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Diffusion Magnetic Resonance Imaging (dMRI) is an imaging technique with exquisite
sensitivity to the microstructural properties of heterogeneous media. The conventionally
adopted acquisition schemes involving single pulsed field gradients encode the random
motion of water molecules into the NMR signal, however typically conflating the effects of
different sources contributing to the water motion. Time-varying magnetic field gradients
have recently been considered for disentangling such effects during the data encoding
phase, opening to the possibility of adding specificity to the recovered information about
the medium’s microstructure. Such data is typically represented via a diffusion tensor
distribution (DTD) model, thus assuming the existence of several non-exchanging
compartments in each of which diffusion is unrestricted. In this work, we consider a
model that takes confinement into account and possesses a diffusion time-dependence
closer to that of restricted diffusion, to replace the free diffusion assumption in
multidimensional diffusion MRI methods. We first demonstrate how the confinement
tensor model captures the relevant signal modulations impressed by water diffusing in
both free and closed spaces, for data simulated with a clinically feasible protocol involving
time-varying magnetic field gradients. Then, we provide the basis for incorporating this
model into two multidimensional dMRI methods, and attempt to recover a confinement
tensor distribution (CTD) on a human brain dataset.
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1 INTRODUCTION

Diffusion Magnetic Resonance Imaging (dMRI) is a method used for investigating the
microstructural organization of various heterogeneous media. This is achieved by sensitizing the
MR signal to the random motion of water molecules inside the scanned substrate. To interpret and
extract relevant information from the water motion, several models and signal representations have
been developed.

At spatial resolutions achievable with current MR scanners, the scanned sample comprises several
compartments within, outside, and possibly in between which diffusion is taking place. A general
strategy for capturing this complexity without assuming any specific combination of compartments
(see for example [1, 2] for reviews of multi-compartment models for brain white matter), considers
modeling the medium as a collection of isolated pores, each represented by a diffusion tensor [3, 4].
This approach leads to a diffusion tensor distribution (DTD), which could also be represented
parametrically via normal [5] and Wishart [4] distributions as well as other related distributions
[6–8]. Advances in diffusion encoding schemes [9–13] provided ways of disentangling confounding
signal contributions, thus possibly enabling the extraction of relevant information about the
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medium’s structure and composition via such modeling [14].
However, it is rather paradoxical to have free diffusion within
isolated compartments, as the cellular membranes have a strong
effect on diffusion, making them the primary determinant of
diffusion anisotropy [15]. If this picture involving multiple
isolated compartments is to be employed, it would be natural
to represent the individual subdomains by accounting for
confined diffusion within them [16].

A viable alternative to the diffusion tensor representation of
individual subdomains utilizes confinement tensors [17]
instead. In this case, the molecules are envisioned to be
diffusing under the influence of an Hookean restoring force,
i.e., according to the Ornstein-Uhlenbeck process [18]. Just like
in restricted diffusion, the particle trajectories have limited
extent, which has made the Ornstein-Uhlenbeck process a
simple toy problem in earlier theoretical works on
characterizing the influence of restricted diffusion on the
NMR signal [19–21].

Following a series of developments [22, 23], the confinement
tensor model has been noted to provide an alternative
representation of diffusion anisotropy, very-well suited for
studying heterogeneous media [17, 24, 25]. Furthermore, for
NMR experiments involving long diffusion encoding pulses,
the harmonic confinement becomes the effective model of
restricted diffusion, giving rise to an approximately linear
dependence of the effective stochastic force on the center-of-
mass position of the particles during the application of the
gradient pulses [26].

Similarly to the better-known diffusion tensor model, the
model proposed by Yolcu et al. [17] captures the pore’s
geometry/anisotropy with a tensorial object, which can be
visualized as an ellipsoid. However, the confinement tensor
model offers an extra parameter to encode diffusivity. This
parameter can either be a scalar bulk diffusivity, or another
tensorial quantity. In either case, this represents the diffusivity
when there is no impediment to the particles’ motion, i.e., when
the confinement value approaches 0. Therefore, the confinement
tensor model can accommodate both restricted and unrestricted
diffusion. In a recent study, the orientationally-averaged signal
was studied for confined diffusion measured via single- and
double diffusion encoding measurements demonstrating that
certain features of the NMR signal [27, 28] that cannot be
predicted by diffusion tensors are reproduced by the
confinement tensor model [29].

