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Owing to the strength in learning representation of the high-order connectivity of graph
neural networks (GNN), GNN-based collaborative filtering has been widely adopted in
recommender systems. Furthermore, to overcome the data sparsity problem, some recent
GNN-based models attempt to incorporate social information and to design contrastive
learning as an auxiliary task to assist the primary recommendation task. Existing GNN and
contrastive-learning-based recommendation models learn user and item representations
in a symmetrical way and utilize social information and contrastive learning in a complex
manner. The above two strategies lead to thesemodels being either ineffective for datasets
with a serious imbalance between users and items or inefficient for datasets with too many
users and items. In this work, we propose a contrastive graph learning (CGL) model, which
combines social information and contrastive learning in a simple and powerful way. CGL
consists of three modules: diffusion, readout, and prediction. The diffusion module
recursively aggregates and integrates social information and interest information to
learn representations of users and items. The readout module takes the average value
of user embeddings from all diffusion layers and item embeddings at the last diffusion layer
as readouts of users and items, respectively. The prediction module calculates prediction
rating scores with an interest graph to emphasize interest information. Three different
losses are designed to ensure the function of eachmodule. Extensive experiments on three
benchmark datasets are implemented to validate the effectiveness of our model.
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1 INTRODUCTION

With the rapid development of networks, it is becoming harder and harder for a user to extract useful
information from amass of redundant information. Recommender systems play an important role in
solving this problem and have become a promising solution for enhancing economic benefits in
many domains like e-commerce, social media, and advertising [1, 2]. The main task of recommender
systems is to provide interesting items for each user, which saves a lot of time for users and increases
turnover for companies. One of the most popular recommendation techniques is collaborative
filtering (CF), which infers each user’s interests to items based on collaborative behaviors of all users
without requiring the creation of explicit user and item profiles [3]. Matrix factorization (MF) is a key
component in most learnable CF models [4, 5], which decomposes the user–item interaction matrix
into two low-dimensional latent matrices for user and item representations [6]. However, MF-based
models do not encode user and item embeddings well as a result of insufficient collaborative signals.
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To yield satisfactory embeddings for CF, a graph neural network
(GNN) [7] has been successfully applied to recommender systems
[8–10]. Due to the high-order connectivity of GNN [11], GNN-
based models can mine collaborative signals including high-order
neighbors from abundant historical interactions; thus, it can
generate more powerful node representations. But in real-
world scenarios, it is always very hard to collect enough
historical interaction information. To overcome the problem
of data sparsity, many prior CF models [12–14] combine
social information with historical interaction information and
thus upgrade the recommendation performance. Recently, to
further solve the data sparsity, many studies introduced self-
supervised learning into recommender systems. The most
popular self-supervised learning technology is contrastive
learning, which has been successfully employed in many fields
[15–18]. Contrastive learning utilizes self-supervision signals in a
contrastive way, which pulls positive signals and target
embeddings together and pushes negative signals and target
embeddings away. To achieve better recommendation
performance, many existing recommendation models [19–21]
encode node embeddings by a GNN framework and
simultaneously resort to contrastive learning in the learning
process. Though these models take “social recommendation”
as one of their aims, they still have the following inherent
limitations that need to be addressed [13].

Firstly, existing GNN-based models [11, 22] learn
representations of users and items in the same way and do
not consider the different sparsities of users and items. In
real-world scenarios, users and items are usually different in
number or sparsity. For instance, in the Flickr dataset [23, 24], the
number of items is almost 10 times that of users. Due to the huge
difference in sparsity, high-quality representations of users may
be obtained earlier than items in the learning stage. Thus,
representations of users and items learned in the same way
might decrease the embedding quality and then degrade the
recommendation performance of models.

Secondly, although some social recommendation studies have
made efforts to combine contrastive learning and social behaviors,
it is still difficult to apply contrastive learning to social
recommendation in an appropriate way. On the one hand,
existing social recommendation models [19, 25] utilize contrastive
learning in a quite complex manner such as encoding hypergraph
and data augmentation. This complex manner may destroy the
original social graph structure and waste social information. On the
other hand, existing social recommendation models [19, 25] do not
directly utilize social information in the prediction process, which
might reduce the influence of social information. In a word, existing
contrastive learning manners increase the complexity of social
recommendation models but do not make full use of useful
information contained in social behaviors.

This paper explores how to overcome the above limitations in
existing recommendation models based on GNN and contrastive
learning and proposes a contrastive graph learning (CGL) model
for social recommendation. In social recommender systems, there
are two kinds of neighbors for each user: historically interacted
items and interacted users. Generally speaking, users with similar
preferences are more likely to be friends with each other in daily

life; likewise, intimate friends often have similar preferences.
Hence, it is reasonable to characterize each user’s preference
by item aggregation and friend aggregation separately and to
require user representations learned from the two views
(user–item graph or user–user graph) to have consistent
agreement [26]. This argument motivates us to simplify the
contrastive learning task between social user embeddings and
interest user embeddings. Moreover, to ensure that social user
embeddings take part in the prediction process as well, we learn
user embeddings in a diffused way inspired by some diffusion
models [9, 24]. At each layer in the diffusion process, integrated
user embeddings are obtained by taking the average value of
social user and interest user embeddings. Besides, to avoid the
negative effect of different sparsities in users and items [27], we
design an asymmetrical readout strategy for users and items,
which takes the average value of user embeddings from all
diffusion layers and item embeddings from the last diffusion
layer as their readouts, respectively. Since the task of our model is
to find out the right items for users instead of mining potential
social friends, we set up an extra interest graph for the final
aggregation at the end of our model. Therefore, it is very essential
to assure that historically interacted behaviors have a more
powerful effect on recommendation results than social behaviors.

To summarize, this work makes the following main
contributions:

• We successfully combine social information and interaction
information by contrastive learning in recommender
systems, which significantly improves the quality of
recommendation results.

• We design a new readout strategy to alleviate the imbalance
problem in the sparsity of users and items, which takes the
average value of user embeddings from all layers and item
embeddings from the last layer in the diffusion process as
their readouts, respectively.

• We construct a pointwise loss between users and items in a
contrastive way, which provides positive and negative
signals for items. We place this loss and a pairwise loss
in different modules to further promote the
recommendation performance.

