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The sandpile cellular automata, despite the simplicity of their basic rules, are adequate
mathematical models of real-world systems, primarily open nonlinear systems capable to
self-organize into the critical state. Such systems surround us everywhere. Starting from
processes at microscopic distances in the human brain and ending with large-scale water
flows in the oceans. The detection of critical transitions precursors in sandpile cellular
automata will allow progress significantly in the search for effective early warning signals for
critical transitions in complex real systems. The presented paper is devoted to the
detection and investigation of such signals based on multifractal analysis of the time
series of falls of the cellular automaton cells. We examined cellular automata in square
lattice and random graphs using standard and facilitated rules. It has been established that
log wavelet leaders cumulant are effective early warningmeasures of the critical transitions.
Common features and differences in the behavior of the log cumulants when cellular
automata transit into the self-organized critical state and the self-organized bistability state
are also established.

Keywords: early warning signals, sandpile cellular automata, self-organized criticality, selforganized bistability,
wavelet leaders method, log-cumulants, multifractal formalism

INTRODUCTION

Open complex systems usually operate in a nonequilibrium state, which can lead to the appearance of
fluctuations in them, induced by external influence. When the initial structureless state is lost, which
is an extrapolation of the equilibrium state to nonequilibrium conditions, a critical transition occurs
in the system, leading to the emergence of new stationary states. In addition to the specified critical
transition that occurs as a result of bifurcations (the so-called bifurcation-induced critical transition),
noise-induced critical transition and rate-induced critical transition can occur in systems. An
important feature of such critical transitions is the fact that such transitions have common features,
despite the differences in the details of the elements interactions of each system. Due to this reason,
many common (unifying) quantitative and qualitative precursors of critical transitions or early
warning signals (EWS) in the critical transitions have been proposed (see the papers [1–5]). Despite
this, we assume that there should be differences in the EWS for different types of critical transitions,
at least in the neighborhood of the critical transition point. Finding such differences is one of the
objectives of our research.

The justification for the use of most early warning measures is associated with an increase in the
time that needed to return to a stable state with small disturbances in the neighborhood of the critical
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point. These EWS include autocorrelation, variance, skewness
and kurtosis, power spectral density, and Hurst exponents. These
measures are estimated for the time series characterizing changes
in some parameters of the systems. For example, the order
parameter can be used as such parameter, if the critical
transition is the first or the second order phase transition.
Other EWS are recurrence measures such as determinism,
laminarity and entropy (see the paper [6]).

Complex systems surround us everywhere. Starting from
processes at microscopic distances in the human brain and
ending with large-scale water flows in the oceans. In the
complex systems, the interaction of individual elements with
each other is so complex that the entire system acquires
completely new and unexpected properties that cannot be
reduced to the properties of individual parts. Controlling such
parameters as temperature or magnetization, it is possible to
provide a phase transition—a transition through a critical point,
which is characterized by power laws. However, there are various
examples of processes and systems (see the papers [7–9]), which
are characterized by power laws that have arisen without any
parameters’ tunning: seismic activity with destructive
earthquakes, neural and social networks, financial markets,
forest fires, etc. P. Bak, C. Tang, and K. Wiesenfeld [8]
discovered self-organized criticality (SOC) phenomena in
1987. They built a mechanism that explains how a system
reaches the critical state without tunning of any parameters.
Their model, called the sandpile or BTW model, is
implemented on a square lattice on which grains of sand fall.
Sandpile cellular automata have simple rules that lead to complex
critical behavior. A detailed description of sandpile models is
provided in Time Series Data Generation using Sandpile Cellular
Automata. The self-organized critical transition corresponds to
the second order phase transitions. It was recently found (see the
papers [10–13]) that in real complex systems the self-organized
bistable (SOB) transition is possible, which corresponds to the
first order phase transition. A sandpile cellular automata with
facilitated rules has also been proposed (see the paper [13]),
which is capable to demonstrate the SOB transition. At this
moment, we are not aware of papers that present the results
of the study of time series features generated by systems when
they approach the SOC state and the SOB state. To close this gap,
we conducted a study on discovering the EWS of the critical
transitions and the features of the critical transitions for sandpile
cellular automata. Our study is based on the results of multifractal
time series analysis generated by the automata. Research results
are presented in this paper.