These findings suggest the confinement tensor model as a
plausible alternative for representing non-exchanging
microscopic domains in multicompartment specimen models.
In this work, we therefore propose to incorporate this model into
the so-called multi-dimensional MRI methods [14]. In particular,
we replace the diffusion with the confinement tensor in Diffusion
Tensor Distribution Imaging (DTDI) [4, 30], and illustrate that
the moments of the DTD estimated using Q-space trajectory
Imaging (QTI) [31] would have a different interpretation for
confined diffusion. We start by assessing the capabilities of the
confinement model in representing single pores on data
simulated using a typical protocol involving general time-
varying diffusion gradient fields [32], and then proceed with

first attempts at recovering distributions of confinement tensors
in a human brain dataset.

2 BACKGROUND AND THEORY

2.1 Diffusion Under a Hookean Restoring
Force
In a diffusion NMR experiment, diffusing molecules acquire a
phase shift depending on their trajectory x(t) and on the time-
varying magnetic field gradient G(t). The signal from all
molecules can be expressed as

E �〈e
−iγ∫ dt x(t)·G(t)〉, (1)

where γ is the gyromagnetic ratio, and the averaging is performed
over all particle trajectories.

For the case of diffusion under a Hookean restoring force, we
shall denote by C the confinement tensor, which, upon
multiplication by the Boltzmann constant kB and absolute
temperature T, gives the tensorial force constant f = kBTC
defining the Hookean potential V through V(r) � 1

2r
ufr.

Furthermore, we denote the possibly anisotropic free diffusion
tensor by D, and assume that D and C commute, i.e., they share
the same eigendirections. Finally, we introduce Ω = DC for
brevity.

Statistical quantities, such as the signal, can be calculated using
the path weight

Pr[x()]∝ exp −1
4
∫ dt

dx
dt

+Ωx(t)( )u

D−1 dx
dt

+Ωx(t)( )( ),
(2)

which represents the differential probability for a particle to
follow the trajectory x(). The NMR signal in (Eq. 1) can thus
be evaluated, up to a constant, through the path integral

E∝ ∫Dx() exp( − ∫ dt(1
4

dx
dt

+Ωx(t)( )u

D−1 dx
dt

+Ωx(t)( )
+iγx(t) · G(t))). (3)

Thanks to stationarity, the time integration can be taken from
−∞ to ∞, in which case employing the substitutions

x(t) � ∫ dω
2π

eiωt x̂(ω) (4a)

G(t) � ∫ dω
2π

eiωt Ĝ(ω) (4b)
yields

E � exp −∫ dω
2π

Ĝ
†(ω)K(ω) Ĝ(ω)( ) (5)

with

K(ω) � 2γ2D(ω2I +Ω2)−1. (6)
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Converting Eq. 5 to the time domain yields

E � exp −γ
2

2
∫ dt∫ dt′Gu(t′)DΩ−1 e−Ω|t−t′| G(t)( ). (7)

2.2 The Confinement Tensor Model
Figure 1A shows the parameters of the confinement tensormodel [17]
and how they represent a generic pore. The shape of the subdomain is
captured by an effective confinement tensor C with units of inverse
squared length, like in the case of diffusion under a Hookean force as
described above. On the other hand, the rate of water diffusivity is
captured by a scalar effective isotropic diffusivity Deff.

