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In this study, we investigate the implication of modular Γ5′ ≃ A5′ symmetry on neutrino
oscillation phenomenology in the linear seesaw framework. In order to achieve the well-
defined mass structure for the light active neutrinos as dictated by the linear seesaw
mechanism, we introduce six heavy fermion fields along with a pair of weightons to retain
the holomorphic nature of the superpotential. The notable feature of modular symmetry is
that it reduces the usage of flavon fields significantly. In addition, the Yukawa couplings
transform non-trivially under the flavor symmetry group and are expressed in terms of the
Dedekind eta functions, the q expansion of which renders numerical simplicity in
calculations. We demonstrate that the model framework diligently accommodates all
the neutrino oscillation data. Alongside, we also investigate the effect of CP asymmetry
generated from the decay of lightest heavy fermions to explain the observed baryon
asymmetry through the phenomenon of leptogenesis.
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1 INTRODUCTION

There are several unsolved knots in the realm of particle physics, for example, the baryon asymmetry
of the universe, the dark matter content, the origin of neutrino masses and mixing, and the
understanding of these issues is one of the prime objectives of the present-day research. In the last
couple of decades, several diligent attempts have been made towards comprehending and resolving
the issue of the dynamical origin of fermion masses and their mixing. The present scenario has taken
us a few steps ahead in terms of getting a convincing explanation of the origin of mass through the
Higgs mechanism while being within the domain of the standard model (SM). However, it does not
provide proper grounds to explain the origin of the observed neutrino masses and their mixing.
Rather, very diverse approaches are made in order to gain an insightful resolution toward the
aforementioned existing problems, and obviously, the answer lies in going beyond standard model
(BSM) physics. It should be emphasized that certain well-defined patterns are observed in quark
masses and mixing, the appreciation of which is still an enigma. Nonetheless, there is ample amount
of research work present, which makes an attempt to grasp their fundamental origin. In addition,
perplexity to the problem has increased due to the observation of the neutrino masses and their
sizeable mixing. The reason is the order of magnitude of the observed neutrino masses are
approximately twelve orders smaller than that of the EW scale. Also, there is an immense
difference in the pattern of leptonic and quark mixings, with the former having large mixing
angles and the latter having smaller mixing angles. Numerous experiments [1–4] have confirmed the
tininess of the neutrino mass and other parameters with high accuracy. The best-fit values of the
neutrino oscillation parameters are furnished in References [5, 6].

It is well-known that in the SM framework, the neutrino mass generation cannot be explained
through the standard Higgs mechanism due to the absence of the right-handed (RH) components.
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Still, if we could manage to add the RH neutrinos into SM by
hand and allow Dirac mass terms, the values of the required
Yukawa couplings would be around O(10−12), which appear
aberrant. In contrast, there exist many BSM scenarios that help
generate tiny neutrino masses through the conventional seesaw
mechanism. Some of the prominent seesaw mechanisms are
categorized as type I [7–10], type II [11–16], and type III
[17–22], and all of them require additional heavy fermions
or scalars beyond the SM particle content. Literature survey
shows there are many flavor symmetries either discrete A4

[23–25], S3 [26–29], S4 [30–32], etc. or continuous U(1)B−L
[33–37], U(1)H [38–40], U(1)Le−Lτ [41, 42], etc., which can
generate the tiny neutrino masses and also accommodate the
observed neutrino oscillation data with the help of some
additional scalars and perturbation (wherever required). As
aforesaid, the inclusion of flavons affects the neatness of the
model, and the predictability of the model is hampered because
of the higher dimensional operators. These drawbacks can be
eliminated through the recent approach of modular symmetry
[43–65], where the Yukawa couplings transform non-trivially
under the discrete flavor symmetry group and have a certain
modular weight.

Themodular group Γ5′ ≃ A5′ is a new and promising candidate,
which corresponds to the specific case of N = 5. People have done
extensive research on the basic properties of this finite group A5′
[66–68], so here we mention only the important points regarding
A5′ modular symmetry. The A5′ group consists of 120 elements,
which are likely to be produced by the generators S, T, and R
gratifying the identities for N = 5 [69]. So, categorization of these
120 elements are done into nine conjugacy classes which are
represented by nine well-defined irreducible representations,
symbolized as 1, 2̂, 2̂′, 3, 3′, 4, 4̂, 5, and 6̂. Additionally, the
conjugacy classes and character table of A5′ , as well as the
representation matrices of all three generators S, T, and R, are
presented in Supplementary Appendix [69]. It ought to be
noticed that the 1, 3, 3′, 4, and 5 representations with R � I

coincide with those for A5, while 2̂, 2̂′, 4̂, and 6̂ are unique for A5′
with R � −I. As we are working in the modular space of γ(5), its
dimension is 5k + 1, where k is the modular weight. A brief
discussion concerning the modular space of γ( 5) is presented in
Supplementary Appendix SA. For k = 1, the modular space M1