• We compare the proposed model with six state-of-the-art
baselines on three real-world datasets, and experimental
results demonstrate the effectiveness of our model.

The rest of our paper is organized as follows. Section 2
summarizes some related works in recommender systems.
Section 3 introduces necessary notations and describes our
model. In Section 4, we give some experimental results to
validate the effectiveness of the proposed model and analyze
the effect of hyper-parameters. Section 5 concludes our work and
discusses some possible issues in future work.

2 RELATED WORK

We simply reviewMF-based recommendation models and GNN-
based recommendation models.
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2.1 MF-Based Recommendation
In recommender systems, many classic collaborative filtering
algorithms fall into the class of matrix factorization (MF) [28].
MF-based models project users and items into a low-dimensional
latent space and represent a user or an item by a vector [29]. The
inner product of a user vector and an item vector represents the
user’s satisfaction degree to the item. MF-based models have been
widely used as baselines in recommender systems. SocialMF [30]
employs the MF technique in social networks and assumes each
user’s features are dependent on his/her direct neighbors. So the
feature vector of each user is supposed to keep consistent with
social neighbors. TrustMF [31] considers a twofold influence of
trust propagation, which analyzes different implications between
truster to trustee and trustee to truster. To take advantage of these
two different effects on performance, TrustMF also proposes a
synthetic strategy to combine the truster model with the trustee
model [32]. NeuMF [33] is the first model that combines the
linearity of MF with the nonlinearity of the neural network. It
indicates the importance of pre-training in the combination of
two different models and achieves better performance than MF-
based models and deep neural network (DNN)-based models.
DASO [34] dynamically learns representations of users and items
by using the generative adversarial network (GAN) [35].

2.2 GNN-Based Recommendation
In recent years, GNNs have shown their effectiveness in the
recommendation field. GNNs aim to learn an embedding for each
node which contains the information of neighbors [36, 37]. As the
simplest GNN, LightGCN [22] does not have any complex
operations other than neighbor aggregation, but it still
achieves state-of-the-art performance for recommendation. In
social recommender systems, GNN is first used in GraphRec [38].
In this model, the attention mechanism is extensively applied to
aggregate neighbor information. After the aggregation process,
rating scores can be obtained by putting user and item
embeddings into a DNN. ConsisRec [39] takes social
inconsistency into consideration and categorizes it into the
context level and relation level. To solve the inconsistency at
the context level, it obtains consistency scores by calculating the
distance between neighbor embeddings and query embeddings
and then samples consistent neighbors by relating sampling
probability with consistency scores. After that, the attention
mechanism is adopted to solve the inconsistency at the
relation level. DiffNet++ [24] builds a unified framework to
diffuse the social influence of social networks and interest
influence of interest networks. Because information from
social networks and interest networks can be spread into each
other, it can receive different information in a recursive way,
thereby learning more powerful representations of graph nodes.
SGL [26] first introduces contrastive learning to recommendation
and improves the accuracy and robustness of GNNs for
recommendation. SGL generates graphs with different views
by changing the graph structure in different manners and then
utilizes supervised signals generated from these views to set an
auxiliary self-supervised learning task. SEPT [19] adopts
contrastive learning to social recommendation. It builds three
different views by data augmentation, and each view provides

supervision signals to other views. It employs contrastive learning
for social recommendation for the first time, which takes
recommendation and contrastive learning as the primary task
and auxiliary task, respectively.

3 CGL MODEL

In this section, we present our CGLmodel. An overview of CGL is
illustrated in Figure 1, which takes a user and an item as an
example. CGL consists of three modules with different functions.
The first one is a diffusion module, which builds connections
between interest interactions and social links and guides
the learning of representations in a recursive way. The second
one is a readout module, which constructs user embeddings
and item embeddings in an asymmetrical way to avoid the
imbalance problem of users and items. The third one is
a prediction module, which generates recommendations
for users.

Some necessary notations are defined in Section 3.1. Section
3.2, Section 3.3, and Section 3.4 introduce the diffusion module,
readout module, and prediction module, respectively. The
training of the model is given in Section 3.5. Finally, the
complexity of CGL is analyzed in Section 3.6.

3.1 Notations
To facilitate the reading, matrices appear in bold capital letters
and vectors appear in bold lowercase letters. Let U and V be the
set of m users and n items, respectively. Denote by Gr � (N , Er)
the user–item interest graph, whereN = U ∪ V and Er is the edge
set indicating interactions between users and items. Let Gs �
(T , Es) be the user–user social graph, where T ⊆ U and Es is the
edge set indicating social links among users. In this paper, we
keep all users in a social network, so T � U . For Gr, the binary
matrix R � [rij]m×n represents its user–item interactions, where
rij = 1 if user i has an interaction with item j; otherwise, rij = 0. For
Gs, the binary matrix S � [sij]m×m represents its user–user social
links, where sit = 1 if user i has a link with another user t;
otherwise, sit = 0.

For users and items, we encode two basic embedding matrices,
U(0) � [u(0)1 , u(0)2 , . . . , u(0)|U| ] and V(0) � [v(0)1 , v(0)2 , . . . , v(0)|V| ],
where u(0)i is a d-dimensional embedding of user i and v(0)j is
a d-dimensional embedding of item j. Starting fromU(0) andV(0),
a graph convolution operation is implemented on Gr and Gs to
produce user and item representations, respectively.

3.2 Diffusion Module
The diffusion module has L layers, and each layer consists of
aggregation on the interest graph, aggregation on the social graph,
and their integration. The input of the first layer is the initialized
user latent embedding u(0)i and item latent embedding v(0)j , and
the input of other layers is the output of their respective previous
layers. These layers recursively model the user’s latent preference
and the item’s latent preference propagation in two graphs with
layer-wise convolutions. LightGCN [22] is a brief graph
convolution network (GCN)-based general recommendation
model, which discards two standard operations in GCNs:
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feature transformation and nonlinear activation. We utilize
LightGCN to realize aggregation operations in CGL.