While the expression given in Eq. 7 is the natural way for
defining the signal implied by the confinement tensor model, that
is not optimal for the actual computation of the signal. To avoid
potential numerical issues with the inversion of the Ω tensor
within the integral, we find more advantageous to use the
equivalent expression given by Yolcu et al. [17] for a gradient
waveform applied between time points 0 and tf,

E � exp −Deff ∫
tf

0

dt |Q(t)|2⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ exp −Deff

2
Qu(0)Ω−1 Q(0)( ) (8)

with

Q(t) � γ∫
tf

t

dt′e−Ω(t′−t)G(t′). (9)

Note that for C → 0, the signal in Eq. 8 reduces to the NMR
signal expression for isotropic free diffusion (the proof is provided in
[17]), while forC→∞, the signal converges to 1, indicating particles’
immobility. Both these scenarios are shown in Figure 1B, where the
signal for confinement values in the range [0, ∞) is shown.

2.3 md—dMRI With Confinement
The expressions derived thus far concern the MR signal for a
single confinement tensor. Here, we instead consider the case

where a distribution of such tensors is collectively giving rise to
the signal. In particular, we provide the signal expression for a
confinement tensor distribution (CTD), which could be used
for performing Confinement Tensor Distribution Imaging
(CTDI), and discuss employing QTI for locally confined
diffusion.

2.3.1 Confinement Tensor Distribution
The NMR signal expression for a distribution P(D) of diffusion
tensors is given by [4]

S(b) � S0 ∫P(D) e−b: D dD, (10)

where b is the measurement tensor [34],D is the diffusion tensor,
and “ :″ indicates the generalized scalar product between tensors.
A similar expression can be introduced to include the
confinement tensor model. Due to the extra parameter Deff,
the considered distribution becomes the joint distribution of
effective confinement tensors and effective diffusivities
P(C, Deff ). The signal expression for an experiment
determined by a general time varying magnetic field gradient
G(t) is

S(G(t)) � S0 ∫P(C, Deff )E(G(t),C, Deff ) dC dDeff , (11)

where E (G(t), C, Deff) is as defined in Eq. 7 or Eq. 8. Eqs 10, 11
can be considered to be generalizations of the Laplace transforms
of P(D) and P(C, Deff ), respectively. Recovering the P(D) (or
P(C, Deff )) from a series of measurements, i.e., numerically
inverting the Laplace transform, is well known to be an ill-
posed problem [30, 35, 36].

2.3.2 QTI for Locally Confined Diffusion
The QTI technique exploits the sensitivity of the detected signal
to the statistical moments of the structural parameters describing
the specimen [37]. When the DTD model is employed for the
latter, the high signal (low diffusion sensitivity) regime reveals the

FIGURE 1 | (A) Confinement tensor model parameters. For a subdomain of generic shape, the geometry is captured by the effective confinement tensor, while the
water diffusivity within is represented by an effective isotropic diffusivity. The tensor representing the shape is a second order tensor, while the effective diffusivity is a
scalar. (B) Signal for different confinement values for linear tensor encoding experiments at different b-values. ForC→ 0 the signal converges to the free diffusion regime,
where the value is determined as exp ( − b D0), with b being the b-value [33]. This is represented by the colored circles in the plot. ForC→∞, the signal converges to
1 indicating complete water immobility.
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first few moments of the diffusivities [31, 38]. For a DTD
characterized by the distribution P(D) the signal decay in (10)
can be expressed by

E(b) � 〈e−bkℓ Dkℓ〉, (12)
where we employed the Einstein summation convention. At low
diffusion sensitivity, the natural logarithm of the signal decay is
approximated by the Maclaurin series of the above expression
around b ≈ 0, yielding

lnE(b) ≈ − bkℓ 〈Dkℓ〉 + 1
2
bkℓ bmn 〈DkℓDmn〉c, (13)

where the last quantity is the second cumulant,
i.e., 〈DkℓDmn〉c � 〈DkℓDmn〉 − 〈Dkℓ〉〈Dmn〉. We remind that
the components of the measurement tensor are given through
[34, 39].

bkℓ � γ2 ∫
tf

0

dt∫t
0

dt′∫t
0

dt″Gk(t′)Gℓ(t″). (14)