[Γ(5)] will have six basis vectors, that is, (êi, where i = 1, 2, 3, 4, 5,
6), whose q-expansion are given in the following, and they are
used in expressing the Yukawa coupling Y(1)

6̂
, as shown in

Supplementary Appendix SB:

ê1 � 1 + 3q + 4q2 + 2q3 + q4 + 3q5 + 6q6 + 4q7 − q9 +/ ,
ê2 � q1/5 1 + 2q + 2q2 + q3 + 2q4 + 2q5 + 2q6 + q7 + 2q8 + 2q9 +/( ),
ê3 � q2/5 1 + q + q2 + q3 + 2q4 + q6 + q7 + 2q8 + q9 +/( ),
ê4 � q3/5 1 + q2 + q3 + q4 − q5 + 2q6 + 2q8 + q9 +/( ),
ê5 � q4/5 1 − q + 2q2 + 2q6 − 2q7 + 2q8 + q9 +/( ),
ê6 � q 1 − 2q + 4q2 − 3q3 + q4 + 2q5 − 2q6 + 3q8 − 2q9 +/( ),

(1)
where q ≡ e2iπτ, with τ as a complex modulus parameter. The
significance of the modulus τ is that the modular group Γ is
generated by performing the linear fractional transformation on τ
as follows:

γ: τ → γ τ( ) → aτ + b

cτ + d
, a, b, c, d ∈ Z: ad − bc � 0, Im(τ)> 0{ }.

(2)
Our aim is to utilize the expediency of A5′ modular symmetry by
employing it to the linear seesaw mechanism in the context of
supersymmetry as we are quite familiar with the dynamics of TeV-
scale seesaw frameworks from numerous [70, 71] studies. The
deciding factor whether it will be linear seesaw or inverse seesaw is
the position of the zero elements in themassmatrix under the basis
of (], NRi, SLi). It is quite evident when 11 and 33 elements of the
mass matrix are zero; it gives the structure of a linear seesaw. As
mentioned before, the introduction of three left-handed neutral
fermion superfields SLi alongside three-right handed ones
NRi (i � 1, 2, 3) validates and produces the neutrino mass
matrix structure of a linear seesaw, which is intricate enough,
and has been studied in the context of discrete A4 flavor symmetry
in [72–74]. In this work, we are implementing it underA5′ modular
symmetry. For this purpose, the heavy fermions SLi and NRi are
assigned as 39 under A5′ symmetry, and the modular form of the
Yukawa couplings leads to a constrained structure. After that, we
perform the numerical analysis to look for the region which is
acceptable in order to fit the neutrino data. Hence, prediction for
the neutrino sector is done after fixing the allowed parameter space.

The structure of this article is as follows. In Section 2, we discuss
the layout of the familiar linear seesaw framework withA5′ modular
symmetry and its alluring feature, which leads to a simple mass
structure for the charged leptons and neutral leptons, utilizing the
product rules of A5′ symmetry. We thereafter briefly discuss the
phenomena of light neutrinomasses andmixing in this framework.
The numerical analysis pertaining to different observables of the
neutrino sector and the input model parameters is presented in
Section 3. We also briefly comment on the non-unitarity effect in
Section 4. The discussion on leptogenesis within the context of the
proposed model is furnished in Section 5, and our results are
summarized in Section 6.

2 MODEL FRAMEWORK

Here, we have built a model under a linear seesaw scenario in the
context of supersymmetry (SUSY), where Table 1 expresses the
particle content and their respective group charges. For exploring
the neutrino sector beyond standard model (BSM), we extend it
with the discreteA5′ modular symmetry and a localU(1)B−L gauge
symmetry. However, the local U(1)B−L becomes the auxiliary

TABLE 1 | Particle spectrum and their charges under the symmetry groups
SU(2)L × U(1)Y × U(1)B−L × A5′, while kI represents the modular weight.

