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A space- and time-dependent theoretical model based on a trap-assisted, charge-
transport framework for the amorphous phase of a chalcogenide material is used here
to interpret available experimental results for the electric current of nanoscale devices in the
ns–ps time domain. A numerical solution of the constitutive equations of the model for a
time-dependent bias has been carried out for GST-225 devices. The “intrinsic” rise time of
the device current after the application of a suitable external bias is controlled by the
microscopic relaxation of the mobile-carrier population to the steady-state value.
Furthermore, the analysis is extended to include the effect of the external circuit on the
electrical switching. A quantitative estimate of the current delay time due to unavoidable
parasitic effects is made for the optimised electrical set up configurations recently used by
experimental groups.
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1 INTRODUCTION

Chalcogenide-based Phase Change Memories (PCM) have been studied for many years as a possible
replacement for Flash memories, and in the late 2000s eventually hit the market as storage elements
for cell phones [1]. Furthermore, being two-terminal devices incorporating selectors made of
materials belonging to the chalcogenide class [2], they were easily integrated in 3D cross-point
memory arrays [3–5], paving the way for storage-class memories thanks to their fast access time and
moderate cost per bit.

After a suitable tailoring of the chalcogenide-alloy composition, to match the specs dictated by a
specific use, embedded PCM have the potential to become key enablers of technological breakthroughs in a
number of industrial applications; among these, automotive applications [6]. In recent years, PCM devices
were also profitably employed in “non vonNeumann” neuromorphic computing architectures, exhibiting a
better performing collocation of memory and processing [7–10].

Whatever application for PCM devices is envisaged, their working principle relies on the fast and
reversible structural change of a chalcogenide alloy that switches between the amorphous (reset) and
crystalline (set) states, upon the application of an electric pulse [11–14]. In many cases, a voltage
pulse of suitable intensity, and width of a few ns is required to surpass, first, an Ovonic Threshold
Switching (OTS) event, namely an off-to-on threshold switching in the amorphous state, precursor
of the amorphous-to-crystalline phase change. As pointed out by many scientists [15–17], the lower
limits of a fast electrical switching for both selectors and memory elements based on chalcogenides
are related to the above-described transition from low-to high-conductivity states of the amorphous
phase, and to the crystallization kinetics starting from the amorphous phase [16].
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On the theoretical side, even though the first speculations date
back to the 1970s [18], the scientific debate is still alive even
40 years later [12]; accurate and handy ab-initio molecular-
dynamics simulations and/or density-functional calculations
for a number of chalcogenide alloys have been published only
recently. They allow one to speculate about the connection
between the change of conductivity observed when OTS (and,
subsequently, phase change) sets in, and the structural changes of
the materials at the atomic level induced by the application of an
external bias. Even though the quantitative results depend on the
types of atoms forming the particular alloy and on the alloy
stoichiometry, some interesting general concepts have been
evidenced. A large conduction-band tail of localized states is
detected in Ge-rich GexSe1−x and in similar systems [19,20]; this is
correlated to the nonlinear conduction features of OTS, whereas
in Se-rich Ge30Se70 the Ge valence-alternating pairs and Se lone
pairs dominate [20]. A different interpretation has been proposed
based on the so-called metavalent bond; specifically, the extent of
localization of electronic states is found to depend on the applied
electric field: localized states of the amorphous chalcogenide
transform into extended states [21,22], this eventually reducing
the amount of charge traps and increasing the electric
conductivity. However, the direct in situ observation of the
above-mentioned structural features of the OTS switching still
remains a challenge due to technological limitations.

A useful parameter that has been introduced by
experimentalists to quantify the transition speed is the so-
called delay time td, defined as the time interval between the
instant at which the applied voltage exceeds the threshold value
and the instant at which a steep rise in the device current begins
[23,24]. Despite efforts to decrease td with different strategies, so
far it has been difficult to obtain values below 1 ns [23]. Thus,
achieving sub ns threshold-switching times for nanoscale devices
is a goal of both scientific and technological relevance [23,25].

The exploitation of the electrical threshold switching property
of many chalcogenide-based devices, for designing phase-change
memory devices with access speed comparable to the SRAM,
pushed experimentalists to design accurate measuring setups
[26]. The latter must be able to respond to very fast external
electric pulses, in order to precisely record the onset of the
threshold switching and the change of the current value from
the low value of the amorphous off state to the high value of the
amorphous on state. A major attempt to provide new
experimental insights into the threshold-switching mechanism
by means of a precise knowledge of the exact shape of the voltage
applied to the chalcogenide cell has been carried out by Salinga
and coworkers [23]. According to the Authors, in the reported
experiments on GST-225 devices, due to the careful impedance
matching of the contact board the applied voltage pulses reach the
memory cell without any significant distortion. Measurements
were performed where the applied voltage signal, aimed at
producing the threshold voltage, ramps up linearly from zero
to a maximum value; the leading edge of the voltage ranges from
few ns to 104 ns. The value at which threshold switching appears
depends upon the steepness of the ramp; in particular, short rise
times of the latter lead to high switching voltages, whereas the
application of slow ramps produces a decrease in the switching

voltage. Thus, the pulse shape strongly influences the switching
voltage, so that the concept of a unique voltage at which the
resistance of the cell falls becomes questionable [23,24].