To aggregate interaction information in the interest graph Gr,
we collect the neighbor information of each node by the simple
way of LightGCN. Specifically, for a given user i and item j, let
u(l−1)i and v(l−1)j represent user embedding and item embedding
from the (l − 1)-th layer, respectively. Then the l-th layer interest
aggregation process is given by

p l( )
i � Aggitems v l−1( )

j ,∀j ∈ N i( ) � ∑
j∈N i

v l−1( )
j�������

|N i‖N j|
√ , (1)

v l( )
j � Aggusers u l−1( )

i ,∀i ∈ N j( ) � ∑
i∈N j

u l−1( )
i�������

|N j‖N i|
√ , (2)

whereN i is the set of items that are interacted by user i andN j is
the set of users that interact with item j. LightGCN keeps the same
normalization operation as standard GCNs [40]; i.e., the neighbor
number of the current node and aggregated node is utilized for
normalization during aggregating information. This strategy is
rather essential to avoid the unreasonable increase of embedding
in graph convolution operations.

To aggregate social information of the social graph Gs, we
perform node aggregation based on LightGCN as well. Note that
there are only user nodes in social graphs. Let u(l−1)i and T i be
user embeddings from the (l − 1)-th layer and the set of social
neighbors linked with user i, respectively. The l-th layer social
aggregation process is defined by

q l( )
i � Aggneighbors u l−1( )

t ,∀t ∈ T i( ) � ∑
t∈T i

u l−1( )
t�������|T i‖T t|

√ . (3)

As the above equation shows, LightGCN designs normalization
by taking the neighbor number of current trustee node and
aggregated truster node.

Aggregation on the interest graph generates user embedding
p(l)i and aggregation on the social graph produces user embedding

q(l)i . These two user embeddings contain different information
about user i and will be further integrated to generate user
embedding u(l)i at the l-th layer. We simply integrate p(l)i and
q(l)i by taking their average value. That is to say, we get integrated
user embedding at the l-th layer by

u l( )
i � p l( )

i + q l( )
i

2
. (4)

Then integrated user embedding u(l)i and aggregated item
embedding v(l)j are input into the (l + 1)-th layer so as to
diffuse interest and social information into two graphs. By
integrating social user embeddings and interest user
embeddings at each layer, we can update integrated user
embeddings consecutively. Consequently, the fusion between
social information and interest information becomes closer
and closer in the convolution process. Moreover, although
item embeddings do not take part in the diffusion process,
due to the high-order connectivity in GNN, social user
embeddings and item embeddings can still exert a powerful
influence on each other, especially when the diffusion process
becomes deeper.

The diffusion process of CGL is inspired by the validity of the
diffusion model DiffNet++, but it is much more concise than that
of DiffNet++. Unlike the Diffnet++, CGL does not absorb any
information from other attribute features of users or items and
introduce any attention mechanism. The former will take us a lot
of time to process attribute features, and the latter will use DNNs.
As such, the time complexity of our diffusion process is lower
compared with that of DiffNet++.

3.3 Readout Module
After the above L layer diffusion process, we construct readouts
for users and items, separately, and then these readouts are sent to
the last interest graph in the subsequent prediction module. Our
strategy for constructing readouts is different from existing GNN-
based recommendation models. In existing GNN-based models,
there are two strategies to prepare embeddings for the prediction

FIGURE 1 | The overall architecture of the proposed model.
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phase or other subsequent phases. One is taking the average value
of all layers’ embeddings for users and items, and the other is
taking the embedding value of the last stacked layer. Both these
strategies deal with users and items in a symmetrical manner,
which results in the model being unable to learn good
representations of users and items while the numbers of users
and items in the training data are very different. To alleviate the
problem, we integrate these two strategies to constitute readouts
of users and items and adopt the former for users and the latter
for items. Because of the massive use of social information, user
embeddings in each layer of the diffusion process contain some
collaborative signals, which can improve the quality of user
embeddings. Thus high-quality representations of users may
be generated in early stages of the diffusion process. That
encourages us to use all user embeddings in the diffusion
process to build readouts of users. Specifically, the readout ui
of user i is defined as the average of embeddings from all L layers
in the diffusion process:

ui � Rdoutusers u l( )
i |l � 1, . . . , L[ ]{ }( ) � 1

L
∑L
l�1

u l( )
i . (5)

For an item, its embedding in the early stage of the diffusion
process may be poor due to the large item number, sparsity, and
lack of auxiliary information. So the readout vj of item j is defined
as its embedding at the last layer in the diffusion process:

vi � Rdoutitems v l( )
i |l � 1, . . . , L[ ]{ }( ) � v L( )

j . (6)
From Eq. 5 and Eq. 6, it can be seen that our readout strategy is
asymmetrical for users and items.

3.4 Prediction Module
Considering that the task of recommendation is to predict
interactions between users and items, we add a separate
interest graph to emphasize the influence of interaction
information between their readouts. The interest graph
generates the final user embedding ûi and item embedding v̂j
by aggregating vjs and uis, respectively. That is,

ûi � Aggitems vj,∀j ∈ N i( ), (7)
v̂j � Aggusers ui,∀i ∈ N j( ). (8)

Then the prediction module defines the inner product between
the final user and item embeddings

r̂ij � < ûi, v̂j > . (9)
The inner product is taken as the ranking score to generate
recommendations.

3.5 Model Training
To train the model, we design a self-supervised loss for the
diffusion module and a supervised loss for the readout module
and prediction module. At each layer of the diffusion module, the
interest graph and social graph generate two user embeddings for
each user separately. In order to make the integration on them
more reasonable, we design a self-supervised loss to close two
embeddings of the same user. Users and items are two aspects of

recommender systems, and we can recommend items for a given
user or select users for a given item. According to these two tasks,
we design a supervised loss in the readout module and prediction
module, respectively. By jointly optimizing the above three losses,
we learn parameters in the model.

3.5.1 Self-Supervised Loss
We integrate social user embeddings and interest user embeddings by
Eq. 4 at each layer of the diffusion process. Such a direct integration
strategy can make the two groups of embeddings complement each
other but cannot guarantee that they know each other in the training
process. So, we introduce a social contrastive learning loss in the
diffusion module. The main idea comes from the assumption that
social behaviors can usually reflect the preference of a user. As a result,
the user’s embedding from the social graph is supposed to have a
close connection with that from the interest graph.

