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This letter presents a novel unequal bandpass filtering power divider based on hybrid-
mode of half mode substrate integrated waveguide (HMSIW) and spoof surface plasmon
polaritons (SSPPs). Bandpass response is achieved by combining the transmission
properties of HMSIW and SSPPs simultaneously. The operating bandwidth can be
designed in a wide range by simply optimizing the dimensions of HMSIW and SSPPs.
In addition, defected ground structures (DGSs) are etched on the bottom of the substrate
to improve out-of-band suppression. The power division ratio of the proposed unequal
power divider is finally optimized to 1:3. The measured results agree with the simulated
one. Such design provides a stable power division within wide frequency range from 6.5 to
9.5 GHz.
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INTRODUCTION

The rapid development of wireless communication systems proposes more and more requirements
for functional devices. In order to meet the market demands, different kinds of well-performed
functional devices have been widely studied. In the past decade, substrate integrated waveguide
(SIW) has become one of the hotspots in researches [1]. Considering its perfect high-pass
transmission with low-loss, high-efficient properties, functional devices such as filter [2], power
divider [3–6] and coupler [7] have been proposed. Half-mode SIW (HMSIW) consists of only half of
SIW structures, while keeping the same performance as SIW [8, 9]. Miniaturization can be realized.
Spoof surface plasmon polaritons (SSPPs) are guiding surface modes along periodic metamaterial
structures. Such modes have also received wide attention for its unique properties of perfect low-pass
transmission and near-field confinement [10, 11]. SSPPs have been studies in field of different high-
efficient designs such as bandpass filter [12, 13], power divider [14, 15], coupler [16], radiator [17].

Filters and power dividers are the most commonly-used functional devices in wireless
communication systems. In certain applications, both kinds of devices are required to be
integrated with each other to reduce the occupied space. And their performances are crucial for
systems stability. In recent years, a series of filters and power dividers based SIW and SSPPs have
been reported [18, 19]. In order to improve the integration and operating properties, parasitic
structures like resonators [20], interdigital structures (ISs) [21], defected ground structures (DGSs)
[22, 23] have also been studied. The combination of SIW and SSPP provides a new solution for the
miniaturization designs, since the power dividers of SIW are usually narrow-band and those of SSPP
have limits of bulky dimensions.

In this letter, we proposed a novel unequal bandpass filtering power divider based on the hybrid
HMSIW-SSPPmodes, which shows compact size and power division ratio of 1:3. The hybrid unit can
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be compatible with the functional techniques of both HMSIW
and SSPPs. The lower and upper edges of the passband can be
controlled independently by changing the dimensions of HMSIW
and SSPPs. Defected ground structure is also loaded aiming for
improving out-of-band suppression.

Design of Unequal Power Divider
The schematic configuration of the proposed unequal filtering
power divider is shown in Figure 1 with dimensions labelled. As
it can be seen in the figure, periodic corrugated slots are etched on
the top layer of HMSIW. Two slots with gradient groove depths of
h1 and h2 are used to achieve broadband excitation of SSPP
modes. Optimizing grooves’ depths can help to improvement of
the transmission efficiency. Two uniformed grooves of SSPP with
depth of h3 are set as the transmission part. They collaborate with
the HMSIW structures to provide the hybrid HMSIW-SSPP
modes with unique transmission properties. The periodic

interval of the SSPP units is p. At the output terminals, a
SSPP channel of three unit matching structures with gradient
grooves’ depths and tapered edges are designed for momentum
matching of SSPP at port 2. Meanwhile, another HMSIW channel
is paralleled connected between the hybrid unit and the SSPP
channel. The widths of both HMSIW structures are L and L1,
respectively.

Figure 2 show the dispersion curves of the hybrid HMSIW-
SSPP unit. And its structure is shown in the inset of Figure 2. It
can be observed from the figure that the cutoff frequency of
HMSIWmodes is lower than that of SSPPmodes. Thus, bandpass
response can be obtained. The hybrid unit provides bandpass
property from 6.1 to 10.5 GHz. As is introduced in literatures, the
cutoff frequencies of SIW and SSPP modes can be controlled by
changing the width of SIW and the depth of SSPP grooves. For the
proposed design, reduction of L or h leads to upper shifting of the
lower or upper cutoff frequencies, respectively. Limited by the
space allocation, SSPP grooves are always smaller than HMSIW.
So the cutoff frequencies of SIW are always lower than those of
SSPPs.

