent LDA calculation is done for the 12 × 12 × 12 k-
mesh. The muffintin (MT) radii are as follows: RMT

Y � 2.9 bohr,
RMT
Ni � 2.15 bohr, RMT

O � 1.5 bohr, The angular momentum of the
atomic orbitals is taken into account up to l = 4 for all the atoms.

The cRPA and GW calculations use a mixed basis consisting of
products of two atomic orbitals and interstitial plane waves [72]. In
the cRPA and GW calculation, the 6 × 6 × 6 k-mesh is employed
for YNiO2. we interpolate the mesh using the tetrahedron method
to treat the screening effect accurately [73, 74]. We disentangle the
target band from other bands when the target band crosses another
band and construct orthogonalized two separated Hilbert spaces
[75].We include bands about from −25 to 120 eV for calculation of
the screened interaction and the self-energy.

RESULT

Figure 1 shows the crystal structure of the infinite-layer
nickelates. The block layer is a single lanthanide cation and
has large interstitial regions surrounded by cations. This is one
of the reasons for the formation of electron pockets originating
from the block layer, as described below.

Figure 2 shows the band structure of YNiO2 in the LDA. The
band structure of YNiO2 is very similar to that of NdNiO2 if we
eliminate the Nd 4f bands. The 3dx2−y2 antibonding state mainly
forms the Fermi surface, which is a feature commonly seen in the
cuprate superconductors. Reflecting the square planar crystal field
of oxygen around the nickel site, the other d bands are almost fully
occupied. However, differently from the cuprates, the infinite-layer
nickelates have additional small electron pockets around the Γ and
A points. These electron pockets originate from the d-orbital and
the interstitial state in the block layer, respectively. The energy
difference between the 3d bands of Ni1+ and the 2p bands of O2− is
larger than that between Cu2+ and O2− in copper oxides, and they
are energetically separated near −3 eV.

The interstitial state is located at − 1.4 eV at theA point, and has a
band inversion between yz/zx orbitals around theA point. Because of
the inversion between bands with different numbers of degeneracies,
the bands of the interstitial s and the yz/zx are continuously
connected from the conduction band to the valence band. Since

FIGURE 2 | (A) DFT/LDA band structure for YNiO2 and (B) its magnified figure. The zero energy corresponds to the Fermi level.

FIGURE 3 | Electronic band structure of the three-orbital model in the
LDA (solid lines). The zero energy corresponds to the Fermi level. For
comparison, the band structures in the LDA is also given (dotted lines).
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this band inversion is buried in themetallic band, it will be difficult to
observe the surface state associated with the band inversion.

In this paper, we derive a three-orbital effective model consisting
of the Ni 3dx2−y2 orbital and twoO 2p orbitals forming a σ-bonding.
We first construct the maximally localized Wannier functions [29,
30] for these orbitals and evaluate the parameters in the tight-
binding model (see Table 1 and Figure 3). The obtained model has
a larger energy difference between the 3dx2−y2 and 2p orbitals than
that of the cuprate, and is closer to the Mott-Hubbard type.

We then calculate the effective interaction for the three-orbital
model by the cRPA method. The obtained effective interactions
are summarized in Table 1. The bare Coulomb interaction v
is slightly smaller than that of the copper oxides (Ni 3dx2−y2 : ˜
26 eV, Cu dx2−y2 :˜ 29 eV in Refs. [37, 38]), and the dielectric
constant U/v is smaller than that of the copper oxides partially
due to the metallic screening from the block layer.

We next show the band structure in the GWA in Figure 4. In the
GWA, the energy difference between the strongly correlated Ni 3d
orbitals and the weakly correlated O 2p orbitals is enhanced [33, 76].
Thereby, the energy gap between the d- and p-bands around −3 eV
is increased. On the other hand, the bandwidth of the antibonding
orbitals of the 3dx2−y2 orbital decreases. The contribution of the O
2p orbitals to the antibonding orbitals decreases due to the increase
in the energy difference between the d- and p-orbitals. The
bandwidth of the strongly correlated orbitals in the GWA is also
reduced compared to that in the LDA due to the effect of the
frequency dependence of the self-energy. The bandwidth of the O 2p
orbitals remains approximately the same as that in the LDA.