This concept is pushed even further in a recent paper by
Saxena and coworkers [25], where it is shown that delay times in
the ps scale can be obtained in GST-225 cells by means of an
appropriate design of both the experimental apparatus and the
external voltage applied to the cell. In particular, the Authors
measured delay times shorter than 50 ps for a voltage equal to
twice the threshold voltage measured in static conditions for the
same material, proving that PCM memory devices can reach
SRAM-like speeds. Besides the technological implications of the
above-mentioned performances, experimental measurements of
Ovonic threshold switching in the time domain provide new
interpretation challenges to test the existing theories about the
switching mechanism; such theories have been formulated
mainly by Academia over the last 5 decades in parallel with
the technological developments. While, in the low-resistance
state, the standard description of conduction in
semiconductors applies, the electric properties of the high-
resistance state are explained as a hot-carrier effect [27–30], or
a combination of electro-thermal effects [31,32]. Experiments
where the parasitic effects have been reduced as much as possible
confirm the relevance of hot-carrier phenomena on OTS, even
though the high thermal efficiency and the fast thermal dynamics
in nanoscale devices suggest that the heat flow dynamics can
indeed play a role [32].

As for the OTS effect in the amorphous phase, structural
analyses and Molecular-Dynamics simulations of amorphous
chalcogenides confirm the existence of a number of trap states
located aroundmid gap, that play a fundamental role on the onset
of the electrical switch [13,14]. At low fields (below threshold) the
majority of carriers are trapped and the conduction is very low;
when the field is strong enough to heat the carriers, the
population of the high-energy, high-mobility states is
enhanced. This, in turn, increases the energy gain of the
trapped carriers at the expense of the field, further enriching
the population of the trap states close to the conduction-band
edge (and, possibly, also band states [30]): in this way a positive
feedback is established which, eventually, makes the current to
increase by several orders of magnitude.

In this paper we apply a space- and time-dependent theoretical
model based on a trap-assisted charge transport in the
amorphous phase of a chalcogenide material [33,34], to
interpret the available experimental results in the ns–ps time
domain for the electric current of nanoscale devices, based on the
GST-225 chalcogenide, in a variety of bias conditions. A
numerical solution of the constitutive equations of the model
for a time-dependent bias makes it possible to test to what extent
the threshold voltage depends upon the microscopic
characteristic times that regulate the field-to-carrier energy
transfer; this transfer is in fact responsible for the carrier
heating which, in turn, produces the threshold switching.
Furthermore, the analysis is extended to include the effect of
the external circuit on the electrical switching, with reference to
the optimised electrical set up configurations recently used by
experimental groups [25].
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Section 2 summarizes the main features of the theoretical
approach; the set of equations which constitute the model for the
OTS device, and the numerical algorithm implemented for
solving them, are described in Sections 2.1–2.3, while Section
2.4 illustrates how we modeled the OTS device coupling with an
external circuit that represents the measuring equipment.
Dynamic and static models for the OTS device have been
tested in view of their possible implementation into a device
simulation framework. Section 3 contains our results and their
critical analysis: first, parasitic effects are neglected; the ideal cases
of a voltage step (Section 3.1) and of voltage trapezoidal profiles,
similar to those reported in [25], are considered with the purpose
of evaluating the delay time of the OTS device (Section 3.2); then,
the more realistic condition of a voltage trapezoidal profile
applied to a device in presence of parasitic effects is studied
(Section 3.3). Finally, Section 4 summarises the main
achievements of the analysis, and provides some comments
about possible developments of the present approach.

2 THEORETICAL APPROACH

The analysis aims at interpreting the experimental current-
voltage curves obtained by applying time-dependent voltages
with a time scale ranging from the nanoseconds to the
picoseconds. Based on a thorough study of the Ovonic
threshold switching by the Authors of the present paper and
others [27,33,34], the theoretical approach assumes that, when
the chalcogenide material is in the amorphous phase, carrier
heating due to energy transfer from the external field dominates
over thermal effects in determining the OTS. Accordingly, the
heat equation for the lattice is not included in the model.

The experimental evidence is for a unipolar conduction in
GST-225 ([14], Ch. 2). This suggests that carrier excitation from
trap to band states prevails over carrier transfer from the valence
to the conduction band via trap states in the energy gap [18]. The
present model equally applies to electrons or holes; for the sake of
simplicity we developed and discussed the model only for the case
of electrons. Carriers can occupy two trap levels with energy
values ET = 0 and EB = Δ, with density of states gT and gB,
respectively. Carriers in level ET are trapped, i.e., have zero
mobility and, therefore, do not contribute to the current;
carriers in level EB mimic conduction electrons, even though
they have a unique well-defined energy, and contribute to the
current with a constant mobility μ. The use of a single energy level
for the mobile states is in fact a simplification of the model;
however, a sensible description of the physics is anyway achieved
[33]. The introduction of a dispersion relation of the mobile states
improves the quantitative description of the electric switching at
and above threshold, without altering the key features of the
present implementation [30].