Field ec
R μc

R τcR LL Nc
R SL Hu,d ζ ζ9

SU(2)L 1 1 1 2 1 1 2 1 1
U(1)Y 1 1 1 −1

2
0 0 1

2,−1
2

0 0

U(1)B−L 1 1 1 −1 1 0 0 1 -1
A5′ 1 1 1 3 3′ 3′ 1 1 1
kI 1 3 5 1 1 4 0 1 1
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symmetry, which has been added to avoid certain undesirable
terms in the superpotential. The advantage of using BSM is that we
can add right-handed neutrinos and extra fields, and hence, we
have included three extra right-handed SM singlet superfields
(NRi), three left-handed singlet superfields (SLi), and a pair
weightons (ζ, ζ′) in the particle gamut. The transformation of
extra added superfields is taken as 39 under the A5′ modular group.
The A5′ and U(1)B−L symmetries are broken at a very high scale,
much greater than the scale of electroweak symmetry breaking
[75]. Mass acquisition by the extra singlet superfields is done by
allocating non-zero vacuum expectation values (VEVs) to the
weightons ζ and ζ′. The modular weight assigned to various
particles is denoted by kI. One of the significant points of
introducing the modular symmetry is the curtailment of flavon
(weighton) fields, which otherwise are traditionally required while
using BSM with discrete symmetries, since the Yukawa couplings
have non-trivial group transformation under the A5′ modular
symmetry group, and their transformation are present in [69].

The complete superpotential is given as follows:

W � AMl
LLl

c
R( )3YkY

3[ ]Hd + μHuHd + GD LLN
c
R( )5Y 2( )

5[ ]Hu+
GLS LLSL( )4Hu∑2

i�1
Y 6( )

4,i
⎡⎣ ⎤⎦ ζ

Λ + BMRS SLN
c
R( )5∑2

i�1
Y 6( )

5,i
⎡⎣ ⎤⎦ζ′,

(3)
whereAMl � (αMl, βMl

, γMl
), lcR � (ecR, μcR, τcR), kY = (2, 4, 6), and

GD � diag{gD1, gD2, gD3}, GLS � diag{gLS1, gLS2, gLS3}, and BMRS �
diag{αRS1, αRS2, αRS3} represent the coupling strengths of various
interaction terms.

2.1 Mass Terms for the Charged
Leptons (Mℓ)
In order to have a clear and simplified structure for the charged
lepton mass matrix, we consider the three families of left-handed
lepton doublets (LL) to transform as 3 under the A5′ symmetry
with U(1)B−L charge −1. The right-handed charged leptons lcR
transform as singlets under A5′ symmetry and have U(1)B−L
charge +1. However, ecR, μ

c
R, and τcR are given the modular

weight as 1, 3, and 5, respectively. The Higgsinos Hu,d are
given charges 0 and 1 under the U(1)B−L and A5′ symmetries
with zero modular weights. The VEVs of these Higgsinos Hu and
Hd are given as vu/

�
2

√
and vd/

�
2

√
, respectively. Moreover,

Higgsinos VEVs are associated to SM Higgs VEV as

vH � 1
2

������
v2u + v2d

√
, and the ratio of their VEVs is expressed as

tan β = (vu/vd); we use its value as 5 in our analysis. The relevant
superpotential terms for charged leptons obtained from Eq. 3 are
given as follows:

WMl
� αMl

LLe
c
R( )3Y 2( )

3[ ]Hd + βMl
LLμ

c
R( )3Y 4( )

3[ ]Hd

+ γMl
LLτ

c
R( )3 ∑2

i�1
Y 6( )

3,i

⎧⎨⎩ ⎫⎬⎭⎡⎣ ⎤⎦Hd. (4)

In the A5′ modular group, its Kronecker product (as provided in
Supplementary Appendix SC) leaves us with a non-diagonal

charged lepton mass matrix after the spontaneous symmetry
breaking. The mass matrix takes the following form:

Ml � vd�
2

√

Y 2( )
3( )

1
Y 4( )

3( )
1

∑2
i�1

Y 6( )
3,i

⎛⎝ ⎞⎠
1

Y 2( )
3( )

3
Y 4( )

3( )
3

∑2
i�1

Y 6( )
3,i

⎛⎝ ⎞⎠
3

Y 2( )
3( )

2
Y 4( )

3( )
2

∑2
i�1

Y 6( )
3,i

⎛⎝ ⎞⎠
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
LR

·
αMl

0 0
0 βMl

0
0 0 γMl

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (5)

The charged lepton mass matrix Ml can be diagonalized by the
unitary matrix Ul, resulting in the physical massesme,mμ, andmτ

as follows:

U†
l MlM

†
l Ul � diag m2

e , m
2
μ, m

2
τ( ). (6)

In addition, it also satisfies the following identities, which will be
used for numerical analysis in Section 3:

Tr MlM
†
l( ) � m2

e +m2
μ +m2

τ ,

Det MlM
†
l( ) � m2

em
2
μm

2
τ ,

1
2

Tr MlM
†
l( )[ ]2 − 1

2
Tr MlM

†
l( )2[ ] � m2

em
2
μ +m2

μm
2
τ +m2

τm
2
e .

