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Convolutions are important structures in deep learning. However, theoretical analysis on the
dependence amongmulti-layer convolutions cannot be found until now. In this paper, the image
pixels before, in, and after multi-layer convolutions are of modifiedmultifractional Gaussian noise
(mmfGn). Thus, their Hurst parameters are calculated. Based on these, we applied mmfGn
model to analyze the dependence of gray levels of multi-layer convolutions of the image pixels
and demonstrate their short-range dependence (SRD) or long-range dependence (LRD), which
can help researchers to design better network structures and image processing algorithm.
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1 INTRODUCTION

Deep learning models are composed of multiple convolution layers to learn features of images [1, 2].
However, so far, the theoretical analysis on dependence among multi-layer convolutions have not
been reported.

Fractional Brownian motion (fBm) is commonly used in modeling fractal time series. The fBm of
the Weyl type is defined by [3–5]

BH(t) − BH(0) � 1
Γ(H + 0.5)

⎧⎪⎨⎪⎩∫0

−∞
[(t − u)H−0.5 − (−u)H−0.5]dB(u) + ∫t

0
(t − u)H−0.5dB(u)

⎫⎪⎬⎪⎭ (1)

where 0 <H < 1 is the Hurst parameters.
Its auto-correlation function (ACF) of the Weyl type is

CfBm(t, s) � VH

(H + 0.5)Γ(H + 0.5) [
∣∣∣∣t∣∣∣∣2H + ∣∣∣∣s∣∣∣∣2H − ∣∣∣∣t − s

∣∣∣∣2H] (2)
where

VH � Γ(1 − 2H) cosπH
πH

(3)

The fBm is nonstationary, but it has a stationary increment. The process fBm reduces to the
standard Brownian motion when H = 0.5.

Based on the dependence theory, the main contributions of this paper are:

1) Discuss dependence of image multi-layer convolutions by assuming that gray levels of multi-layer
convolutions of an image pixel are of modified multifractional Gaussian noise (mmfGn).

2) Calculate the time-varing Hurst parameters by point-by-point basis to discuss the dependence of
different pixels.
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The remainder of this paper is as follows: the second section
introduces the preliminaries on fractional Gaussian noise (fGn)
and mmfGn; the third section gives a case study. Finally, the
conclusions and acknowledgments are given.

2 PRELIMINARIES

2.1 Fractional Gaussian Noise
The fGn is the derivative of the fBm. Its ACF is:

CfGn(τ) � VH

2
[(|τ| + 1)2H + (|τ| − 1)2H − 2

∣∣∣∣τ∣∣∣∣2H] (4)

where

VH � Γ(1 − 2H) cosπH
πH

(5)

fGn is of long-range dependence (LRD) for 0.5 <H < 1 and is of
short-range dependence (SRD) for 0 <H < 0.5. If H = 0.5, fGn
reduces to the white noise [5–7].

FIGURE 1 | The 64-dimensional column vectorG = [G(1),G(2),...,G(63),G(64)]Twhose components are the gray levels of multi-layer convolutions on pixel (75, 80).
Top: the components of the 64-dimensional column vector on pixel (75, 80). Left bottom: the plot of the 64-dimensional vector whose x-axis represents the convolution
layers and y-axis represents the gray levels of convolution layers on pixel (75, 80). Right bottom: time-varying Hurst parameters H(t) of mmfGn of the 64-dimensional
column vector of pixel (75, 80) using Eqs 7 and 8 where n = 64, k = 16.

FIGURE 2 | Left: the test image and the selected pixel (70, 171). Right: the time-varying Hurst parameters H(t) of pixel (70, 171).
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2.2 Modified Multifractional Gaussian Noise
Let G(t) be the mmfGn. The ACF of mmfGn is [6]

CmmfGn(τ) � VH(t)
2

[(|τ| + 1)2H(t) + ∣∣∣∣∣∣∣∣τ∣∣∣∣ − 1
∣∣∣∣2H(t) − 2

∣∣∣∣τ∣∣∣∣2H(t)]
(6)

The condition of mmfGn to be of LRD is 0.5 <H(t) < 1, while
to be of SRD is 0 <H(t) < 0.5.