The device dynamics is assumed to be one-dimensional: the
cross section of the sample is supposed large enough to neglect
the effects of the lateral boundaries. Thus, the physical quantities
of interest along the device are functions only of the longitudinal
coordinate x and of time t; they are the electric field F, the total
concentration of carriers n, the concentration of mobile carriers

nB, the concentration of carriers in the trap states nT, and the
particle current density j. The above quantities are not all
independent from each other; in fact,

j � nB μF −DB
znB
zx

, n � nT + nB, (1)

where DB is the diffusion coefficient of the mobile electrons,
assumed here to be given by the equilibrium Einstein relation
DB = μ k T0/q, with q the carrier charge, T0 the room
temperature, and k the Boltzmann constant. At equilibrium,
the device is assumed to be spatially uniform, with an electron
density n0 neutralized by an equal density of opposite fixed
charges. Furthermore, assuming Maxwellian distributions, the
densities of carriers in the traps and in the mobile states are
given by

nT0 � C0 gT exp − ET

kT0
[ ] � C0 gT ,

nB0 � C0 gB exp − EB

k T0
[ ] � C0 gB exp − Δ

k T0
[ ]. (2)

The normalization constant C0 is obtained from the total
electron density n0, leading to:

nT0 � n0
1 + gB/gT( ) exp −Δ/ k T0( )[ ] ,

nB0 � n0
1 + gT/gB( ) exp Δ/ kT0( )[ ]. (3)

In presence of an electric field F (x, t), electrons gain energy;
furthermore, the excitation energy to reach the upper level is
reduced by the field according to the Poole model [35], to become

Δ′ x, t( ) � Δ − γ |F x, t( )|, (4)
with γ a suitable constant1. Out of equilibrium we assume that an
electron temperature Te (x, t) is defined, such that the electron
populations, in analogy with Eq. 3, read

~nT x, t( ) � n x, t( )
1 + gB/gT( ) exp −Δ′/ kTe( )[ ] ,

~nB x, t( ) � n x, t( )
1 + gT/gB( ) exp Δ′/ k Te( )[ ]. (5)

It is worth noting that a variation of the electric field F (x, t)
is instantaneously accompanied by a variation of the activation
energy Δ′, while the carriers require some time to adjust their
occupations to the new situation. Thus, the above quantities
~nB(x, t) and ~nT(x, t) are to be considered “tendential”
values [34].

1Elsewhere the Poole-Frenkel model, viz, Δ′ � Δ − γ′
���|F|√

[34] is used in the
description of electron transport in chalcogenides. The Poole model adopted here
is usually appropriate for large concentrations of traps [38]. The theoretical
development presented in this paper can include either approach
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2.1 Equations
The model is based on a set of four differential equations, each
encoding a basic physical principle.

i. Particle continuity: only charges in the mobile states can
move, so that the rate of change of electron density at a given
position x reads:

zn

zt
� −zj

zx
, (6)

ii. Local particle redistribution: as indicated in Eq. 6, particles
that cross the device at the position x come from mobile states.
The rate of change of the concentration nB accounts for
redistribution between trap and mobile states, and reads

znB
zt

� zn

zt
− nB − ~nB

τn
, (7)

where τn is the mobile-carrier relaxation time, taken as a model
parameter, and ~nB is given by Eq. 5.

iii. Energy continuity: the energy density ϵt at (x, t) is given by
nB Δ since ET = 0. Its variation accounts for the power density
pumped by the field, the space variation of the energy flux j Δ, and
the energy relaxed to the phonon bath which, in this case, is
described by a temperature-relaxation time τT [29]:

zϵt
zt

� q j F − Δ zj

zx
− n

k Te − k T0

τT
. (8)

On the other hand, differentiating the total energy ϵt (x, t) = nB
Δ, and using Eq. 7, yields

zϵt
zt

� Δ zn

zt
− nB − ~nB

τn
[ ].

Combining this result with Eq. 8 and using Eq. 6 provides

q j F � n
kTe − k T0

τT
+ Δ ~nB − nB

τn
. (9)

This equation indicates that the power provided by the field is
partially dissipated to the phonon bath, and partially devoted to
distribute the electrons between trapped and mobile states. This
equation allows for the evaluation of the electron temperature in
terms of the other unknowns. However, Te appears also in ~nB, so
that the equations must be solved numerically.

iv. Poisson equation: the local carrier density n (x, t) is related
to the local field F (x, t) by the Poisson equation:

zF

zx
� 1
ε
ρ � −q

ε
n x, t( ) − n0[ ], (10)

where ε is the material’s absolute permittivity.
It is worth observing that in steady state the second term at the

right hand side of Eq. 9 vanishes due to Eq. 7; it follows that τn has
no influence on the steady-state behavior of the OTS device (more
comments on this are made in Section 3.1).