The paper is structured as follows. Methods provides
descriptions of local sandpile cellular automata rules in square
lattice and random graphs—time series generators for the
number of collapsed cells, and the wavelet leader method for
time series analysis. In the Result and Their Discussion, the results
of EWS detection for the critical transitions and multifractal
features of the automata being in the subcritical phase and the
critical state are presented and discussed. The Result and Their
Discussion is devoted to the discussion of obtained results, as well
as the discussion of possible practical applications obtained by
EWS for detecting critical transitions.

METHODS

This Section describes the rules for the operation of sandpile
cellular automata - time series generators for number of the falls
(xt, t ∈ {0} ∪ Z+, where t is the iteration step). The rules of
automata capable to self-organize into a critical state and the
rules of automata capable to self-organize into a bistable state are
considered. A brief description of wavelet leader method in the
context of multifractal formalism is presented, as well as the role
of log wavelet leaders cumulant in the analysis of multifractal time
series.

Time Series Data Generation Using
Sandpile Cellular Automata
To date, isotropic sandpile cellular automata (SCA) with a
variety of local rules have been developed (see the reviews [14,
15]). To generate the time series data, we used the standard
rules of the Bak—Tang—Wiesenfeld (BTW) [8], Feder—Feder
(FF) [16] and Manna (M) [17] models. SCA with standard
rules (SR) are capable to self-organize into a critical state. We
also looked at facilitated sandpile cellular automata or
facilitated rules (FR) automata. Such automata are capable
to self-organize into a bistable state. A modification of the
Manna model as a facilitated SCA model is presented in the
paper [13]. Finally, we investigated the dynamics of sand
grains not only on square lattice (SL), but also on random
networks grown using the Erdos—Renyi (ER) model and the
Barabasi—Albert (BA) model (see the papers [18, 19]). The
introduced abbreviations will further be used to denote a
cellular automaton. For example, FF-ST-BA matches
sandpile cellular automata with standard Feder—Feder
rules on Barabasi—Albert (BA) network.

The basic operating principle of any SCA is quite simple. Let
us describe it in the form of an algorithm, at each step of which
the similarities and differences of each of the automata are
indicated. First of all, if cellular automata on random graphs
are considered, then it is necessary to grow these graphs. A
description of cultivation is provided at the end of this Subsection.

Step 1. Randomly selected cells (x, y) of a square lattice or a
grown random graph are filled randomly, one particle at a time.
As a result, the number of particles in these cells is zi (x,y)→
zi (x,y)+1.

Step 2. The critical value of particles (zc) is determined for each
cell. For square lattices zc = 4, for random graphs zc is equal to the
number of connections of the vertex (x, y).

Step 3. Collapse of cells and redistribution of particles
between cells.

The stability condition for each of the cells of the automaton
for a model with standard rules is checked. If zi (x, y) ≥zc, then the
given cell (x, y) crumbles with the distribution of particles into
neighboring cells. After the cell is overturned, grains of sand are
distributed equally to each neighboring cell in deterministic
models (FF- and BTW-model); a grain of sand falls into a
randomly selected neighboring cell in the stochastic M-model.
On nodes with degree 1 of random graphs, the collapse of a cell
(node) can only lead to the escape of particles from these nodes.
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For the model with facilitated rules, the stability condition for
each of the cells of the automaton is also checked. If zi (x, y) ≥zc or
fi-1 (x, y) ≥2 (f is the number of falls into a cell on the previous
move), then cell (x, y) collapses into neighboring cells in
accordance with rules of the model. Also, shedding can be
deterministic and random.

Step 4. The number of collapsed cells is calculated, which
corresponds to the value of the time series at a certain step.

In conservative models (M- and BTW-model) on the SL, when
the unstable cell is overturned, the value in it decreases by the
value zc, as a result the number of sand grains is preserved. In
such models, sand grains can leave the RSL only through the
boundaries of the lattice. In the dissipative FF-model on the RSL,
after overturning, the number of sand grains sand in the unstable
cell becomes zero. In this case, a supercritical number of sand
grains z(x, y)> zc occurs, which are also capable to leave the
system through the lattice.

