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Critical exponent y = 1.1 characterizes the behavior of the mechanical compressibility of a real
fluid when the temperature approaches the critical one. It results in zero Gaussian curvature of
the local shape of the critical point on the thermodynamic equation of state surface, which
imposes a new constraint upon the construction of the potential equation of state of the real
fluid from the empirical data. All known empirical equations of the state suffer from a weakness
that the Gaussian curvature of the critical point is negative definite instead of zero.
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It is believed that God created the universe according to a geometric plan, and geometry is everywhere.
Physics is the most fundamental scientific discipline with its main goal to understand the universe, and
geometry is deeply rooted in every branch of physics. The present work concentrates on the
relationship between thermodynamics and geometry. The modern version of thermodynamics can
be reformulated in terms of contact geometry [1], and the so-called geometry of thermodynamics has
been put forward, which describes the space of thermodynamic parameters by the Riemannian metric
[2-4]. The influence of the curved space on the critical behavior of the two-dimensional Ising model is
identified [5], and geometric critical exponents are definable in classical and quantum phase transitions
[6]. Latest advances include the geometrical methods employed in the analysis of quantum phase
transitions and non-equilibrium dissipative phase transitions [7], the new formalism of
thermodynamic geometry employed in investigating phase transition points, and the critical
behavior of a Gauss-Bonnet-AdS black hole in four-dimensional spacetime [8]. Thus, the new
relationship between thermodynamics and geometry is always interesting, and we report a new
requirement on the construction of the empirical equation of state (EoS) based on the differential
geometry of the surfaces.

The elaboration of a form of the empirical EoS best fitting the experimental data and also meeting
the theoretical requirements has been an important issue for more than one century [9-15]. For a real
fluid, an open theoretical problem is, in the close neighborhood of the critical point, what is the better
form of the EoS? For instance, it is well-known that both the van der Waals EoS and the general theory
of the Landau theory of phase transitions predict the compressibility critical exponent y =y’ tobe 1, and
all known empirical EoS fail to exactly reproduce the experimental values y =12~ 13>y =11~ 1.2
[16, 17]. Recently, we have conjectured that the Gaussian curvature of the local shape of the vapor-
liquid critical point is zero [18]. In the present study, we first prove that the conjecture is true and
secondly report the construction of a fluid EoS, which has y =y’ = 3, which is quantitatively different
from the experimental values but leads to the zero Gaussian curvature of the vapor-liquid critical point.

The fluid of a pure substance belongs to the so-called pVT system, which means that the EoS
usually takes following simplest form:

p=p\V.1), (1)

where p, V, T denote the pressure, volume, and temperature, respectively. In general, at the critical
point (pc, V¢, T¢), the first- and second-order derivatives of the EoS (1) are continuous and their
values are zero:
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FIGURE 1| The isotherms (solid lines) with T=0.60, 0.65, 0.70, ..., 1.05

from undermost to upmost, and the spinodal curve (solid dots) for EoS (11).
The EoS captures the essential feature of the vapor-liquid phase transition for
the existence of the van der Waals loops, clearly indicating a first-order
phase transition in the liquid system.
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In other words, the values (p., V., T,) can be determined by an
association of three Eqgs 1, 2. In present study, we do not deal with
piecewise or other discontinuous form of EoS (1).

In geometry, the EoS (1) can be viewed as a two-dimensional
surface in the flat pVT space, and its shape can be completely
characterized by the mean and the Gaussian curvature [19]. It is then
interesting to explore the local shape of the vapor-liquid critical
point via these two curvatures. In calculation, the dimensionless EoS
surface Equation 1 must be used, in which all quantities (p,V,T)
are transformed into those referring to units (p., V., T.) or other
units (p',V',T') of a specific state. The transformed form of EoS
bears a resemblance to the law of corresponding states of the van der
Waals EoS. The mean curvature H and Gaussian curvature K are,
respectively [19],
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At the critical point, conditions (2) apply, and we have the mean
curvature Hc and the Gaussian curvature K¢, respectively:

(22) ]
(G2 +1)

(3)

(4)

Kc=- (5)
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The compressibility or a mechanical response function,
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Near the critical point, the experiments suggest, with y =y’ ~ 1.2
(16, 17],
(T-T)7, (T—->T.+0)
oo { (T.-T)7, (T—T.-0) ®)
In consequence, we have
Fp _ 1O (1\ [(T-T)", (T-T+0) _
oVoT — V oT \xr (Te-T)", (T—->Tc-0)
)

which can be rewritten into the following, in terms of the
Gaussian curvature from (5):

Kc =0. (10)

Thus, for real fluids, the Gaussian curvature of the local shape of
the critical point of the EoS surface is zero.