2.2 Constraints
The four Eqs. 6, 7, 9, 10 govern the process we are interested in,
and are solved, e.g., for the unknowns n, F, nB, and Te. All other

variables of interest can be calculated from the set above. A
number of conditions are imposed on the unknowns:

a) The electron temperature at the injecting contact is equal to
the equilibrium temperature at all times:

Te 0, t( ) � T0. (11)
b) At the source boundary of the device, the contact injects the

electrons which are necessary to maintain local electric neutrality
at all times:

n 0, t( ) � n0, (12)
which implies:

zn x, t( )
zt

∣∣∣∣∣∣∣x�0 � 0
zF x, t( )

zx

∣∣∣∣∣∣∣x�0 � 0

(the second of the above derives from Eq. 10). Finally
c) an integral condition on the field is imposed by the voltage

VP(t) across the device:

VP t( ) � −∫L

0
F x, t( ) dx, (13)

where L is the device length.
The model illustrated above is of the hydrodynamic type,

namely, it assumes that neither the lattice temperature nor the
relaxation time τT vary within the operating time scale of the
device. This is justified by the fact that the effects of lattice heating
can be neglected below threshold and do not alter the intrisic time
scale of the device above threshold [33].

2.3 Numerical Solution
The non-linear system of equations outlined in Sections 2.1, 2.2
is solved by iterations, starting from the equilibrium condition n
(x, 0) = n0, F (x, 0) = 0, nB(x, 0) � n0/[1 + (gT/
gB) exp[Δ/(k T0)], and Te = T0; the time and space derivatives
are approximated by finite differences. Once the unknowns are
known at time t, their updated values at t + δt are obtained with
the following procedure:

1. The update n (x, t + δt) is derived from Eq. 6.
2. Equations 5 and 7 provide the update nB (x, t + δt).
3. The update F (x, t + δt) is obtained from Eq. 10 apart from the

constant F (0, t), which is found by imposing conditionEq. 13. The
latter, in turn, is to be considered as prescribed if the device is in a
standalone situation, that is, connected to a voltage generator; if,
instead, the device is connected to an external circuit, VP must be
derived from the solution of the device-circuit system.

4. The update Te (x, t + δt) is obtained from Eq. 9. Due to the
strong non-linearity of this equation and the strict
requirement of a positive solution, the combined bracketing
and bisection techniques ([36], Section 9.1) proved to be more
efficient and stable than other iterative methods like, e.g., the
Newton-Raphson method.

2.4 Circuit Model
In realistic conditions, the device under investigation is coupled
with an external circuit that represents the measuring equipment.
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Following [33], the simplest circuit used in studying the response
of an Ovonic device to an external bias includes the Ovonic device
in series with a load resistance RL and a waveform generator V(t).
From the viewpoint of the external circuit, the contacts enclosing
the chalcogenide layer can be represented by a contact resistance
RS and a parasitic capacitance CS; wirings and probes introduce a
further parallel parasitic capacitance CC. The resulting circuit is
sketched in Figure 1, where the Ovonic device is indicated with P,
and C = CS + CC.

The inclusion of the circuit into the simulation can be done at
different levels of completeness. The first, more general level
(Section 2.4.1), couples the circuit with a numerical model of the
Ovonic device; with respect to that illustrated in Section 2.1, 2.2,
here the model is simplified by assuming that the device is
homogeneous, while the dynamic aspects of the Ovonic
device, as described by the relaxations times, are kept. The
second level, less expensive from the numerical standpoint
(Section 2.4.2), couples the external circuit with a static model
of the Ovonic device, namely, a model of the form IP(VP).

2.4.1 Coupling the Circuit With a Dynamic PCMModel
To express the voltage drop VP across the Ovonic device, in the
circuit model we assume a constant-field approximation, which is
acceptable for devices longer than 10 nm [33]. It follows VP =
L F(t), whence V = RL I + L F + A RS JP, with A the cross sectional
area of the metallic plates and JP = q j the current density across
the Ovonic device. Using Eq. 1 after neglecting the diffusive term
yields a relation between the field and the mobile carrier
concentration:

F � V − RL I

L + ARS q μ nB
. (14)

To complete the coupling with the external circuit, another
equation is necessary; in it, the voltage drop VP must appear,
which is in turn determined from the microscopic model
accounting for the relaxation times. One notes from Figure 1
that V − VP � RL I + RS (I − C _VC), with VC = V − RL I;
combining these two relations yields the equation sought,

RS RL C _I + RL + RS( ) I + VP � RS C _V + V, (15)
where the right hand side is prescribed. Eqs. 14 and 15 are then
added to (6, 7, 9) to determine the electric performance of the
OTS cell [33].