The sandpile cellular automata on the RSL are very
approximate models of real systems, which are characterized
by self-organization into a critical and bistable states. First of all,
the approximation of the models is associated with a fixed and
limited number of nearest neighbors of each node of the
automaton. Therefore, the study of critical transitions in SCA
on ER- and BA-networks is under particular interest. For
example, although the ER model does not reproduce some of
the typical properties of real networks, on average, the model is a
good model for transportation networks, contagion and diffusion
(see the paper [19]). The BA model is a good model for complex
networks, and therefore has a much wider application area (see
the papers [20, 21]). Random graphGER(V, E) in the ER model is
grown as a result of joining any two vertices vi and vj (v ∈ V),
using edge eij ∈ E with some probability p ∈ [0, 1] regardless of
all other pairs of vertices ekm ∈ E, the number of which is C2

n − 1.
In other words, edges are grown according to the standard
Bernoulli scheme with a fixed number of vertices equal to n.
Random graph GBA(V, E) in the BA model is grown from an
initial graph with the number of vertices n≥ 2 and degree of
vertices k≥ 1. Each new vertex i joins the existing vertices with
probability ki/∑ kj. The network built using the BA model is a
scale-free network with a power-law probability distribution for
the degree of vertices. The total number of the edges for the BA
graph and ER graph is the same and equals 2,500. The total
number of edges in the square lattice is 4,900.

Below, we consider the formal rules of all studied sandpile
cellular automata.

Sandpile Cellular Automata on the Square Lattice
LetsN is the number of the square lattice nodes, K is the number
of nearest neighbors of the node, Ne � (x, y ± 1;x ± 1, y)
denotes the nearest neighbors of the node.

Then the formal rules for BTW-ST-SL automata will take the
following form.

zc � 4, x, y ∈ [1, N], zi(x, y)≥ zc
zi+1(x, y) → zi+1(x, y) − zc
zi+1(Ne) → zi+1(Ne) + 1

. (1)

BTW-FA-SL automata.

zc � 4, x, y ∈ [1, N], zi(x, y)≥ zc ∨ fi(x, y)≥ 2
zi(x, y)≥ zc: ⎧⎪⎨⎪⎩

zi+1(x, y) → zi+1(x, y) − zc
zi+1(Ne) → zi+1(Ne) + 1
fi+1(Ne) → fi+1(Ne) + 1

zi(x, y)< zc:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

zi+1(x, y) → zi+1(x, y) − zi(x, y)
zi+1(Ne) → zi+1(Ne) + δk,∑K

k�1
(δk ≥ 0) � zi(x, y)

fi+1(Ne) → fi+1(Ne) + 1, δk > 0

.

(2)
FF-ST-SL automata.

zc � 4, x, y ∈ [1, N], zi(x, y)≥ zc
zi+1(x, y) → zi+1(x, y) − zi(x, y)

zi+1(Ne) → zi+1(Ne) + 1
. (3)

FF-FA-SL automata.

zc � 4, x, y ∈ [1, N], zi(x, y)≥ zc ∨ fi(x, y)≥ 2
zi(x, y)≥ zc: ⎧⎪⎨⎪⎩

zi+1(x, y) → zi+1(x, y) − zi(x, y)
zi+1(Ne) → zi+1(Ne) + 1
fi+1(Ne) → fi+1(Ne) + 1

zi(x, y)< zc:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

zi+1(x, y) → zi+1(x, y) − zi(x, y)
zi+1(Ne) → zi+1(Ne) + δk,∑Kn

k�1
(δk ≥ 0) � zi(x, y)

fi+1(Ne) → fi+1(Ne) + 1, δk > 0

.

(4)
M-ST-SL automata.

zc � 4, x, y ∈ [1, N], zi(x, y)≥ zc
zi+1(x, y) → zi+1(x, y) − zc

zi+1(Ne) → zi+1(Ne) + δk,∑K
k�1

(δk ≥ 0) � zc
. (5)

M-FA-SL automata.

zc � 4, x, y ∈ [1, N], zi(x, y)≥ zc ∨ fi(x, y)≥ 2
zi(x, y)≥ zc:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

zi+1(x, y) → zi+1(x, y) − zc

zi+1(Ne) → zi+1(Ne) + δk,∑K
k�1

(δk ≥ 0) � zc

fi+1(Ne) → fi+1(Ne) + 1, δk > 0

zi(x, y)< zc:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

zi+1(x, y) → zi+1(x, y) − zi(x, y)
zi+1(Ne) → zi+1(Ne) + δk,∑K

k�1
(δk ≥ 0) � zi(x, y)

fi+1(Ne) → fi+1(Ne) + 1, δk > 0

.