For convenience, let P(l) � [p(l)1 , p(l)2 , . . . , p(l)|U|] ∈ Rm×k be the l-
th interest aggregation matrix on the interest graph, where p(l)i is
calculated by Eq. 1. Similarly, Q(l) � [q(l)1 , q(l)2 , . . . , q(l)|V|] ∈ Rm×k

denote the l-th social aggregation matrix, where q(l)i is calculated
by Eq. 3. We first produce two user embedding matrices P and
Q by

P � ∑L
l�1P

l( )

L
, (10)

Q � ∑L
l�1Q

l( )

L
. (11)

We randomly ruffle matrix Q row-wise and column-wise in turn
and denote the ruffled one as ~Q

~Q � r Q( ), (12)
where r(·) is the ruffle operation. Then the i-th row of the user
embedding matrix can be a latent embedding of user i, and the j-
th row of the item embeddingmatrix can be a latent embedding of
item j. Thus, for user i and item j, we can get the interest user
embedding pi from P, real social user embedding qi from Q, and
fake social user embedding ~qi from ~Q. We assume that fake social
user embeddings are quite different from their corresponding
interest user embeddings. We minimize the agreement between
each fake social user embedding and its corresponding interest
user embedding, and the social contrastive learning loss in the
diffusion module can be formulated as

Lc−uu � ∑
i∈U

− log σ < pi, qi >( )( ) + log 1 − σ < pi, ~qi >( )( )( ),
(13)

where σ(·) is the sigmoid function.

3.5.2 Supervised Loss
In the prediction module, we can get rating scores by Eq. 9. To
assure observed interactions can achieve higher scores than
unobserved interactions, we employ the pairwise Bayesian
personalized ranking (BPR) loss as our primary loss to induce
model learning, which is proposed to make the observed
interactions be ranked in front of unobserved interactions. The
BPR loss in CGL is formulated as
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Lbpr � ∑
i,j+ ,j−( )∈R

−log σ r̂ij+ − r̂ij−( )( ), (14)

where R � {(i, j+, j−)|(i, j+) ∈ R+, (i, j−) ∈ R−} denotes training
data, R+ indicates observed interactions, and R− indicates
unobserved interactions. By minimizing the BPR loss, the
predictive score of an observed interaction could be enforced
to be higher than that of its unobserved counterparts. However, as
a pairwise loss, it ignores the entrywise consistency between
predictive scores and real scores. Besides, the BPR loss only
provides positive and negative signals for a given user, which
is unfair for items and makes it hard to learn good item
representations.

To overcome this shortcoming, we employ a pointwise loss as
a complement to the BPR loss and formulate it as

Lc−uv � ∑
j∈V

∑
i∈N j

−log exp < ui, vj >( )
∑
t∈U

exp < ut, vj >( ), (15)

where each ui and vj are given by Eqs 5 and 6, respectively.
Obviously, this loss provides positive and negative supervised
signals for a given item, instead of a given user. By minimizing
Eq. 15, predictive scores could be consistent with real scores. It
is worth mentioning that we define the loss in the readout
module instead of in the prediction module. This is different
from most existing heterogeneous losses that typically combine
the pointwise loss and pairwise loss in the prediction module.
The main reason is that we separate the predictive task and the
ranking task by using different user and item representations.
The pointwise loss focuses on users for a given item and
enhances the user representation directly derived from the
aggregation operation on both interest and social graphs.
And these enhanced user and item representations are used
to aggregate information on an interest graph for the
ranking task.

3.5.3 Final Loss
With the above three losses in three modules of the CGL model,
we set its final loss as

LCGL � Lbpr + αLc−uu + βLc−uv + λ‖Θ‖22, (16)
where α and β are two additional regularizers to control the
strength of Lc−uu and Lc−uv, respectively; Θ is the set of all
learnable parameters; and λ controls the strength of L2
regularization. The overall training process of CGL is given in
Algorithm 1.

Algorithm 1. The training process of CGL.

3.6 Complexity Analysis
The overall time complexity of CGL mainly comes from two
parts: aggregation on graphs and calculation on three losses. At
each iteration, training data aggregate neighbor information on
interest graphs L + 1 times and on social graphs L times. Thus, the
complexity of aggregation on interest graphs is O(|R|d(L + 1)),
which is only dependent on the latent dimension and the size of
rating data. Similarly, the complexity of aggregation on social
graphs is O(|S|dL). Compared with interest aggregation, besides
the difference in aggregation number, social aggregation has
fewer nodes in the graph structure. In short, the time
complexity of the aggregation operation on graphs increases
linearly with the size of training data, the dimension of latent
embedding, and the number of aggregation. For the complexity of
calculation on three losses, we only take the inner product
operation into consideration, since it produces the major
complexity in our model. Within a batch, the complexity of
the contrastive lossLc−uu isO(2Bd), where B is the batch size. For
another contrastive learning loss Lc−uv, we get its numerator by
calculating the inner product between each positive pair in a
batch; hence, the complexity of the numerator is O(Bd).
Likewise, the denominator is obtained by the product between
the user embedding matrix and item embedding matrix, and its
complexity is O(B2d). For the BPR loss, we calculate the inner
product of all positive pairs and negative pairs in each batch, and
its complexity is O(2Bd). Therefore, the total time complexity of
training CGL in one batch is O(|R|d(L + 1) + |S|dL + 5Bd +
B2d).

4 EXPERIMENTS

We conduct multiple experiments to verify the effectiveness of
CGL in this section. Experimental setup is introduced in Section
4.1. The performance of CGL is compared with six baselines in
Section 4.2. Section 4.3 analyzes the effects of different strategies
for the readout strategy and pointwise contrastive loss. Section
4.4 shows the performance of CGL under different hyper-
parameters. Note that we omit the percent sign of model
performance in all tables.

4.1 Experimental Setup
Experimental setup contains datasets, evaluation metrics,
baselines, and parameter settings.

4.1.1 Datasets
The task of our experiments is a top-K recommendation, and we
conduct experiments on three representative real-world datasets:
Yelp [24], Flickr [23], and Ciao [41].

• Yelp: This dataset is crawled from an online location-based
review site, Yelp. Users on the site are encouraged to interact
with others and express their opinions through the form of
reviews and ratings. The ratings data are converted into
implicit feedback as the dataset. The itemset of this dataset
includes a variety of locations visited or reviewed by users.
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And the relationship among users can be found out directly
in terms of the friend list of users.