2.4.2 Coupling the Circuit With a Static PCM Model
Still considering the circuit of Figure 1, a simpler analytical
approach has been developed, which captures the key features
of the voltage-dependent transient characteristic of OTS devices,
and is suitable for implementation into device-simulation tools.
The static characteristic of the PCM is sketched as shown in
Figure 2; the approximation of considering a piecewise-linear
characteristic has the advantage of affording an easy analytical
approach2. Letting R1 (R2) be the resistance of the lower (upper)
branch (R1 ≫ R2), it follows that the resistance of the series made
of P and the heater is R−

C � R1 + RS when VP < Vth and R+
C � R2 +

RS when VP > Vth; balancing the currents at the upper node of P
yields, for VP < Vth,

C _VC + VC

R−
C

� V − VC

RL
, _VC + VC

τ−C
� V

τL
, (16)

with τL = RL C and τ−C � R−
C τL/(R−

C + RL), this yielding
VC exp t/τ−C( ) � VC t0( ) exp t0/τ−C( ) + Y ,

Y � 1
τL

∫t

t0

exp θ/τ−C( )V θ( ) dθ. (17)

FIGURE 1 | Circuit embedding the PCM [33]. Parameters referred to the
PCM take suffix P in the equations and figures.

FIGURE 2 | Schematic model of the S-shaped IP(VP) characteristic of
the PCM.

2In principle, the approximation of a piecewise-linear characteristic could be
avoided: one may in fact invert VC = VP + RS IP(VP) to extract IP(VC), then
solve C _VC + IP(VC) � (V − VC)/RL for VC, with V = V(t) prescribed. This
procedure would require a separate solution of a non-linear equation in
different regions of VC
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As mentioned above, here the applied voltage is a ramp, V = α
t, whence

Y � α τ−C
τL

t − τ−C( ) exp t

τ−C
( ) + α τ−C

τL
τ−C − t0( ) exp t0

τ−C
( ). (18)

In the first part of the ramp it is t0 = 0,VP <Vth,VC(t0) = 0, and

VC � α τ−C( )2
τL

t

τ−C
− 1 + exp − t

τ−C
( )[ ]. (19)

The voltage across P is related to VC by VC = VP (1 + RS/R1),
and reaches the threshold value at a time tth such that

Vth �
α τ−C( )2/τL
1 + RS/R1

tth
τ−C

− 1 + exp −tth
τ−C

( )[ ]. (20)

The VC(t) relation (19) is nonnegative and monotonic in the
interval 0 ≤ t ≤ tth. When t reaches tth, the resistance of P changes
abruptly, so that R−

C � R1 + RS and R+
C � R2 + RS ≪R−

C; due to the
capacitor connected in parallel, voltage VC is continuous at tth, so
that the current (V − VC)/RL provided by the bias is continuous as
well. On the other hand, current IP flowing through P is
discontinuous at tth (specifically, IP increases due to the
decrease in resistance); as the extra current is supplied by the
capacitor, it follows that _V

+
C ≠ _V

−
C. If necessary, the variation in

_VC can be evaluated from Eq. 16: writing (16) at t−th and t+th, and
subtracting, yields

C _V
+
C � C _V

−
C − R−

C − R+
C

R−
C R

+
C

VC <C _V
−
C. (21)

In the second part of the ramp (t > tth) it is t0 = tth, VP >
Vth, and

VC tth( ) � α τ−C( )2
τL

tth
τ−C

− 1 + exp −tth
τ−C

( )[ ]. (22)

Here the equation to be solved has the same form as (16), with
R−
C replaced with R+

C and τ−C replaced with τ+C � R+
C τL/(R+

C + RL);
using again the ramp one finds

VC � VC tth( ) exp tth − t

τ+C
( )

+ α τ+C( )2
τL

t

τ+C
− 1( ) + 1 − tth

τ+C
( ) exp

tth − t

τ+C
( )[ ]. (23)

The quantity to be measured is the current (V − VC)/RL
provided by the bias, namely, using Eq. 19 for 0 ≤ t ≤ tth,

I− � α

RL
t − α τ−C( )2

RL τL

t

τ−C
− 1 + exp − t

τ−C
( )[ ], (24)

or, using Eq. 23 for t ≥ tth,

I+ � α

RL
t − VC tth( )

RL
exp

tth − t

τ+C
( )

− α τ+C( )2
RL τL

t

τ+C
− 1( ) + 1 − tth

τ+C
( ) exp

tth − t

τ+C
( )[ ]. (25)

The asymptotic behavior of the current, obtained from Eq. 24
and 25 is, respectively,

I− � α t

RL + R1 + RS
, I+ � α t

RL + R2 + RS
. (26)

3 SIMULATION RESULTS

The voltage pulse generated by experimental equipments varies
from zero to its maximum programmed value in a finite time
which, at present, can be as short as few ns [23,25]. Thus, every
“real” voltage pulse contains, de facto, ramps with rise and fall
times of finite duration; this implies the existence of a time
transient of the electrical response of the device, during which
the internal electric field increases or decreases. This effect may or
may not be relevant according to how the rise time compares with
the time scale of the microscopic processes responsible for the
carrier heating at the origin of OTS, and whether or not the
maximum voltage applied to the device exceeds the threshold
voltage for the Ovonic switch. The simulations discussed in this
section explore different physical situations of a GST-225
chalcogenide device, starting from ideal cases where circuit
parasitic elements are absent and the external pulses have
negligible rise times, then moving towards conditions closer to
reality. The study is intended to test our theoretical model, based
on hot-carrier effects, against experimentally-detected electric
properties of amorphous chalcogenides, on time scales around
and below the nanosecond, obtained from the last experimental
results appeared in the literature [25]. In absence of information
about the cross-sectional area of the devices employed in the
experiments, the value 5, 000 nm2 has been used in all simulations
to convert current densities obtained from the simulations into
charge currents.