(6)

Sandpile Cellular Automata on the Random Graphs
Let Kn is the number of nearest neighbors for each node n of the
graph, Ne � (x, y ± 1;x ± 1, y) denotes the nearest neighbors of
the node.

Then the formal rules for BTW-ST automata will take the
following form.
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zcn � Kn, zi(n)≥ zcn
zi+1(n) → zi+1(n) − zcn

zi+1(Ne) → zi+1(Ne) + 1, zcn > 1
. (7)

BTW-FA automata.

zcn � Kn, zi(n)≥ zcn ∨ fi(n)≥ 2

zi(n)≥ zcn:
⎧⎪⎨⎪⎩

zi+1(n) → zi+1(n) − zcn
zi+1(Ne) → zi+1(Ne) + 1, zcn > 1
fi+1(Ne) → fi+1(Ne) + 1, zcn > 1

zi(n)< zcn:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

zi+1(n) → zi+1(n) − zi(n)
zi+1(Ne) → zi+1(Ne) + δk,∑Kn

k�1
(δk ≥ 0) � zi(n), zcn > 1

fi+1(Ne) → fi+1(Ne) + 1, δk > 0, zcn > 1

.

(8)
FF-ST automata.

zcn � Kn, zi(n)≥ zcn
zi+1(n) → zi+1(n) − zi(n)

zi+1(Ne) → zi+1(Ne) + 1, zcn > 1
. (9)

FF-FA automata.

zcn � Kn, zi(n)≥ zcn ∨ fi(n)≥ 2

zi(n)≥ zcn:
⎧⎪⎨⎪⎩

zi+1(n) → zi+1(n) − zi(n)
zi+1(Ne) → zi+1(Ne) + 1, zcn > 1
fi+1(Ne) → fi+1(Ne) + 1, zcn > 1

zi(n)< zcn:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

zi+1(n) → zi+1(n) − zi(n)
zi+1(Ne) → zi+1(Ne) + δk,∑Kn

k�1
(δk ≥ 0) �

zi(n), zcn > 1
fi+1(Ne) → fi+1(Ne) + 1, δk > 0, zcn > 1

. (10)

M-ST automata.

zcn � Kn, zi(n)≥ zcn
zi+1(n) → zi+1(n) − zcn

zi+1(Ne) → zi+1(Ne) + δk,∑Kn

k�1
(δk ≥ 0) � zcn, zcn > 1

. (11)

M-FA automata.

zcn � Kn, zi(n)≥ zcn ∨fi(n)≥ 2

zi(n)≥ zcn:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

zi+1(n) → zi+1(n) − zcn

zi+1(Ne) → zi+1(Ne) + δk,∑Kn

k�1
(δk ≥ 0) � zcn

fi+1(Ne) → fi+1(Ne) + 1, δk > 0, zcn > 1

zi(n)< zcn:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
zi+1(n) → zi+1(n) − zi(n)

zi+1(Ne) → zi+1(Ne) + δk,∑Kn

k�1
(δk ≥ 0) � zi(n), zcn > 1

fi+1(Ne) → fi+1(Ne) + 1, δk > 0, zcn > 1

. (12)

Wavelet Leaders Multifractal Analysis of
Time Series Generated by Self-Organizing
Cellular Automata
Multifractal analysis, being a method of local investigation of the
temporal structure of a signal, allows to evaluate its correlation
properties even with a relatively short signal registration. This is
an undoubted advantage of this method (see the papers [22–24]).

There are several methods of multifractal time series analysis,
which have their own capabilities and limitations. The most
common are multifractal detrended fluctuation analysis
(MFDFA) [25, 26], wavelet transform maxima modules
(WTMM) [27], and wavelet leader method (WLM) [28, 29],
which is the development of the WTMM method. We used the
WLM to estimate the multifractal singularity spectrum. One of
the obvious advantages of WLM in relation to the MFDF method
is the absence of the need to detrend the initial time series data,
because the wavelets are not sensitive to the trend. In addition, the
MFDFA method gives good estimates only for positive values of
Holder exponents; at the same time, the accuracy of determining
the values of h(q) significantly decreases as h(q) → 0.