Based on the local growth of the increment process, Peltier and
Levy-Vehel gave H(t) estimator in Eqs 7 and 8 [8–11].

Let n be the number of data of a sample mmfGn and G(i) be
the ith sample point. Let k (1 < k < n) be the length of the
neighborhood used for estimating the functional parameter
H(i). The H(i) will be estimated only for i = [k/2] + 1, [k/
2] + 2, ..., n − 1 where [k/2] is the integral part of k/2. Let
m = [n/k] be the integral part of n/k. Then the estimator of
H(i) is [8]:

Ĥ(i) � −log[
�
π
2

√
Sk(i)]

log(n − 1) (7)
where

Sk(i) � m

n − 1
∑j�i+[k/2]

j�i−[k/2]

∣∣∣∣∣∣∣∣∣∣G(j + 1) − G(j)
∣∣∣∣∣∣∣∣∣∣ (8)

3 CASE STUDY AND DISCUSSION

3.1 Data in Case Study
Tire.tif in matLab is chosen as test data. The image is
convoluted 64 times by randomly generated 3 × 3 masks
whose sum is equal to 1. Thus, the normalized gray levels
in [0 1] of multi-layer convolutions on each pixel in the image
will form a 64-dimensional column vector G = [G(1), G(2),...,
G(63), G(64)]T; see top image of Figure 1. We will discuss the
dependence among the components of each 64-dimensional
vector.

3.2 H(t) of mmfGn
We now study the dependence of samples among multi-layer
convolution by computing H(t) of mmfGn for each 64-
dimensional vector. That is, the 64-dimensional vector is of
mmfGn; the time-varying Hurst parameter H(t) of samples
should be calculated to feature the local similarity of the
vectors.

The H(t) is calculated using Eqs 7 and 8: the sample number
n = 64, and the length of the neighborhood k = 16. Thus, the
Hurst parameter H(t) will be estimated only for t = 9, 10, ..., 55.
H forms a 55-dimensional vector with 8 zeros on the 1st to 8th
positions.

Tire.tif in MatLab is used to discuss the dependence of 64-
dimensional vectors of a pixel. Since gray levels of multi-layer
convolution of each of image pixel form a 64-dimensional vector
whose time-varying Hurst parameter H(t) is a 55-dimensional
vector, we can obtain a 3-dimensional matrix to record H(t) of
image pixels with W × L × 55 where W is the width of the image
and L is the length of the image.

The condition of mmfGn to be of LRD is 0.5 <H(t) < 1, while
to be of SRD it is 0 <H(t) < 0.5.

DISCUSSION

In order to discuss the dependence of different pixels of 64-
dimensional vector G, two pixels are selected, and their time-
varying Hurst parameter H(t) of mmfGn is shown in the bottom
right of Figure 1 and the right of Figure 2. In Figure 1, the Hurst
parameter H(t) of pixel (75, 80) is less than 0.5 for t = 1,...,55.
Thus, G of pixel (75, 80) is of SRD. But the Hurst parameter H(t)
of pixel (70, 171) is larger than 0.5 for t = 9,..., 55 in Figure 2. It is
of LRD.

From the above discussion, the dependence of 64-dimensional
vectors of some pixel are of LRD, while for other pixels, they are
of SRD.

We think the above dependence of image multi-layer
convolution coincides with the nature of images and is a very
promising character in designing a deep neural network. Maybe,
we can design more powerful algorithms and networks with
smaller computation cost.

CONCLUSION

The dependence of samples of multi-layer convolutions has been
discussed. Based on the model of mmfGn, we found that each
pixel with a 64-dimensional vector has the statistical dependence
of either LRD or SRD on a pixel-by-pixel basis, relying on the
value of H(t) of image pixels.
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