3.1 The Ideal Case: The Voltage Step
The exploration starts from the ideal case of negligible parasitic
effects and negligible rise time of the applied voltage. Assuming a

TABLE 1 | Microscopic parameters of Eqs. 6, 7, 9, 10. Apart from τn, the
parameter values are taken from [34].

Symbol Definition Value Units

ET Energy level of traps 0 eV
EB Energy level of mobile states 0.35 eV
Δ EB − ET - eV
gT DoS of trap states - eV−1

gB DoS of mobile states - eV−1

Γ gT/gB 2.5 · 10–3
γ Coefficient of Poole effect 3.36 · 10–28 C m
ε Relative permittivity of the material 15
μ Mobility of mobile electrons 5.9 · 10–4 m2(V s)−1
n0 Equilibrium electron concentration 6.8 · 1025 m−3

τT Temperature-relaxation time 1.5 · 10–13 s
τn Recombination time 0.6 · 10–9 s
L Device length 53 · 10–9 m
T0 Room temperature 298 K
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step-shaped voltage profile, the time dependence of the quantities
relevant for transport is due only to the microscopic parameters
of the model (such parameters are listed in Table 1). Some
parameters are known from experiments, while others can be
tuned on the basis of the details of the IP(VP) characteristic for a
variety of bias conditions. A preliminary study about the
influence of the microscopic parameters on the transport
results obtained from the present model is reported in [34];
there, in particular, the microscopic parameter τT of Eq. 8 has
been proven to control the heating process of the carriers for a
given internal field and, consequently, the value of the threshold
voltage. In the same paper, however, a discrepancy was found
between the delay time td predicted by the model (of the order of
tens of ps) and the much longer experimental values (possibly
also influenced by parasitic effects).

In a recent paper [25] for GST-225, the experimental steady-
state OTS voltage (Vth) for a device of lenght L = 53 nm, obtained
with very long leading/trailing edges of the applied voltage, is Vth

= 2.0 ± 0.1 V. This value corresponds to a threshold field Eth ~
107 V/m, and compares well with that obtained in [34] for τT =
0.15 ps. Consequently, this value for τT is also used in the present
paper. The electric measurements in the time domain also
reported in [25] allow for a theoretical test on the second
microscopic parameter τn of Eq. 7, which rules the relaxation
of the mobile carrier population to the steady state value for a
given applied field.

Based on the set of parameters of [34], a batch of simulations is
presented here for different values of τn in order to assess the
effect of this parameter on the rise time of the current after the
application of a voltage step above threshold (here the value V =
2.4 V has been used for the voltage step). The results are reported
in Figure 3; while no effect of the variation of τn has been found
on the threshold value, it is seen that a delay time of about 1 ns
(that is, in the same range of the experiments [25]) is achieved
with τn = 0.6 ns, thus demonstrating that the theoretical model

can be tuned in such a way as to compare well with experiments in
the nanosecond scale.

Furthermore, Figure 4 shows current IP as a function of time
for different values of the step voltage: the higher the voltage, the
shorter the delay time of the current, yielding a delay shorter than
a ns at the largest biases considered. This behaviour is in
agreement with experimental evidence [25].

3.2 Towards the Real World: Finite Rise and
Fall Times, No Parasitic Effects
A step towards realistic bias conditions is achieved by considering
that external waveform generators provide pulses with finite rise
and fall times. Top-level equipments generate voltage pulses with
rise and fall times as fast as 1 ns, and with 1.5 ns Full-Width Half
Maximum (FWHM) [25]. These times are comparable with the
microscopic relaxation times that govern the heating process and
are assumed to be responsible for the OTS effect. Thus, still in
absence of parasitic effects, a comparison of the theoretical

FIGURE 3 | Current flowing across the PCM device as a function of time
after the application of a 2.4 V external voltage step at t = 0. Different values for
the microscopic parameter τn have been tested.

FIGURE 4 | Current flowing across the PCM device as a function of time
after the application of voltage steps of different amplitudes. The microscopic
parameter τn has been set to 0.6 ns.

FIGURE 5 | Current flowing across the PCM device as a function of time
(right scale) after the application of voltage trapezoidal profiles of different
amplitude (left scale). In all cases, rise and fall times are 1.5 ns and the duration
of the plateau is 4 ns.
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predictions with the experimental scenario on a ns time scale has
been carried on with reference to the bias conditions reported
in [25].