Without consideration technical details ofWLM, let us consider
the main features of the method in the context of the multifractal
formalism. A detailed description of the method is presented in the
papers [30–32]. After the discrete wavelet transform, the time series
is decomposed into discrete wavelet coefficients of different levels,
which are presented in the form of a matrix. After that, this matrix
is analyzed: the coefficient and its neighbors (right and left) are
analyzed at each level. The largest of them is selected. Thus, a set of
the largest coefficients is obtained. These are the wavelet leaders
defined for each wavelet expansion level.

Next, the standard procedure for multifractal analysis will be
considered. Structural functions are found that have the following
form:

S(j, q) � 1
nj

∑nj
k�1

Lx(j, k)q ≃ jζ(q), (13)

where j is the scale, q is the moment, Lx(j, k) are the wavelet
leaders for the time series xt, ζ(q) denotes the scaling exponent,
nj denotes the number of Lx(j, k) available at scale 2j.

The scaling exponent ζ(q) usually represented as the following
decomposition:

ζ(q) � c1 + c2
q2

2
+ . . . , (14)

where ci is the ith log-cumulant.
The singularity spectrum D(h) also allows quadratic

expansion in the following form:

D(h) � d + c2
2!
(h − c1

c2
)2

+ . . . , (15)

where h is the Holder exponent.
Expressions (14) and (15) allow to represent ζ(q) andD(h) as

a series with degrees of q with coefficients cp. The first two log-
cumulants have the following interpretation. The log cumulant c1
corresponds to the position of the singularity spectrummaximum
D(h), and therefore c1 � h(q � 0); c2 characterizes the spectrum
width. Indeed, a typical singularity spectrum D(h) has the shape
of a bell and is characterized by the width of the spectrum and the
position of the maximum. Also, the log cumulant c1 characterizes
the slope of the scaling exponents τ(q); c2 characterizes the
deviation from linearity ζ(q).
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If c1 ≠ 0 at c2 → 0, then ζ(q) is a linear function
corresponding to a monofractal time series. For such time
series, the spectrum D(h) is narrow and degenerates into a
single point in the limit, while the Holder exponent h is equal
to the Hurst exponent (H).

Thus, the doublet c1, c2 contains the main part of multifractal
information obtained from real data.

RESULTS AND THEIR DISCUSSION

In this Section, we consider the features of the time series for number
of falls (xt)—the presence of long-range dependences and
multifractal properties for fragments of time series corresponding
to the subcritical (SubC) phase (t ∈ [0, tC]) and critical state
(t ∈ [tC, 10000]). Here tC is the time of the cellular automaton
reaching the critical state. The results of consideration of the first two
log cumulants behavior (c1, c2) as early warning identifiers for critical
transitions are also presented. We generated fifty time series for each
cellular automaton. Thus, we got fifty realizations for each random
process. Obtaining such a number of realizations is due to the need to
obtain interval estimates, in particular, for log cumulants.

Long-RangeDependence in the Time Series
for the Sandpile Cellular Automata
Figure 1 shows the time series xt, t ∈ [0,10000], for the BTW
automata on the square lattice. These figures also show the
autocorrelation functions and Holder exponents (h(q)),
corresponding to the SubC phase and the critical state for the
sandpile cellular automata on the lattice square. Critical state is

considered either as the self-organized critical state (the SOC state),
implemented using standard rules, or as the self-organized bistability
state (the SOB state) implemented using facilitated rules. By the
SubC phase, we mean the phase in which the cellular automaton
occurs until it reaches one of the critical states at the time moment
corresponding to the critical iteration step (tC). The time series for
automata on random graphs has a qualitatively similar form, so we
limited ourselves to visualizing time series for automata on square
lattices Despite this, in Supplementary Table S1, we presented the
first two log cumulants (c1, c2) for all cellular automata, which are
both in the SubC phase, as well as in one of two critical states.