• Flickr: This dataset is crawled from one of the largest social
image-sharing platforms, Flickr. In this platform, users can
share their preferences in images with their social followers
and follow the people they are interested in. So, social
images make up the itemset, and the social relationship
can be confirmed through followers of users.

• Ciao: This dataset is crawled from an online shopping site,
Ciao. On the site, people not only write critical reviews for
various products but also read and rate the reviews written
by others. Furthermore, people can add members to their
trust networks or “Circle of Trust”, if they find their reviews
consistently interesting and helpful [41]. The itemset of this
dataset includes a variety of goods.

The above three datasets can be publicly downloaded online
(Yelp and Flickr,1 and Ciao2) provided by [19, 23], and their
statistics are summarized in Table 1. Following many previous
works [9, 24], we convert all explicit ratings into implicit ratings
and remove repeated ratings in each dataset. Similar to [30], we
only focus on the social information in these datasets and do not
consider the attribute information of users and items. Finally, we
randomly select 10% of rating data as testing set and the rest as
training set.

4.1.2 Evaluation Metrics
For all models, we perform item ranking on all candidate items
and evaluate the performance of each model with Precision@K,
Recall@K, and NDCG@K metrics, which are three widely used
evaluation protocols. The NDCG metric is sensitive to rank, and
the other two metrics can measure the relevancy of the
recommendation list.

4.1.3 Baselines
• MF-BPR [42]: It exploits how to represent users and items
in a low-dimensional latent space, which is optimized by the
BPR loss.

• SocialMF [30]: It combines social information and purchase
information through the form ofMF. For a specific user, this
model focuses on not only items purchased by the user but
also social neighbors around the user.

• LightGCN [22]: It is a light version of the GNN-based
model and only performs aggregation operations. As a state-
of-the-art model, it has been widely used as a baseline in
many recommender system studies.

• SEPT [19]: It builds complementary views of the raw data so
as to provide self-supervision signals (pseudo-labels) to
participate in the contrastive learning. To ensure the
effectiveness of contrastive learning, it simultaneously
employs the tri-training scheme to coordinate the
labeling process.

• SGL [26]: It constructs different views by perturbing the raw
data graph with uniform node/edge dropout and then
conducts self-discrimination-based contrastive learning
over these views to learn node representations.

• DiffNet++ [24]: It recursively diffuses different information
into social networks and interest networks, which can be
used without attribute information fusion and attention
mechanism.

4.1.4 Settings
For a fair comparison, all models are optimized by the Adam
optimizer [43] and initialized in the same way. The size of each
batch is set to 2,048, and the dimension of the latent vector is
tuned in {8, 16, 32, 64, 128}. It is worth noting that MF-based
models are often different from GNN-based models in L2
regularization. In order to ensure that all models can achieve
good results, the L2 regularization coefficient λ is chosen from {1.0
× 10–1, 1.0 × 10–2} for MF-based models and from {1.0 × 10–4, 5.0
× 10–5, 1.0 × 10–5} for GNN-based models. The learning rate is
tuned in {1.0 × 10–2, 5.0 × 10–3, 1.0 × 10–3}, and the maximum
train epoch is 150. For α and β, we tune them in different ranges
on three datasets. On Yelp, α and β are searched in {4.0 × 10–4, 4.0
× 10–5, 4.0 × 10–6, 4.0 × 10–7, 4.0 × 10–8} and {6.5 × 10–1, 6.5 ×
10–2, 6.5 × 10–3, 6.5 × 10–4, 6.5 × 10–5}, respectively. On Flickr, α
and β are tuned in {1.6 × 10–4, 1.6 × 10–5, 1.6 × 10–6, 1.6 × 10–7, 1.6
× 10–8} and {8.5 × 10–5, 8.5 × 10–6, 8.5 × 10–7, 8.5 × 10–8, 8.5 ×
10–9}, respectively. On Ciao, α and β are tuned in {2.0 × 10–5, 2.0 ×
10–6, 2.0 × 10–7, 2.0 × 10–8, 2.0 × 10–9} and {1.0 × 10–0, 1.0 × 10–1,
1.0 × 10–2, 1.0 × 10–3, 1.0 × 10–4}, respectively. Our experiments
are implemented in PyTorch.

4.2 Overall Performance Comparison
We evaluate our proposed CGL model by comparing it with six
baselines. For all models, we exhibit the performance of the top
10, top 15, and top 20 in Table 2, Table 3, and Table 4,
respectively. From these tables, we have the following
observations:

• CGL outperforms all baselines on Yelp and Flickr by a large
margin. On Yelp, the average top-K (10, 15, 20)
improvement of CGL on Precision, Recall, and NDCG is
6.60%, 5.77%, and 6.63%, respectively. On Flickr, the
average top-K (10, 15, 20) improvement of CGL on
Precision, Recall, and NDCG is 9.76%, 10.80%, and

TABLE 1 | The statics of datasets.

Dataset Users Items Ratings Links Rating density (%) Link density (%)

Yelp 17,237 38,342 204,448 143,765 0.03 0.05
Flickr 8,358 82,120 327,815 187,273 0.05 0.27
Ciao 7,317 104,975 283,319 111,781 0.04 0.21

1https://github.com/PeiJieSun/diffnet
2https://https://github.com/Coder-Yu/QRec
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10.01%, respectively. On Ciao, the average top-K (10, 15, 20)
improvement of CGL on Precision, Recall, and NDCG is
−2.17%, 3.97%, and 2.06%, respectively. Although CGL’s
performance on Ciao is not as good as that on Yelp and
Flickr, it is still the best or second best among all models in
terms of the three metrics. Since the overall performance of
all models is similar when K = 10, K = 15, and K = 20, we
only discuss the case of K = 20 in the subsequent
experiments.

• Nearly all GNN-based models (e.g., LightGCN, DiffNet++,
and SGL) perform much better than MF-based models
(MF-BPR and SocialMF), which demonstrates the
important role of GNNs for the recommendation task.
We also observe that some GNN-based models
(DiffNet++ and SEPT) incorporate the social
information, but cannot beat other models without social
information on some metrics. It illustrates that though
social behaviors may reflect a person’s interest
information to an item indeed, it is hard to
mathematically design a reasonable and effective manner

to utilize social information. Fortunately, CGL performs
better than almost all baselines, which proves that
contrastive learning in CGL can ensure the effectiveness
of the social information.