In the case of a CTD, the averaging takes the form of an
integration over Deff as well as C; see (Eq. 11). Applying the same
procedure for the signal in frequency domain, (Eq. 5), yields

lnE(Ĝ(ω)) ≈ −∫ dω
2π

Ĝk(ω) Ĝℓ(ω) 〈Kkℓ(ω)〉

+1
2
∫ dω
2π

∫ dω′
2π

Ĝk(ω) Ĝℓ(ω) Ĝm(ω′) Ĝn(ω′)

〈Kkℓ(ω)Kmn(ω′)〉c, (15)
while the same is given in the time-domain by

lnE(G(t)) ≈ − ∫ dt ∫ dt′Gk(t)Gℓ(t′) 〈Hkℓ(t, t′)〉

+ 1
2
∫ dt∫ dt′∫ dt″∫ dt‴Gk(t)Gℓ(t′)

Gm(t″)Gn(t‴) 〈Hkℓ(t, t′)Hmn(t″, t‴)〉c,

(16)

where

Hkℓ(t, t′) � γ2

2
C−1e−DC|t′−t| (17)

since C and D commute.
Note that, the shape of the waveformG(t) is inextricably linked to

the signal in the CTD case. Furthermore, the interpretations of the
signal decay rate are substantially different for the CTD and DTD
assumptions. Thus, when QTI is performed, one can quantify only
apparent moments of a DTD while the same analysis employing the
CTDmodel would provide amoremeaningful description of the low
diffusion sensitivity regime.

3 IMPLEMENTATION

The confinement tensor model was implemented in Matlab (The
Mathworks Inc., Natick, Massachussets) according to Eqs 8, 9.

Numerical integration was performed using the trapezoidal rule.
The signal computation for a given confinement tensor and
effective isotropic diffusivity was carried out in a reference
frame in which Ω is diagonal. This is achieved by rotating the
measurement waveforms G(t) with the rotation matrix
determined by the eigenvectors of Ω. This allows for
computations to be carried out separately for each of the
eigenvalues of Ω thanks to the separability of the model [17].
This approach mitigates numerical issues that arise for small
confinement values, in which case inverting Ω may become
problematic. Possible issues can be alleviated by considering a
Taylor expansion for the second exponential factor in Eq. 8 to
remove the dependency of that part of the signal on Ω. The
derivation of the expression for computing the approximation of
the signal using the Taylor expansion is provided in Appendix.

To fit the confinement model to the data, we used the Matlab
function lsqnonlin with Levenberg-Marquardt as algorithm. The
unknown estimated quantities consist of the signal without
diffusion weighting S0, the effective diffusivity Deff, and the six
unique components of the confinement tensor C. During the
fitting, the tensor Ω is replaced by its Cholesky factorization to
ensure the positive semidefiniteness of the estimated confinement
tensor [40].

To estimate the joint distribution of confinement tensors and
effective isotropic diffusivities, we adapted the existing
technology implementing a Monte Carlo inversion of Eq. 10,
as detailed in [36] and retrieved from https://github.com/markus-
nilsson/md-dmri. As for the original implementation, we limit
ourselves to the case of axisymmetric tensors. These can be
represented using 4 parameters: the parallel and perpendicular
confinement (Cpara and Cperp) capture the pore’s geometry, while
the other two define the pore orientation through the azimuthal
(ϕ) and polar (θ) angles. Altogether, each pore is represented by 5
parameters (Cpara, Cperp, ϕ, θ, and Deff). While performing the
inversion, these parameters are searched within the limits 8 ≤
log10(Cpara/m

−2), log10(Cperp/m
−2) ≤ 12, 0.1 ≤ (Deff/μm

2ms−1) ≤ 3.
2, 0 ≤ ϕ ≤ 2π, 0 ≤ cos(θ) ≤ 1. For each voxel, the recovered
P(C, Deff ) can be visualized in 3D plots where Cpara and Cperp

vary along the x and y axes, while Deff varies along the z axis,
respectively. The pore direction is encoded using the RGB color
scale. We adopted the convention of displaying the color
according to the main diffusion direction, not according to the
direction of maximum confinement.