It has been established (Figure 1) that for all cellular automata the
rate of decrease of the autocorrelation function in the SubC phase
(t ∈ [0, tC]) is much greater than the rate of decrease of the
autocorrelation function in the critical phase (t ∈ [tC, 10000]) for
the automata with the standard rules. This phenomenon is typical
for all cellular automata, regardless of the graphs’ structure. The
shape of the curves h(q) indicates that the SubC phase and critical
state of cellular automata are characterized by time series xt with
multifractal properties, i.e. are described by a set of exponents h(q)
depending on the moment q. A feature of time series corresponding
to the SubC phase is the predominant influence of weak fluctuations
(at q< 0), while at strong fluctuations (at q> 0) the values of h are
close to zero. First of all, this is due to the presence of a large number
of zero values in the time series. In the critical state, the influence of
strong fluctuations increases, and the influence of weak fluctuations
decreases in comparison with the SubC phase. In the critical state,
the stochastic dynamics of falls becomes both anticorrelated (at
h< 0.5) for strong fluctuations, and correlated (at h> 0.5) for weak
fluctuations for the automata with the standard rules. Thus, the
transition of the standard cellular automaton into the critical state is

FIGURE 1 | Time series of falls for a standard (left) and facilitated (right)BTWautomaton, and the corresponding autocorrelation functions (log-log plot) and Holder
exponents.
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accompanied by a significant decrease of the correlated dynamics
corresponding to weak fluctuations, and an insignificant increase in
the uncorrelated dynamics corresponding to strong fluctuations. In a
critical state, facilitated automata correspond to Holder exponents
greater than 0.5.

The value c1 and its change during a critical transition,
presented in Supplementary Table S1, indicate an increase in
c1 during the transition of the facilitated cellular automaton from
the SubC phase to the critical state.

Thus, the first two log cumulants can be used as precursors of
critical transitions in the sandpile cellular automata. The next
Subsection is devoted to a discussion of this problem.

Early Detection of Critical Transitions Based
on Time Series for Log Wavelet Leaders
Cumulant
In a previous Subsection, we showed that c1 and c2 can be used as a
system of independent quantitative indicators for early detection of
critical transitions in the sandpile cellular automata. Indeed, these
indicators sufficiently describe the multifractal properties of the
time series for the number of falls (xt). And their change makes it
possible to determine the presence or absence of the critical
transition in the sandpile cellular automata. If we consider the
sandpile cellular automata as time series generators xt, recorded in
real time, then it is quite possible to identify the approach of the
automaton to the critical state based on the analysis results of the
time series for the log cumulants c1t(xt) and c2t(xt). This
Subsection is devoted to this analysis.

Figure 2 shows the time series c1t and c2t for cellular automata
on square lattices. Time series for automata on random graphs
have a similar form. The early warning time (tEW) for the critical
transitions is the same for all sandpile cellular automata, except for
automaton on the BA graph, and takes the value tEW � 4087.
Despite this, the time until a decision is made (Δt � tC − tEW)
depends on the structure and rules of the automaton. Thus, the
time Δt � 1413 for the standard BTWmodel on the square lattice;
the time Δt � 413 for facilitated BTW model on the square lattice.
The Δt values for all cellular automata are presented in
Supplementary Table S2, from which the following conclusions
can be made. The Δt values for automata with Manna stochastic

rules (M-ST-SL, M-FA-SL, M-ST-BA, M-FA-BA, M-ST-ER, and
M-FA-ER) less than for other automata. This empirical
phenomenon has a simple explanation. In automata with
Manna rules, the critical state occurs earlier than in automata
with the BTW model and FF model rules. This is because of the
Manna model rules are stochastic and, therefore, when some cells
overturn, it is possible to quickly bring neighboring cells to an
unstable state. Also, Δt for automata with facilitated rules is less
than Δt for automata with standard rules. This is due to the fact
that automata with facilitated rules transit into the critical state
earlier than automata with standard rules. The reason for this is
additional stochastic components in facilitated rules.

All cellular automata show the same behavior c1t and c2t, when
approaching to tEW (Figure 2). A decrease in the value of c1t by the
value Δc−1 is observed, accompanied by a sharp increase by the value
Δc+1 . For example, for BTW-ST-SL automaton Δc−1 � 0.0776 and
Δc+1 � 0.0343. An increase in the value of c1t by the value Δc+2 is
observed, accompanied by a sharp decrease by the value Δc−2 . For
example, for BTW-ST-SL automaton Δc+2 � 0.2935 and
Δc−2 � 0.5586. Consequently, the approach to tEW is accompanied
by an increase in the width of the singularity spectrum, and only at
time tEW a sharp decrease in the spectrum occurs. The considered
values Δc are presented in Supplementary Table S2 for all cellular
automata. In general, the behavior of the log cumulants is
independent of the structure and rules of the automata.