In the GWA, the position of the valence band is lifted up from
that in the LDA. In particular, the electron pocket originating
from the d orbital in the block layer near the Γ point disappears.
On the other hand, the bottom of the band originating from the

TABLE 1 | Transfer integrals and effective interactions in the three-orbital Hamiltonian for YNiO2 (in eV). Both the one- and two-body part of the Hamiltonian are constructed
based on the LDA band structure. v,U (0), Jv, and J (0) represent the bare Coulomb, the static values of the effective Coulomb, bare exchange interactions, and exchange
interactions, respectively (at ω =0). The index “n” and “nn” represent the nearest unit cell (1,0,0) and the next-nearest unit cell (1,1,0), respectively.

t (LDA) (0, 0, 0) (1, 0, 0) (1, 1, 0) (2, 0, 0)

x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2

x2 − y2 −1.377 −1.327 1.327 0.062 −0.018 −0.027 0.024 −0.006 0.006 −0.005 0.001 0.000
p1 −1.327 −5.355 −0.671 1.327 0.043 0.671 −0.027 0.037 0.002 0.018 −0.006 0.002
p2 1.327 −0.671 −5.355 −0.027 −0.002 −0.043 0.027 0.002 0.037 0.000 0.000 0.000

v U (0) Jv J (0)

x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2

x2 − y2 26.406 7.886 7.886 4.599 0.763 0.763 0.116 0.116 0.066 0.066
p1 7.886 17.231 5.278 0.763 4.127 0.499 0.116 0.040 0.066 0.019
p2 7.886 5.278 17.231 0.763 0.499 4.127 0.116 0.040 0.066 0.019

vn Vn(0) vnn Vnn (0)

x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2

x2 − y2 3.730 7.886 3.286 0.157 0.763 0.124 2.644 3.286 3.286 0.061 0.124 0.124
p1 2.530 3.841 2.379 0.080 0.250 0.059 2.124 2.643 2.379 0.035 0.086 0.059
p2 3.286 5.278 3.566 0.124 0.499 0.155 2.124 2.379 2.643 0.035 0.059 0.086

FIGURE 4 | (A)GWband structure for YNiO2 and (B) its magnified figure (solid lines). For comparison, the band structures in the LDA is also given (dotted lines). The
zero energy corresponds to the Fermi level.
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interstitial state still creates the electron pocket around the A
point even in the GWA.

We derive the three-orbital model (see Figure 5) and
summarize the hopping parameters in Table 2. The difference
in the on-site potential between the 3dx2−y2 and 2p orbitals
increase from 3.98 to 4.60 eV. The nearest-neighbor hopping
between the 3dx2−y2 and 2p orbitals is almost the same (˜ − 1.3
eV), but slightly reduced due to the renormalization factor in the
GWA. The increase of the onsite potential deference between the
atomic 3dx2−y2 and 2p orbitals results in an decrease of the oxygen
contribution to the antibonding 3dx2−y2 orbitals and decrease of
the hopping between the antibonding 3dx2−y2 orbitals.

The screening effect of the system is reduced compared to that
in the LDA mainly due to the increase of the charge-transfer
energy, which increases the bare Coulomb interaction of the
3dx2−y2 band and reduces the screening effect from the 2p bands.
The bands originating from the block layer as well as the O 2p
orbitals in the GWA move away from the Fermi level compared
to the LDA, which makes the screening effect weaker. The
disappearance of the metallic screening from the electron
pocket at the Γ point also partially contribute to the reduction
of the correlation. Therefore, the value of the effective interaction
is increased from that in the LDA. For example, while the on-site
interaction is 4.6 eV for the 3dx2−y2 orbital and 4.1 eV for the 2p
orbital in the LDA-based cRPA calculation, the GWA-based
cRPA gives 5.0 eV for the 3dx2−y2 orbital and 4.5 eV for the
2p orbital. The nearest-neighbor interactions also increase from
0.16 to 0.22 eV for the 3dx2−y2 orbital. Note that the metallic
screening from the electron pocket near the A point still remains
even in the GWA.3

CONCLUSION

We derived a three-orbital low-energy model for the infinite-layer
nickelates based on the GWA. In the GWA, the O 2p bands locate
deeper below the Fermi level, and the bandwidth of the Ni 3dx2−y2

band is narrower than that in the LDA calculation. Due to the
isolation of the low-energy Ni 3dx2−y2 band, the screening effect

TABLE 2 | Transfer integrals and effective interactions in the three-band Hamiltonian for YNiO2 (in eV). The one-body part is obtained from the GW band structure, and the
effective interaction is the result of the cRPA calculation for the GW bands. v, U (0), Jv, and J (0) represent the bare Coulomb, the static values of the effective Coulomb,
bare exchange interactions, and exchange interactions, respectively (at ω =0). The index “n” and “nn” represent the nearest unit cell [1,0,0] and the next-nearest unit cell
[1,1,0] respectively.