4 RESULTS

4.1 Signal for Single Compartments
In this section we investigate the capabilities of the confinement
tensor model in capturing features of both free and restricted
diffusion in data where the diffusion sensitization is achieved with
general time varying magnetic field gradients. We employ a
protocol featuring 217 measurements comprising Linear,
Planar, and Spherical Tensor Encoding (LTE, PTE, and STE
respectively) [32]. We refer to this protocol as tensor encoding.
Signals for diffusion taking place in closed and open geometries
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were computed using this protocol. The pore shapes and the
respective defining parameters were as follows:

• Free isotropic diffusion, D0 = 3 μm2/ms
• Stick compartment (uni-directional free diffusion), D0 =
2.5 μm2/ms

• Infinite cylinder, r = 5 μm, D0 = 3 μm2/ms
• Capped cylinder 1, l = 12 μm, r = 2 μm, D0 = 2 μm2/ms

• Capped cylinder 2, l = 10 μm, r = 1.5 μm, D0 = 2.5 μm2/ms,
• Sphere, r = 5 μm, D0 = 2 μm2/ms

where D0 is the bulk diffusivity, r is the radius, and l is the length.
The diffusion tensor model was used to generate the signals for
the free diffusion and the stick compartments, while the method
described in [12] was used to generate the signals for the cylinders
and the sphere.

FIGURE 2 | Confinement and diffusion tensor fit to signals arising from particles diffusing in free (Free Diffusion, Stick) and restricted (Infinite Cylinder, Capped
Cylinder 1, Capped Cylinder 2, Sphere) geometries. In both panels (A,B) all the 217 data points were used to fit the model. For ease of interpretation, in panel (A) only 52
random points out of the 217 are shown. In panel b) all the data points produced with Spherical Tensor Encoding are shown. Note how the confinement tensor model
captures features of diffusion in both free and restricted scenarios. In particular, observe in panel (B) how the signature of restricted diffusion imprinted on the
signals produced with STE can be captured by the confinement tensor model while are inevitably missed by the diffusion tensor.
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Figure 2A shows the results obtained by fitting the
confinement tensor model and the diffusion tensor to the
simulated signals. Only a subset of the measurements is shown
for easier visual inspection. For the considered protocol, the
confinement tensor model seems to capture well the features
of both free and restricted diffusion, suggesting that the model
given in Eq. 8 has sufficient degrees of freedom and there is no
need for employing a tensorial diffusivity. Note that as illustrated
for the 1D problem of restricted diffusion between two parallel
plates [26], in the ideal scenario involving only very long pulses
and simple geometries, one would expect the measurement to be
sensitive only to the product of squared confinement and
diffusivity, in which case there is no need to employ an

effective diffusivity in the model. However, in practice there is
such sensitivity, and the relationship between the parameters of
the model (Deff, andC) and those of the geometry requires further
investigations. What is remarkable however is that having only
one additional parameter (Deff) offers sufficient complexity to
capture the information in the signal for the considered
acquisition scenario. This is also evident in Figure 2B, which
better illustrates how the assumption of free diffusion fails [3, 41]
while the confinement tensor model fully captures the signal
modulations due to restricted diffusion probed by STE
measurements.

The recovered values of the effective diffusivity Deff coincided
with the bulk diffusivity D0 for the stick and free water

FIGURE 3 | Example results of inverting Eq. 11 on real data collected with LTE, PTE, and STE waveforms [32]. The panel on top shows a bird’s eye view on the
geometry plane, and how to associate the location of points to a shape according to the Cpara and Cperp coordinates. The contours in the 3D plot show the projections of
the pores’ clusters onto the various 2D planes.
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compartments. For the compartments in which diffusion is fully
restricted, the estimated values were lower than the nominal D0.
Respectively, 1.65 μm2/ms for Capped Cylinder 1, 2.0 μm2/ms for
Capped Cylinder 2, and 1.7 μm2/ms for Sphere.