In contrast, all known empirical EoS at the critical point give the
negative values of the Gaussian curvature K¢ < 0, whose typical
results are listed in Table 1, from which we see that none of them
can reproduce Kc = 0. In the last line of Table 1, the
Shamsundar-Lienhard EoS [14] is special, because it is a
principle (“The shape of the (experimental data) figure tells us
that a cubic-like equation must be of the form” [14]) rather than an
explicit form of an EoS. Though these empirical EoS in Table 1 do
not exhaust all possibilities, we are safe to say that K¢ = 0 is beyond
the current form of the Landau theory of phase transitions because
it generally predicts y = y' = 1, thus K¢ < 0 for (3°p/oVaT). =
const at the critical point (p.,V.,T.) [16, 17].

Now, we present an EoS with K¢ = 0. Our constructed EoS
takes following form:

B 8T _3(3—%+%)
P_9(V_§(g_3+%)) Ve (11)

where (p,V,T) are written in unit (p., V., T:)(= (1,1,1)). It
can be considered a highly distorted version of law of
corresponding state of the van der Waals equation. The
isotherms given by this EoS (11) are plotted in Figure 1.
Below the critical temperature T¢, the isotherms explicitly
exhibit van der Waals loops. Straightforward calculations
show that both the mean and the Gaussian curvature at the
critical point are zero, that is, Hc = K¢ = 0, and also a
symmetrical compressibility critical exponent:

y=3(T - T¢c+0),andy’ =3 (T - T¢ - 0). (12)

It is quantitatively different from the compressibility critical
exponent for the real fluid. The origin of the difference may
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TABLE 1 | Mean and Gaussian curvature of the critical points for empirical or semi-empirical EoS. Symbol v denotes the molar volume, a and b are repulsive and attractive
parameters, respectively, y = b/4v, and a(T) depends on temperature and other substance parameters [9, 15]. Only one typical value of the substance parameter in a(7) is

used in the calculations.

No. References EoS Hc Kc Year

1 van der Waals % -5 0 -0.125 1873

2 Dieterici % exp (—&) 0.063 -0.04 1916

3 Redlich-Kwong A T —0.006 -0.065 1949

4 Thiele BT 1ty+y® _ a 0 -0.099 1963
G

5 Guggenheim ar # -2 0 -0.101 1965

6 Carnahan-Starling BT 1ty+°—° _ a 0 -0.099 1969
GRS

7 Soave BT _ _a() —0.004 -0.045 1972
v-b  v(v+b)

—Robi T _ _
8 Peng-Robinson % - W 0.003 0.058 1976
9 Shamsundar-Lienhard g(M - %)a - 0 1993

“In this EoS, symbols g(T), V}, Vim, Vg stand for four parameters depending on the temperatures, and f (V, T) depends on both volume and temperature and possesses no poles or roots in
the physical range of V. The explicit form of f (V, T) depends on other three parameters, details of which do not affect our conclusion.

lie in that we use the continuous form of the EoS rather than the
discontinous ones, which shall be explored in the future.

So far, there are at least three requirements in the form of EoS
for the real fluid: 1) in large volume limit, the EoS reproduces the
ideal gas law [14]; 2) at both ends of a vapor-liquid coexistence line,
there are onset and outset value for volume for gas and liquid state
and a coexisting pressure [14]; and 3) the Gaussian curvature of the
critical point is zero. All these constraints directly come from
experiments. There may be other constraints on the form of the
EoS, which may arise from the theoretical requirements, such as
Maxwell area construction for the van der Waals loop [14], which
must nevertheless be used case by case.

In summary, geometry not only offers a better understanding
and deeper insight into the mathematical structure of
thermodynamics but also presents an accurate and convenient
means to characterize various properties of thermodynamic
states. We report that the local shape of the vapor-liquid
critical point on the thermodynamic surface has zero Gaussian
curvature, which has long been hidden in the compressibility
critical exponent y > 1. It can be used to distinguish different
empirical models and impose this requirement on the
construction of the new EoS. A new form of the EoS
capturing the essential feature of the vapor-liquid phase
transition with y > 1 is successfully elaborated. Without
explicitly carrying it out, we are confident that the theoretical
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