DISCUSSION

This Section presents a discussion of linking of our research
results to some recent results from the theory of early warning
indicators for critical transitions. Also, a discussion of possible
practical applications of proposed early warning measures for
detection of critical transitions is presented.

We will start by considering the main similarities and differences
in the stochastic dynamics of the number of unstable cells (xt) of
automata located in the SubC phase and in one of the critical states
(the SOC state and the SOB state), summarizing the discussions from
Result andTheirDiscussion. Common to automatawith standard and
facilitated rules is the multifractal structure xt in the SubC phase, and
the monofractal (more precisely, a weak multifractal) structure xt in

FIGURE 2 | Time series of the log cumulants for the standard (left) and facilitated (right) BTW automaton.
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the SOC state (for the standard models) and in the SOB state (for the
facilitated models). Such a transition into the critical state
corresponds to the multifractal-monofractal transition (see the
paper [33]). Another common feature is the long-range
dependence (LRD) in the time series (c1 > 0.5) for cellular
automata in the SubC phase. Therefore, this multifractality is due
to the existence of long-term correlations of small and large
fluctuations [34]. The only fundamental difference between the
SOC state and the SOB state is the presence of the short-range
dependence (SRD) in the xt in the first case (c1 < 0.5), and the
presence of the LRD in the xt in the second case.

As it is shown in the paper [35], the average magnetization
time series in the Ising model are multifractal in the SubC phase
and in the critical state. Moreover, the structure of the time
series is more heterogeneous in the critical state, than in the
SubC phase. The increase of the memory in time series as the
system approaches the critical point is also shown. In our
opinion, a significant difference between the indicated results
and those obtained by us lies in the fundamental difference
between the rules for the Ising model and the rules for the
sandpile cellular automata. In the paper [36], the results of the
study of changes in the temporal autocorrelation at lag 1 and the
power spectral density (PSD) as the system approaches to the
critical point are presented. There was a significant increase in
the autocorrelation in the neighborhood of the critical point,
which is associated with the critical slowing down, as well as an
increase in the parameter β of the power law for PSD
(S(ω)∝ω−β). These results are consistent with our results
for the facilitated model. Similar results are presented in
[37–39], but obtained using fractal analysis methods. The
results we obtained for facilitated models are also fully
confirmed by the results presented in the papers [40–43].
However, the results similar to the one obtained by us for
the standard models have not been presented yet.

The time series generated by real systems have a more complex
structure than the time series generated by the sandpile cellular
automata. However, we believe that the main features of c1t and
c2t behavior, when the automata approach the critical state, will
also be observed for real complex systems (see the papers [44,
45]). Let us take social media as an example. Recent studies have
shown that most social networks are capable to self-organize into
the critical state (see the papers [7, 46–51]). The mechanisms
(local rules) for online social networks (for example, Twitter) for
transition into the SOC state are similar to the standard rules of
the sandpile cellular automaton on the BA graph. It is known (see
the paper [52]) that the graph structure of user interactions in
online social networks corresponds to BA graphs. Indeed, the
information distribution is carried out by users who are in the
state of high-level reflection (unstable state). It manifests itself in
the form of reposts to their subscribers (neighboring nodes of the
graph). These subscribers, being in the unstable state, send
reposts to their subscribers, etc. As a result, starting from the

moment tC avalanche-like distribution of information in the
network is observed. On the contrary, the SubC phase
(t ∈ [0, tC]) of the online social network is characterized by
stochastic fluctuations in repost activity with a relatively small
amplitude. In most of such situations, it becomes necessary to
evaluate tEW, which is of undoubted interest for all specialists in
social networks monitoring. Obtaining of such estimates for real
time series of retweets relevant to various topics is one of the goals
of our further studies.

Finally, we look at the limitations and possible further research
in the analysis of critical transition precursors in sandy cellular
automata.

We have established only one limitation of the proposed
approach associated with the length of the analyzed time
series and the large number of zero values in it. To obtain
reliable results, the length of the time series must be at least
2000 steps. Otherwise, significant fluctuations in the value of the
log cumulants are observed, in which it is impossible to determine
their smoothed behavior.

From the point of view of the prospects for further research, in
our opinion, one should focus on the interpretation of jumps in
the values of log-cumulants, which are characteristic of critical
states of all cellular automata. An explanation of this empirical
phenomenon is possible by analyzing the time series obtained
under various initial conditions and sizes of all investigated
cellular automata.
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