• Compared with its performance on Yelp and Ciao, CGL
brings more improvement on Flickr. As Flickr has much
denser social information, this may indicate that CGL can
make full use of social information. Besides, by analyzing the
performance of DiffNet++ and CGL on Ciao, we conclude
that there may be much noise in the raw data of Ciao so that
it is hard to improve the recommendation performance by
directly diffusing social information and interest
information. Naturally, SGL shows better performance on
some metrics because self-discrimination-based contrastive
learning can help to alleviate noise effect greatly.

Moreover, to concretely investigate the impact of contrastive
learning and the diffusion process on the model, we further
compare CGL with two other GNN-based models (LightGCN
and DiffNet++) at each layer and show the relevant results in

TABLE 2 | Overall comparison (K = 10). The best results are in bold.

Models Yelp Flickr Ciao

Prec Rec NDCG Prec Rec NDCG Prec Rec NDCG

MF-BPR 0.396 2 2.222 1.238 0.253 4 0.569 8 0.466 9 1.065 3.127 2.199
SocialMF 0.403 0 2.251 1.247 0.250 0 0.570 7 0.463 4 1.163 3.255 2.406
LightGCN 0.479 7 2.650 1.563 0.316 8 0.784 7 0.636 6 1.699 4.240 3.531
SEPT 0.441 8 2.479 1.366 0.262 0 0.609 0 0.501 6 1.647 4.082 3.260
SGL 0.482 6 2.662 1.535 0.335 6 0.863 5 0.642 4 1.775 4.344 3.753
DiffNet++ 0.515 6 2.819 1.633 0.344 2 0.884 3 0.705 6 1.596 4.026 3.342
CGL 0.535 1 2.940 1.726 0.375 0 0.991 3 0.766 4 1.757 4.522 3.610

TABLE 3 | Overall comparison (K = 15). The best results are in bold.

Models Yelp Flickr Ciao

Prec Rec NDCG Prec Rec NDCG Prec Rec NDCG

MF-BPR 0.376 1 3.165 1.523 0.224 9 0.748 5 0.521 0 0.964 3 4.133 2.544
SocialMF 0.367 1 3.072 1.497 0.230 6 0.798 3 0.532 1 1.050 4.326 2.765
LightGCN 0.451 2 3.738 1.881 0.297 9 1.071 0.728 7 1.444 5.405 3.868
SEPT 0.413 7 3.459 1.664 0.226 0 0.732 1 0.542 7 1.426 5.147 3.602
SGL 0.457 7 3.814 1.884 0.295 7 1.112 0.718 1 1.494 5.520 4.093
DiffNet++ 0.459 0 3.761 1.951 0.318 5 1.202 0.812 0 1.371 5.096 3.683
CGL 0.499 8 4.101 2.077 0.349 3 1.365 0.900 6 1.540 5.788 4.036

TABLE 4 | Overall comparison (K = 20). The best results are in bold.

Models Yelp Flickr Ciao

Prec Rec NDCG Prec Rec NDCG Prec Rec NDCG

MF-BPR 0.358 3 4.042 1.760 0.208 9 0.929 6 0.575 0 0.879 1 4.942 2.802
SocialMF 0.365 1 4.095 1.776 0.217 5 0.991 3 0.590 7 0.979 4 5.385 3.094
LightGCN 0.445 2 4.946 2.236 0.275 6 1.270 0.794 0 1.298 6.478 4.181
SEPT 0.397 7 4.487 1.946 0.229 5 0.981 0 0.627 3 1.237 5.916 3.832
SGL 0.429 2 4.774 2.144 0.271 4 1.321 0.785 5 1.314 6.332 4.344
DiffNet++ 0.434 6 4.723 2.238 0.300 5 1.516 0.905 9 1.235 6.105 4.017
CGL 0.477 3 5.217 2.409 0.334 8 1.618 0.994 2 1.368 6.669 4.287
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Table 5 (K = 20). From the table, we have the following
observations:

• CGL outperforms LightGCN and DiffNet++ at the first and
the third layers on both Yelp and Flickr with respect to all
metrics. At the second layer, CGL still achieves the best
performance except Recall and NDCG on Flickr. On Ciao,
our model reaches its best performance at the first layer, and
the performance is better than that of DiffNet++ and
LightGCN at any layer. These experiment results
illustrate the superiority of our model and the necessity
of constructing supervised loss for social user
representations.

• The overall performance of LightGCN at each layer is better
than that of Diffnet++ on Yelp. However, DiffNet++
performs better than LightGCN on Flickr. A possible
reason is that directly diffusing social information
without any supervised measure cannot guarantee the
validity of social information, especially while social
information is inadequate. However, the performance of
DiffNet++ is inferior to that of LightGCN on Ciao; we infer
there may be much noise in this dataset and it makes a
negative effect on the diffusion process. We will further
validate our argument in the parameter analysis
experiments.

• LightGCN reaches its best performance at the third layer on
Yelp and at the second layer on Flickr and Ciao. DiffNet++
has a similar trend with LightGCN at each layer, even
though it incorporates social information. CGL achieves
its best results at the third layer on Yelp and Flickr and at the
first layer on Ciao. The difference between the trend of CGL
and the other two models may be attributed to two aspects.
Firstly, when there exists few noise in the raw data of rating
data and social links, a deeper diffusion layer can help the

model extract useful information from them. Secondly, if
there exists a lot of noise in the raw data, a deeper diffusion
layer will have a negative effect on the model since noise will
be diffused at each layer.

Lastly, we show the runtime of each model on three datasets in
Table 6 so as to evaluate the model performance thoroughly. The
layer number is set as three for all GNN-based models to assure
the fairness of comparison. From Table 6, we can see that the
average time of our model for each epoch is about 25 s, which is
much less than SEPT and SGL. Considering the excellent
performance of CGL, we conclude it is efficient and effective.