4.2 Signal for a Distribution of
Compartments
Illustrative results obtainable with the Monte Carlo inversion
method described in Section 3 were produced on a publicly
available brain dataset [32] collected via the tensor encoding
protocol used in the simulations. Figure 3 shows Monte Carlo
inversion results on a few selected voxels on the bottom, and a
bird’s-eye view on the plane displaying the geometric information
about the tensors in the distribution on the top. In this last, the
colored areas indicate what shape each tensor would have for
different values of Cpara and Cperp. Pores with isotropic geometries
are found along the diagonal where Cpara = Cperp. Free isotropic
diffusion is found for low Cpara = Cperp, while confined isotropic
diffusion is found for high Cpara = Cperp. Stick-like pores are
located at the Cpara ≪Cperp corner, while pancake-like pores are
found at the Cpara ≫Cperp corner.

In the same spirit of what was shown in [42] for the DTD
model, the 3D plots in Figure 3 show what the P(C, Deff ) for
voxels containing either single or multiple types of brain tissues,
as obtained from the data, could be. For example, voxels
containing pure CSF would have a P(C, Deff ) of only free
diffusion geometry with Deff ≈ 3.1 μm2/ms. Pure white matter
voxels would only contain collections of stick-like geometries (see
the voxel from the Corpus Callosum), while, for the considered
dataset, gray matter could contain isotropic free water at lower
Deff compared to free water. Voxels with mixed tissue types could
build their P(C, Deff ) based on those from single tissues. Note
how having separate components encoding for the pore geometry
(C) and the water diffusivity (Deff) allows for clearly identifying
scenarios where pores could have the same shape, but different
water mobility. See for example the voxel “WM, 2 fiber bundles?“,
where the distribution seems to suggest the presence of two
differently oriented fiber bundles, which can be teased apart
also by looking at their water diffusivity. The same specificity
could not be achieved by only considering a distribution of
diffusion tensors, where the information about the pore
geometry is inextricably entangled to that of water diffusivity.

Note however that all what is presented and discussed in this
section are simply initial conjectures, which may very well be the
results of falling into the temptation of over-interpreting the
outcomes of the DTD or CTD estimation. As shown by [36],
inverting Eq. 10, and by extension Eq. 11, is already challenging
even at infinite SNR. The situation worsens in real data where the
validity of the solutions proves to be very sensitive to the presence
of noise. Moreover, as we present and discuss later, the results,
and their interpretation, strongly depend upon the adopted
acquisition scheme. For example, we could expect to find
sphere-like compartments in gray matter in data encoded with
different diffusion times and higher diffusion sensitivity, possibly
indicating that a relevant fraction of the signal is due to cell
bodies. Moreover, while the considered protocol (and data)

should encode sufficient information for accurately recovering
the pores’ geometry, other waveforms could prove beneficial to
study the time-dependence of the diffusion process, augmenting
the reliability of the Deff dimension.

5 DISCUSSION

The results in Figure 2 illustrate how well the confinement model
captures the features of both free and restricted diffusion, for data
simulated with a clinically-feasible protocol including typical
time-varying magnetic field gradients. The signal’s modulation
due to restrictions is, under the considered experimental set-up,
fully described by studying the problem of diffusion occurring in
a potential landscape. This shows that the considered approach
retains the right number of degrees of freedom to characterize
diffusion processes within individual compartments. This finding
is consistent with what was reported by Özarslan et al. [26] for
experiments involving long duration pulses, and supports the
idea of adopting the confinement tensor for representing isolated
pores in multicompartment models.

Having a single model covering both restricted and unrestricted
diffusion in different geometries could be advantageous when defining
multi-compartmental models based on such shapes as building blocks.
Biophysical models, such as the composite hindered and restricted
model of diffusion (CHARMED) [43] and neurite orientation
dispersion and density imaging (NODDI) [44] strive for modeling
specifically the neural tissue, therefore are not suitable for different
tissues and other heterogeneous media. The confinement tensor
representation of each compartment could be integrated into such
models and could provide a convenient means for accounting for
restricted diffusion. On the other hand, the confinement tensor
distribution model is far more general than such specific models as
one would not need to make a priori assumptions on the specimen
composition, apart from limiting its representation to numerous non-
exchanging and possibly confined domains. The results in Figure 3
exemplified the specificity achievable by modeling a specimen with a
joint distribution of confinement tensors-isotropic effective diffusivities.
Other information about the water pools, such asT1 andT2 relaxations
[42, 45], could be added to increase specificity to the tissue
heterogeneity. Similarly to what was presented there, the
confinement tensor model could also be considered for
diffusion—relaxation studies [42, 46–49].