t (GW) (0, 0, 0) (1, 0, 0) (1, 1, 0) (2, 0, 0)

x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2

x2 − y2 −1.204 −1.288 1.288 0.094 −0.025 −0.021 0.015 −0.005 0.005 −0.002 0.001 0.001
p1 −1.288 −5.802 −0.640 1.288 0.037 0.640 −0.021 0.031 0.007 0.025 −0.004 0.007
p2 1.288 −0.640 −5.802 −0.021 −0.007 −0.022 0.021 0.007 0.031 0.001 0.000 −0.003

v U (0) Jv J (0)

x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2

x2 − y2 26.596 7.901 7.901 5.019 0.932 0.932 0.114 0.114 0.066 0.066
p1 7.901 17.383 5.280 0.932 4.510 0.624 0.114 0.038 0.066 0.019
p2 7.901 5.280 17.382 0.932 0.624 4.510 0.114 0.038 0.066 0.019

vn Vn(0) vnn Vnn (0)

x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2

x2 − y2 3.727 7.901 3.285 0.223 0.932 0.181 2.643 3.285 3.285 0.094 0.181 0.181
p1 2.528 3.840 2.379 0.116 0.332 0.094 2.123 2.641 2.379 0.057 0.130 0.094
p2 3.285 5.280 3.567 0.181 0.624 0.230 2.123 2.379 2.641 0.057 0.094 0.13

FIGURE 5 | Electronic band structure of the three-orbital model in the
GWA (solid lines). The zero energy corresponds to the Fermi level. For
comparison, the band structures in the GWA is also given (dotted lines).

3We note that there is a proposal that the electron pocket at the A point can be
eliminated by designing a different type of the block layer [33].
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becomes less effective, leading to larger interaction parameters in
the Hamiltonian. Thus the GW-based ab initio downfolding gives
a more correlated model than the LDA-based downfolding.
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APPENDIX

For reference, we summarize the parameters in the single-orbital
model in Tables A1 and A2. Special attention should be paid to the
strength of the interaction in the GWA-based effective single-orbital
model (see Ref. [38]). In the copper oxides, the correlation effect
beyond the RPA between the d and p orbitals in the three-orbital
model is not small. Therefore, in order to calculate the single-orbital
model accurately, it is necessary to treat the screening effect
originating from the bonding and nonbonding bands beyond the

RPA. To do so, we need to solve the three-orbital model once with a
low-energy solver such as the VMC and estimate the energy
corrections between the d and p orbitals beyond the GWA. By
combining such a correction with the GW self-energy correction, we
can calculate the band structure beyond the GWA, and can estimate
a single-orbital model with high accuracy (See Ref. [38] for details of
the method). Because the nickelates have a qualitatively similar band
structure to the cuprates, the reliability of the GWA-based single-
orbital model for the nickelates also needs to be carefully examined:
in particular, the correlation strength |U/t| might be overestimated.

TABLE A1 | Transfer integral and effective interaction in the one-band Hamiltonian
for YNiO2 (in eV). Both the one-body and two-body parts in the Hamiltonian
are derived based on the LDA band structure. v and U (0) represent the bare
Coulomb interaction and the static value of the effective Coulomb interaction,
respectively (at ω =0). The index “n” and “nn” represent the nearest unit cell
[1,0,0] and the next-nearest unit cell [1,1,0], respectively.

t (LDA) (0, 0, 0) (1, 0, 0) (1, 1, 0) (2, 0, 0) U/v |U/t|

x2 − y2 0.211 −0.357 0.093 −0.046 0.149 8.15

v U (0) vn Vn(0) vnn Vnn (0)

x2 − y2 19.578 2.910 3.981 0.229 2.685 0.091

TABLE A2 | Transfer integral and effective interaction in the one-band Hamiltonian
for YNiO2 (in eV). The one-body part is derived based on the GWband structure,
and the effective interaction is the result of the cRPA calculation for the GWbands. v
andU (0) represent the bare Coulomb interaction and the static value of the effective
Coulomb interaction, respectively (atω =0). The index “n” and “nn” represent the
nearest unit cell [1,0,0] and the next-nearest unit cell [1,1,0] respectively.

t (GW) (0, 0, 0) (1, 0, 0) (1, 1, 0) (2, 0, 0) U/v |U/t|

x2 − y2 0.172 −0.271 0.075 −0.033 0.167 12.94

v U (0) vn Vn(0) vnn Vnn (0)

x2 − y2 20.948 3.508 3.957 0.300 2.677 0.131
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