4.3 Component Study
We analyze the impact of the readout strategy and the pointwise
loss in the readout module of CGL in this section. For the readout
strategy, CGL employs the average values of user embeddings
from all layers in the diffusion process and item embeddings from
the last layer, which is an asymmetrical manner for users and
items and originates from the huge difference in number and
sparsity of users and items. To validate the effectiveness of this
asymmetrical readout strategy in CGL, its two variants are
designed to compare their performance, which uses two
common symmetrical readout strategies. One variant is
denoted by CGL-M, which takes the average value of user and
item embeddings from all layers in the diffusion process as
readouts of users and items, respectively. The other is CGL-L,
which treats embeddings from the last layer in the diffusion
process as readouts of users and items. Experimental results of
CGL and its variants on three datasets are given in
Table 7 (K = 20).

From Table 7, we can see that CGL outperforms CGL-M and
CGL-L on all three datasets, which indicates the superiority of our
asymmetrical readout strategy. Note that the structures of CGL

TABLE 5 | Comparison of CGL and two GNN-based baselines at each layer (K = 20). The best results at each layer are in bold.

Models # Layer Yelp Flickr Ciao

Prec Rec NDCG Prec Rec NDCG Prec Rec NDCG

LightGCN 1 0.405 9 4.434 2.033 0.197 8 0.970 0.557 1 1.135 6.105 4.017
DiffNet++ 1 0.400 6 4.403 2.019 0.230 3 1.213 0.675 2 1.181 5.952 3.735
CGL 1 0.450 1 4.600 2.287 0.309 1 1.377 0.913 7 1.368 6.669 4.287
LightGCN 2 0.434 5 4.891 2.177 0.275 6 1.270 0.794 0 1.298 6.478 4.181
DiffNet++ 2 0.432 1 4.723 2.218 0.300 5 1.517 0.905 9 1.235 6.105 4.017
CGL 2 0.475 3 5.324 2.405 0.303 1 1.475 0.861 1 1.255 6.538 4.062
LightGCN 3 0.445 2 4.946 2.236 0.264 6 1.214 0.751 5 1.251 6.578 4.018
DiffNet++ 3 0.434 6 4.723 2.238 0.297 1 1.477 0.862 5 1.226 6.031 3.885
CGL 3 0.477 3 5.217 2.409 0.334 8 1.618 0.994 2 1.275 6.501 3.947

TABLE 6 | Average epoch runtime of all models (seconds).

Datasets Time/Epoch

MF-BPR SocialMF LightGCN SEPT SGL DiffNet++ CGL

Yelp 5.32 6.44 10.71 45.69 22.22 12.71 15.20
Flickr 7.03 8.57 19.56 134.61 45.87 22.81 28.19
Ciao 8.30 9.23 20.54 93.40 46.04 21.88 26.80

Frontiers in Physics | www.frontiersin.org March 2022 | Volume 10 | Article 8308059

Zhang et al. Contrastive Learning for Recommendation

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


and CGL-L are identical when we fix the layer number at one,
which explains why they have the same performance on Ciao
(they achieve their best results at the first layer). Moreover, CGL
exceeds CGL-M and CGL-L by a bigger margin on Flickr and
Ciao than on Yelp. It is worth noting that the imbalance between
the number of users and items in Flickr (8,358 vs. 82,120) and
Ciao (7,317 vs. 104,975) is much more serious than that in Yelp
(17,237 vs. 38,342). So, the bigger margin further demonstrates
that the asymmetrical readout strategy in CGL can effectively
alleviate the bad effect of the imbalance between users and items.

CGL has a pointwise loss Lc−uv in the readout module and a
pairwise BPR loss in the prediction module, but existing models
usually combine these two losses in the prediction module. To
investigate the benefit of placing two losses separately in CGL, we
transfer Lc−uv together with the BPR loss in the prediction
module, take corresponding mode as a CGL variant, and
denote it by CGL-P. Experimental results of CGL-P and CGL
on all datasets are given in Table 8 (K = 20).

From Table 8, we can see that CGL achieves better
performance on all datasets with respect to all three metrics
compared with CGL-P. This indicates that the performance of
CGL is affected by the position of Lc−uv and that it is better to put
it in the readout module. Actually, the pointwise Lc−uv loss and
the pairwise BPR loss emphasize different aspects of user and
item embeddings, and they should be placed in different positions
according to different goals. The pointwise loss focuses on the
entrywise consistency between user embeddings and item
embeddings, which is used to provide accurate profiles of

users and items and should be put before the aggregation in
the prediction module. However, the pairwise loss focuses on the
consistency between observed and unobserved interactions,
which is used to improve ranking performance and should be
set after the aggregation in the prediction module.

4.4 Parameter Analysis
Impacts of α, β, and embedding size d on CGL are analyzed,
where α and β are two unique parameters of our model to control
the strength of contrastive losses Lc−uu and Lc−uv. Experimental
results of CGL with different α, β, and d values are given in
Table 9, Table 10, and Table 11 (K = 20), respectively. For the
simplicity of expression, we omit the coefficient of α (4.0 on Yelp,
2.0 on Ciao, and 6.5 on Flickr) in Table 9 and the coefficient of β
(1.6 on Yelp, 1.0 on Ciao, and 8.5 on Flickr) in Table 10.

From Table 9, we can see that on Yelp and Flickr, all three
metrics achieve their peaks while tuning α in its parameter range.
This illustrates that Lc−uu can have a stable influence on the
model even though it faces different sparsities of social
information in different datasets. When α is bigger than a
certain number (10–5 for Yelp and Flickr and 10–7 for Ciao),
the performance of CGL degrades. This phenomenon indicates
that placing too much emphasis on the consistency between
social behaviors and historical interactions will destroy the
learning process of model parameters. When α is smaller than
10–6, CGL generates worse performance on Yelp and Flickr as
well. This is because social behaviors and historical interactions
can provide supervised signals for each other, and it is

TABLE 7 | Comparison of CGL and its variants with different readout strategies (K = 20). The best results are in bold.

Models Yelp Flickr Ciao

Prec Rec NDCG Prec Rec NDCG Prec Rec NDCG

CGL-M 0.442 3 4.943 2.240 0.244 9 1.152 0.723 1 1.186 5.827 3.730
CGL-L 0.456 0 5.025 2.294 0.297 1 1.438 0.858 4 1.368 6.669 4.287
CGL 0.477 3 5.217 2.409 0.334 8 1.618 0.994 2 1.368 6.669 4.287

TABLE 8 | Comparison of CGL and its variant with different pointwise loss positions (K = 20). The best results are in bold.