Note that on the specific dataset used in this work we did not
observe striking modulation in the signal for isotropic
measurements at constant b-value. This could be explained by
the experiments not being sensitive to finite-sized anisotropic
restrictions, i.e., axons could effectively be pictured as sticks.
Under these conditions, the fit to signal for both the DTD and
CTD would yield very close results. Having two fundamentally
different models exhibiting good fits to the data suggests that the
data is possibly not descriptive enough. Another factor
contributing to equal performance could be found in both
DTD and CTD being overly-parameterized, thus effectively
having the capabilities to fit the data equally successfully. This
should not however be interpreted as both models being
acceptable and providing informative results. In addition,
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FIGURE 4 | (A) Layout of themixed protocol. 102measurements consist of LTE, PTE, and STEwaveforms as defined in the tensor encoding protocol, but with their
directions redistributed over the sphere to achieve more uniform directional sampling. Another 102 measurements consist of Trapezoidal Cosine Oscillating Gradient
Spin Echo waveforms oscillating at 4 different frequencies. The last 13 measurements had null diffusion gradient strength. (B) Results of inverting Eq. 11 for a simple
system consisting of two equally weighted water pools with identical geometries but different water diffusivities. Left, data encoded with the tensor encoding
protocol. Right, data encoded with the mixed protocol. The red filled dots depict the ground truth values in the 3D plot, while the red crosses show the ground truth

(Continued )
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based on the results in Figure 2, we expect the CTD to provide
meaningful information on data where restrictions have
imprinted a clearer signature.

We would also care to iterate once more on the limitation of
performing CTDI (or DTDI) using the technology implemented in
https://github.com/markus-nilsson/md-dmri, due to the
mathematically ill-posed problem that is being attempted.
Different P(C,Deff ) in Eq. 11 will represent the signal equally
well, thus possibly leading to wrong interpretations of the
microstructural characteristics of the scanned specimen. A similar
issue is referred to as the “degeneracy problem” [50] in recovering
the brain microstructure. Multi-compartment models present flat
fitting landscapes with multiple local minima located in different
parts of the parameter space, each of which providing equally sound
biological explanation for the signal. One approach to alleviate the
problem involves including additional measurements, e. g, diffusion
measurements having different temporal profiles, with the goal of
disentangling the contribution of different parameters to the model
interpretation [51].

When attempting at recovering the joint distribution of
confinement tensors and isotropic effective diffusivities, we
found from simulations that the pores’ geometry can be
obtained relatively faithfully using the tensor encoding
protocol only. However, determining the pore diffusivity
relatively to the restriction size from data encoded
exclusively in such manner seems to be more challenging.
We provide examples of this in Figure 4. In Figure 4A we show
a modified version of the tensor encoding protocol, where half
of the waveforms are replaced with Trapezoidal-Cosine
Oscillating Gradient Spin-Echo (TC-OGSE). We refer to
this protocol as mixed. The goal is to achieve higher
sensitivity to molecules’ diffusivity within restrictions by
using waveforms with well defined encoding frequency, and
by matching the frequency of such waveform to that of the
diffusion process [52–54]. Retaining part of the original
protocol should ensure accurate pore geometry estimation.
In Figures 4B,C we show the results obtained for a simple
scenario where the specimen consists of two pools of water in
which molecules are diffusing at different rates. When the data
are simulated with only LTE, PTE, and STE, it is possible to
accurately recover the expected pore shapes but not the water
diffusivity. Conversely, by introducing oscillating gradients,
the diffusivity estimates, although still uncertain, converge to
the correct values.