The dispersion properties of the hybrid HMSIW-SSPP unit
under different parameters are compared in Figure 3. The unit
with dimensions of h = 3.5 mm, L = 7 mm, w = 0.5 mm and p =
6 mm is used as reference and shown as the red dashed lines in the
figure. Then each dimension is optimized and compared. In
Figure 3A, the groove’s depth in HMSIW unit is examined.
When the depth h3 increases from 3 to 4 mm, the upper cutoff
frequencies shift from 11.2 to 9.4 GHz, while the lower cutoff
frequencies keep at 6.1 GHz. Similarly, from Figure 3B it can be
seen that when width L increases from 6 to 8 mm, the lower cutoff
frequencies of the hybrid unit reduce from 6.8 GH to 5.5 GHz.
Meanwhile, small range fluctuation between 10.1 and 10.3 GHz of
the upper cutoff frequencies is observed. The width of the groove
w and its interval p can also be used for the modulation of
operating band (shown in Figures 3C,D). The groove width w
can change the upper cutoff frequencies in a small range. And the
interval p has a significant impact on the upper cutoff frequencies.
Since the increasing interval would lead to excessive length of the
device, depth L is usually used in modulation of operating band.

The simulated transmissions at port 3 of the unequal filtering
power divider are illustrated in Figure 4 to testify the bandwidth
modulation of the hybrid unit. As is compared in Figures 4A,B,
upper cutoff frequencies or lower cutoff frequencies of S31 shift to
lower frequency band independently without apparently mutual
influence. Based on the above analysis, a high-efficient passband
from 6.5 to 9.5 GHz of unequal filtering power divider can be
designed. The simulated S parameters are shown in Figure 5. In
the whole passband, the reflection coefficient S11 keeps below
−10 dB, while the transmission coefficient S21 and S31 are around
−2.2 dB and −7 dB.

OPTIMIZATION AND MEASUREMENT

The DGS can disturb the current distribution on the metallic
ground and introduce an extra transmission zero. In the
optimized model, a two-element array of inverted T-shaped

FIGURE 1 | Schematic of the proposed unequal filtering power divider.

FIGURE 2 | The dispersion curves of the hybrid HMSIW-SSPP unit.
Inset: the structure of the hybrid HMSIW-SSPP unit.
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FIGURE 3 | The dispersion properties of the hybrid unit under different parameters of (A) depth of SSPP grooves h, (B) width of HMSIW L, (C) width of SSPP
grooves w, and (D) interval of SSPPs p.

FIGURE 4 | Simulated transmission coefficients (S31) with different dimensions of (A) h3 and (B) L.
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DGSs is introduced. The DGSs are loaded on the bottom layer of
the hybrid HMSIW-SSPP units to improve the upper stopband
rejection. The structure of the DGS unit is shown in the inset of
Figure 6A, in which the red line represents the contour of the
grooves on the top layer. The DGS is etched on the bottom layer
and it is in the middle of two adjacent grooves. The dimensions of
the DGS decide the frequency of its transmission zero. And the
optimized dimensions are a1 = 1.9 mm, a2 = 4.4 mm, a3 = 3.8 m, t
= 0.6 mm, s = 0.45 mm, g = 0.25 mm. The comparison of S21 of
the design with and without the DGSs is shown in Figure 6A. The
transmission with two-element array of DGSs provides an extra
transmission zero, providing better out-of-band suppression. The
cut-off efficiency of transmission zero of DGS at 10 GHz can be
improved by increasing the number of DGSs used in the model. A
small shift of the cutoff frequency of SSPPs is observed due to the
coupling between DGSs and SSPPs. The transmission of the
proposed design loaded with DGSs are shown in Figure 6B.
An unequal power divider with bandpass filtering effect is
observed within band from 6.5 to 9.5 GHz. The simulated S11

FIGURE 5 | Simulated S parameters of unequal filtering power divider.

FIGURE 6 | (A) the comparison of S21 of the designs with and without DGSs. (B) Simulated S-parameters of the design with DGS.

FIGURE 7 | (A) Top view and (B) back view of the prototype.
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is lower than −20 dB in the passband. S21 and S31 are −2.2 dB and
−7 dB, respectively. Within the whole operating band, S21
undulates between −2.6 dB and −2.3 dB, and S31 undulates
between −7.4 dB and −7 dB. The simulations indicate a stable
power division. The power division ratio of port 2 and port 3
is 3:1.

A prototype of the proposed unequal filtering power divider is
fabricated and measured. The substrate is F4B board with relative
permittivity of 2.65 and thickness of 1 mm. Photographs of the
prototype are shown in Figure 7. The total dimensions of the
proposed design are 45 mm× 25 mm× 1 mm. Figure 8 shows the
compared of the simulated and measured S-parameters. The
measured transmissions are about 1 dB lower than the
simulated ones, because of the machining accuracy of the
sample and the unskilled welding of SMA connectors in the

experiments. The operating bandwidth and power division effect
keeps steady.

CONCLUSION

In this paper, an unequal filtering power divider based on hybrid
HMSIW-SSPPmode is proposed. The passband can be controlled
independently by changing the dimensions of HMSIW and
SSPPs. DGSs are introduced on the bottom layer of the device
to improve the out-of-band suppression. A prototype working
from 6.5 to 9.5 GHz is designed and fabricated. And power
division ratio of 1:3 is obtained. Such design provides
solutions for miniaturized multi-functional devices, and could
be used in wireless communication systems.
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