Models Yelp Flickr Ciao

Prec Rec NDCG Prec Rec NDCG Prec Rec NDCG

CGL-P 0.471 0 5.206 2.386 0.333 9 1.616 0.987 9 1.333 6.577 4.260
CGL 0.477 3 5.217 2.409 0.334 8 1.618 0.994 2 1.368 6.669 4.287

TABLE 9 | Performance of CGL with respect to different values of α (K = 20). The best results are in bold.

Yelp Flickr Ciao

α Pre Rec NDCG α Prec Rec NDCG α Prec Rec NDCG

10–4 0.434 1 4.735 2.201 10–4 0.297 1 1.578 9.201 10–5 1.323 6.543 4.141
10–5 0.465 1 5.241 2.358 10–5 0.322 8 1.651 9.556 10–6 1.339 6.579 4.291
10–6 0.477 3 5.217 2.409 10–6 0.334 8 1.618 9.942 10–7 1.368 6.669 4.287
10–7 0.470 5 5.232 2.376 10–7 0.326 2 1.607 9.613 10–8 1.363 6.670 4.304
10–8 0.469 0 5.187 2.352 10–8 0.326 2 1.598 9.522 10–9 1.363 6.669 4.307
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unreasonable to set α to be too small. So it is important to find a
suitable α value to balance the effect between two behaviors.
However, on Ciao, CGL performs well when α is set to be small.
This shows evidence that there exists too much noise in the
dataset and explains the reason why DiffNet++ performs badly.
In general, we suggest to carefully tune α in the range of
[10–5, 10–7].

From Table 10, we observe that on Yelp all three metrics have
relatively large fluctuation ranges while increasing β from 10–1 to
10–5 and Recall achieves its best result at a β value (10–5) quite
different from that of Precision and NDCG (10–3). However, on
Flickr and Ciao, all three metrics keep relatively stable, and they
achieve their best results at the same β value. Moreover, β is tuned
in quite different ranges on three datasets. CGL achieves the best
performance at a larger β value on Ciao and Flickr and a smaller
value on Yelp. The reason might be that these datasets have
different sparsities in rating information. Compared with Yelp
and Ciao, Flickr provides denser social information and interest
information to train the model, which makes the model
insensitive to parameter β and easy to train. On Yelp and
Ciao, there is not enough social information or there exists
too much noise, so the model depends more on the supervised
signals in Lc−uv. In general, a larger value is suggested for β for
sparse datasets and a smaller value for dense datasets. By
considering the overall performance, we suggest to carefully
choose β in [10–2, 10–3] on spare datasets and in [10–5, 10–6]
on dense datasets.

To investigate the influence of the embedding size d, we adjust
its value from 8 to 128 and give the corresponding results in
Table 11 (K = 20). On Yelp and Ciao, CGL improves its
performance gradually while increasing the value of d. This is
easy to understand, since a larger embedding size corresponds to
more powerful user and item representations. On Flickr, the
model performance increases while d increases from 8 to 64 and
then decreases. One possible reason is that Flickr has denser
interest information and social links than the other two datasets,

and a too large embedding size might result in overfitting in
learning user and item representations. In a nutshell, we may set
the embedding size to 64 to compromise the complexity and
effectiveness.

5 CONCLUSIONS AND FUTURE WORK

In this work, we present a CGL-based model for social
recommendation, which explores how to effectively combine
social information and interest information in a contrastive
way. Aiming to overcome the problem of imbalance of users
and items, we design an asymmetrical readout strategy to get user
embeddings and item embeddings. Besides, to make full use of
social information and alleviate the problem of data sparsity, we
also introduce a self-supervised loss and a supervised pointwise
loss, respectively. We conduct multiple experiments on three real-
world datasets, and the experimental performance verifies that
our model is simpler but more powerful than other social
recommendation models [19, 25].

Although our model improves the recommendation
performance significantly, there still exist some limitations. For
example, we only fuse social user embeddings and interest user
embeddings in the diffusion module, which may limit the
influence of items. Our model can utilize social information
efficiently, but the model’s performance degrades when the
social information is not enough. In addition, the proposed
model may be extended by modeling multiple auxiliary
information [33], such as user reviews [44], knowledge bases
[45], and temporal signals [46]. And supervised signals are mined
from the auxiliary information, and then different losses are
designed to drive the model training. Inspired by the
effectiveness of adversarial learning, an adversarial process
between different views can also be considered in the model.
Although some works [34, 47] have explored adversarial learning
in recommendation, they are complex and hard to train. A simple

TABLE 10 | Performance of CGL with respect to different values of β (K = 20). The best results are in bold.

Yelp Flickr Ciao

β Prec Rec NDCG β Prec Rec NDCG β Prec Rec NDCG

10–1 0.401 5 4.315 1.939 10–5 0.334 8 1.600 9.779 10–0 1.108 5.063 3.365
10–2 0.465 1 5.155 2.313 10–6 0.334 8 1.618 9.942 10–1 1.310 6.151 3.868
10–3 0.477 3 5.217 2.409 10–7 0.334 1 1.596 9.825 10–2 1.368 6.669 4.287
10–4 0.473 4 5.230 2.373 10–8 0.330 5 1.595 9.822 10–3 1.330 6.566 4.284
10–5 0.474 8 5.279 2.361 10–9 0.330 5 1.595 9.825 10–4 1.312 6.501 4.219

TABLE 11 | Performance of CGL with respect to different embedding sizes d (K = 20). The best results are in bold.

Yelp Flickr Ciao

β Prec Rec NDCG Prec Rec NDCG Prec Rec NDCG

8 0.427 8 4.811 2.142 0.267 1 1.297 7.584 1.064 5.532 3.001
16 0.446 7 4.932 2.285 0.293 7 1.420 8.664 1.196 5.898 3.338
32 0.467 1 5.154 2.352 0.318 5 1.549 9.211 1.274 6.386 3.898
64 0.477 3 5.217 2.409 0.334 8 1.618 9.942 1.368 6.669 4.287
128 0.477 3 5.240 2.421 0.324 5 1.589 9.555 1.384 6.747 4.486
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way to utilize adversarial learning in social recommendation is
worth being investigated.
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