In Figure 4D we show the results on a more complex substrate
consisting of a stick compartment, an extra-axonal compartment, a
sphere compartment and a compartment with free diffusion. As for
the simple scenario described above, the estimation of the pores’
diffusivity, in particular one of the sphere compartments, improves
when the mixed protocol is used. This corroborates the idea of
including measurements not only exploring different shapes of the

encoding tensors, but also probing different frequencies [53]. The
results in Figure 4D also exemplify the uncertainty around
inverting the Laplace transform, even for infinite SNR.

6 CONCLUSION

In this work we incorporated the confinement tensor model for
individual subdomains of heterogeneous media into
multidimensional diffusion MRI frameworks. We demonstrated
how considering Brownian motion as taking place under the
influence of a Hookean potential provides sufficient degrees of
freedom to capture the signal modulations arising from water
diffusing in restricted geometries. We argued that the confinement
tensor distribution (CTD) model is a viable alternative to the
diffusion tensor distribution model as CTD relies on the effective
model of restricted diffusion, which makes it more consistent with
the multicompartmental organization of complex tissue when
examined via commonly performed diffusion MRI
measurements. Despite its challenges, incorporating this model
into multidimensional diffusion MRI methods could provide new
insights regarding the structural composition of complex media.
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FIGURE 4 | values for the projections onto the various planes. (C) The distributions of Deff obtained in (B). (D) Results inverting Eq. 11 for a substrate comprising a free
water compartment, a sphere compartment, a stick compartment, and an intra-axonal compartment, with the following weights in the distribution: 0.25, 0.25, 0.4, 0.1.
The substrate ground truth is visualized in the small 3D plot on top. On the left, data encoded with the tensor encoding protocol. On the right, data encoded with the
mixed protocol.
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APPENDIX: NUMERICAL APPROXIMATION
OF THE SIGNAL IN C → 0 REGIME

The matrix inversion in the second exponential in equation (Eq.
8) can become numerically unstable for C→ 0. When working in
the coordinate system determined by the eigenvectors of C, the
matrix Ω is diagonal

Ω �
λ1 0 0
0 λ2 0
0 0 λ3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (18)

We take �v1, �v2, and �v3 to be the eigenvectors of C, defining the new
coordinate system for the experiment. ThematrixRhaving �v1, �v2, and
�v3 as columns, can be used to determine the gradient waveforms used
to collect the data in the new coordinate system through

G′(t) � [G1′(t), G2′(t), G3′(t)]u � Ru G(t). (19)
Then, the signal contribution from the second exponential in Eq.
8 can be written as

exp −Deff

2
Q1(0) Q2(0) Q3(0)[ ] λ−11 0 0

0 λ−12 0
0 0 λ−13

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ Q1(0)
Q2(0)
Q3(0)

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦⎛⎜⎜⎝ ⎞⎟⎟⎠
� exp −Deff

2
Q2

1(0)λ−11( )exp −Deff

2
Q2

2(0)λ−12( )exp −Deff

2
Q2

3(0)λ−13( )
(20)

with

Qi(0) � γ∫
tf

0

dt′ e−λi t′ Gi′(t′) , i � 1, 2, 3. (21)

In the case when the jth eigenvalue λj is small, so is Qj (0)
due to the gradient echo condition, and the evaluation of
the corresponding exponent on the right hand side of
(Eq. 20) is numerically difficult. In this case, one can
make use of the Taylor expansion of the exponential in
(Eq. 21) yielding

exp −Deff

2
Q2

j(0)λ−1j( )
≈ exp −Deff

2
λjα

2
j − λ2jαjβj + λ3j

1
4
β2j +

1
3
αjδj( )[ ]( ), (22)

where

αj � γ∫
tf

0

dτ Gj′(τ) τ (23a)

βj � γ∫
tf

0

dτ Gj′(τ) τ2. (23b)

δj � γ∫
tf

0

dτ Gj′(τ) τ3. (23c)
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