Figure 5 reports the current flowing across the GST layer, as a
function of time, due to the application of a trapezoidal profile
with 1.5 ns rise and fall times, and a 4 ns duration of the plateau.
Different values of the plateau have been considered, ranging
from 2 V (corresponding to the OTS voltage) up to 4 V. Figures
6, 7 report similar data for 2.8 and 4 V plateau amplitudes,
respectively, with plateau durations of 0, 2, and 4 ns in each case.

In agreement with what reported by [25], ultrafast transient
characteristics in the ns scale and below have been obtained in all
considered cases. These results suggest that the delay time td,
defined as the time elapsed between the instant at which the
external bias exceeds the steady-state threshold value and the

steep rise in the device current, varies in a wide range of values
depending on the shape of the applied voltage. In particular, for
plateau values significantly above threshold the carrier-heating
process is very effective well before the maximum value of the
voltage is reached; consequently, shorter delay times are observed
(Figure 5). Moreover, when the plateau value and the rise and fall
times are fixed, the duration of the plateau influences the
maximum value of the measured current, but does not affect
the delay time (Figures 6, 7).

All the above results are in agreement with those of [25], and
confirm the validity of a theoretical model for the OTS process
based on purely electronic mechanisms. At least in absence of
parasitic effects, and provided that the microscopic time
constants of the chalcogenide in hand lie in the ns range and
below, the speed of threshold switching in OTS devices can be
pushed below the ns scale by a voltage pulse of suitable duration
and value. Figure 8 summarises the results for the delay time td as
a function of the applied voltage amplitude for the bias conditions
considered so far. For rise and fall times of 1.5 ns, the delay times
obtained for the step (red symbols) and trapezoidal profiles
(green symbols) are almost overlapping near threshold, while
at higher biases the response to the trapezoidal shape exhibits still
comparable, but longer delay times; this is probably due to a
slower carrier heating process when the voltage ramps up the
maximum value in about a ns. In all cases considered, the delay
times obtained for applied voltages above 2.5 V are below the ns
time scale.

3.3 The Real World: Finite Rise and Fall
Times, With Parasitic Effects
Parasitic effects connected to the measuring system and wirings
can be minimized with a top level apparatus, but cannot be
eliminated in full. To account for their contribution we have
repeated the simulations of the delay time after embedding the

FIGURE 6 | Current flowing across the PCM device as a function of time
(right scale) after the application of voltage trapezoidal profiles of 2.8 V
amplitude (left scale). Rise and fall times are 1.5 ns in all cases, whereas the
plateau durations are 0, 2, and 4 ns.

FIGURE 7 | Current flowing across the PCM device as a function of time
(right scale) after the application of voltage trapezoidal profiles of 4 V amplitude
(left scale). Rise and fall times are 1.5 ns in all cases, whereas the plateau
durations are 0, 2, and 4 ns.

FIGURE 8 | Simulated delay time td as a function of the amplitude of the
applied signal V. The red squares and the green circles refer to the case where
the input signal is applied directly to the PCM and consists of a voltage step or,
respectively, of a trapezoidal voltage pulse like those of Figure 5 (in the
latter case the amplitude of V is given by the plateau value). The blue triangles
refer to the case where the input signal (still a trapezoidal pulse) is applied
through the circuit of Figure 1, with RL = RS = 1 Ω and C = 300 pF. The cross
(star) shows the delay time for V = 2.8 V when the value of the capacitance is
changed to 30 pF or 1,000 pF, respectively.
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PCM device into the circuit of Figure 1, varying the equivalent
capacitance C. The series resistances have been set at negligible
values, since previous investigations pointed out a major
modulating effect of the capacitance [33]. The characteristic
time of the circuit is thus proportional to τL = RL C, and acts
as an additional delay time.

Figure 9 reports the voltage drop Vp across the PCMwhen the
input signal has a trapezoidal form, with 1.5 ns rise and fall times,
and a 2.8 V plateau with a 2 ns duration; the equivalent
capacitance has been varied from 30 to 2000 pF. Due to the
broadening of VP (top panel), the higher the capacitance the
shorter is the time interval during which VP > Vth. By way of
example, C = 2000 pF corresponds to τL = 2 ns, equal to the
duration of the plateau; in this case the electronic switching is

hindered (low panel), because the switching to the ON state
occurs only if the applied signal is kept at its plateau value long
enough, in such a way that the electronic processes described
earlier can be activated and completed. Similar results are also
shown in Figures 10, 11, where the duration of the plateau is
increased from 0 to 4 ns, while the capacitance is kept fixed. Once
again, the maximum voltage drop Vp is always larger than the
threshold voltage but, if the signal drops soon after reaching the
maximum value, the threshold switching does not occur (low
panel of Figure 10, black curve) or is incomplete (low panel of
Figure 11, black curve). These results are consistent with the
findings of [25]. The delay times of the current switch as functions
of the plateau value of the external-voltage profile, for the cases
considered in this section, are reported in Figure 8 (blue triangles,
cross, and star), and compared with those obtained in absence of
parasitic effects. As expected, capacitive effects produce longer
delay times, and only with advanced experimental setups the
delays can be reduced to values below the ns scale, as
experimentally confirmed by [25].

For the sake of completeness we point out that the present
transport model was developed for the amorphous OFF phase,
and its parameters have been optimised for describing the
subthreshold region. ON state currents are underestimated,
and a quantitative comparison with the experimental currents
also in the amorphous ON region preceeding the phase change
would require a further model enhancement like, e.g., the
inclusion of electron band states and the mobility increase that
sets in when electrons coming from low-mobility states are
excited to high-energy mobile states, and a consequent
parameter recalibration. However, an even steeper rise of the
current is expected not to alter appreciably the present findings.

In conclusion, we can split the measured delay time into two
components: the former one is intrinsic to the switching
phenomenon, and is associated to the time required to
promote a significant number of carriers from localized to
mobile states, thanks to carrier heating induced by the electric
field (a similar change in the transport mechanism is also

FIGURE 9 | Simulated voltage drop VP (above) and current IP (below) of
the PCM. The input signal V (above, circles) has a trapezoidal form with a
plateau at 2.8 V, and is applied through the circuit of Figure 1 with RL = RS =
1 Ω. Capacitance C is given different values as shown in the figure. The
horizontal, dashed line marks the threshold voltage Vth.

FIGURE 10 | Same as in Figure 9, with different durations of the plateau
of V; the latter is set at 2.8 V, and capacitance C is set at 300 pF.

FIGURE 11 | Same as in Figure 10, with different durations of the
plateau of V; here the latter is set at 4 V, and capacitance C is kept 300 pF.
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proposed in [37]); the latter component is instead depending on
the measuring apparatus and wirings, and acts as a nearly rigid
offset. This component can largely dominate if no particular care
is taken in designing the circuitry. To support this statement, we
see in Figure 8 that increasing the capacitance by about three
times nearly doubles the delay time.

A simplified analysis of the same issue has been carried out for
comparison, with reference to the circuit of Figure 1, and to the
schematic model of the PCM characteristic of Figure 2. The delay
time td has been calculated from the relations of Section 2.4.2,
using the same values of the lumped elements as those of
Figure 8. The S-shaped IP(VP) characteristic of the PCM has
been modeled with R1 = 1 MΩ and R2 = 1 kΩ, a threshold voltage
Vth = 2 V, and a contact resistance RS = 1Ω. It is worth observing
that, since the PCM is described with a static characteristic, here
the delay is due to the combined effect of RL and C (in other
terms, there would be no delay if RL = 0 and/or C = 0). The ramp
slope α = 1.87 × 109 V/s (α = 2.67 × 109 V/s) corresponds to a rise
time of 1.5 ns fromV = 0 toV = 2.8 V (V = 4 V); it follows thatV =
α t becomes equal to the threshold voltage at t′ ≃ 1.07 ns (t′ =
0.75 ns).

The results are summarized in Table 2; one notes that, as
expected, the same value of τL = RL C provides the same value of
td. Comparing with Figure 8, one also notes that the delay times
calculated as in Section 2.4.2 are lower (by a factor 2.5 at least) than
those shown in Figure 8. Remembering the discussion carried out in
the first part of this section, this outcome is ascribed to the fact that, as
the PCM characteristic of Figure 2 is purely static, the expressions of
Section 2.4.2 do not account for the additional delay due to the
internal relaxation times of the PCM.

4 CONCLUSION

The delay time of the OTS onset, i.e., the delay between the
instant at which the external voltage applied to the chalcogenide
cell equals the static threshold voltage and the instant at which a

steep rise of the current through the OTS device occurs, is a
quantity that is strongly influenced by the time dependence of the
applied voltage. This effect has been studied in this paper by
means of theoretical approaches of different complexities, all
based upon the assumption that OTS is mainly due to electronic
effects.

A purely microscopic model based on a trap-limited transport
scheme with appropriate microscopic parameters provides delay
times below the ns limit, as recently measured in GST-225 cells
[25]. The availability of new experimental results for this
chalcogenide in the ns–ps time domain allows for a better
tuning of the microscopic parameter τn, which greatly
improves the theoretical quantitative results for the delay time
with respect to our previous work [30,34]. Parasitic effects do not
produce a noticeable increase of td, at least for suitably optimised,
electrical-test systems like those used in advanced experiments.
Based on the simulation tests performed with detailed
microscopic models, an analytical, computationally efficient
approach has been developed which captures the key features
of the voltage-dependent transient characteristic of OTS devices,
and is suitable for implementation into device-simulation tools.

The simulated transient currents are in substantial agreement
with the experimental values obtained with similar external bias
voltages, this confirming the existence of delay times in the sub-ns
time scale on the basis of the physical process of carrier heating
due to energy transfer from the external field. Analytical
calculations confirm that, for realistic values of the parasitic
parameters, the internal relaxation times of the PCM provide
a non-negligible contribution to the delay time td.
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