(7)

2.2 Dirac and Pseudo-Dirac Mass Terms for
the Light Neutrinos
In addition to lepton doublets transformation, hitherto, the
heavy fermion superfields, that is,NRi (SLi), transform as triplet
3′ under the A5′ modular group with U(1)B−L charge of −1 (0)
along with modular weight 1 (4), respectively. As discussed in
Ref. [69], the choice of Yukawa couplings depends on the
equation kY � kI1 + kI2 +/ + kIn, where kY is the modular
weight of Yukawa couplings and ΣIn

i�1kIn is the sum of the
modular weights of all other particles present in the
definition of superpotential terms. These Yukawa couplings
are expressed in terms of Dedekind eta function η(τ) and
thus have q-expansion forms, in order to avoid the
complexity in calculations. The relevant superpotential term
involving the active and right-handed neutrinos can be
expressed as follows:

WD � GD LLN
c
R( )5Y 2( )

5[ ]Hu, (8)
where GD is the diagonal matrix containing the free parameters
and the modular weight of the Yukawa coupling is equal to the
sum of the modular weights of all other particles present in Eq. 8.
The choice of the Yukawa coupling is made based on the
Kronecker product rules for A5′ modular symmetry such that
superpotential remains invariant. The resulting Dirac neutrino
mass matrix is found to be as follows:
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MD � vu�
3

√
0
GD

�
3

√
Y 2( )

5( )
1

Y 2( )
5( )

4
Y 2( )

5( )
3

Y 2( )
5( )

5
− �

2
√

Y 2( )
5( )

3
− �

2
√

Y 2( )
5( )

2

Y 2( )
5( )

2
− �

2
√

Y 2( )
5( )

5
− �

2
√

Y 2( )
5( )

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
LR

. (9)

As the transformation of the sterile fermion superfield SL is same
as NR under A5′ modular symmetry, it allows us to define a
pseudo-Dirac mass term for the light neutrinos, and the
corresponding interaction superpotential is expressed as follows:

WLS � GLS LLSL( )4∑i�1
2

Y 6( )
4,i

⎡⎣ ⎤⎦Hu
ζ

Λ( ), (10)

where GLS is a diagonal matrix containing three free parameters
and the choice of Yukawa coupling depends on the idea of keeping
the superpotential singlet. Thus, we obtain the structure for the
pseudo-Dirac neutrino mass matrix of the following form:

MLS � vu
2

�
6

√ vζ�
2

√
Λ( )GLS

0 − �
2

√ ∑2
i�1

Y 6( )
4,i

⎛⎝ ⎞⎠
3

− �
2

√ ∑2
i�1

Y 6( )
4,i

⎛⎝ ⎞⎠
2�

2
√ ∑2

i�1
Y 6( )

4,i
⎛⎝ ⎞⎠

4

− ∑2
i�1

Y 6( )
4,i

⎛⎝ ⎞⎠
2

∑2
i�1

Y 6( )
4,i

⎛⎝ ⎞⎠
1

∑2
i�1

Y 6( )
4,i

⎛⎝ ⎞⎠
1

∑2
i�1

Y 6( )
4,i

⎛⎝ ⎞⎠
4

− ∑2
i�1

Y 6( )
4,i

⎛⎝ ⎞⎠
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
LR

.

(11)

2.3 Mixing Between the Heavy Fermions NRi

and SLi
Introduction of extra symmetries helps to allow the mixing of heavy
superfields but forbids the usual Majorana mass terms. Hence, we
exhibit themixing of these extra superfields, that is, (NR, SL) as follows:

WMRS � BMRS SLN
c
R( )5∑2

i�1
Y 6( )

5,i
⎡⎣ ⎤⎦ζ′, (12)

where BMRS is the free parameter and 〈ζ′〉 � vζ′/
�
2

√
is the VEV of

ζ′, and the superpotential is singlet under the A5′ modular
symmetry product rule. Thus, considering vζ′ ≈ vζ, one can
obtain the mass matrix as follows:

MRS � vζ�
6

√
0
BMRS

2 ∑2
i�1

Y 6( )
5,i

⎛⎝ ⎞⎠
1

− �
3

√ ∑2
i�1

Y 6( )
5,i

⎛⎝ ⎞⎠
4

− �
3

√ ∑2
i�1

Y 6( )
5,i

⎛⎝ ⎞⎠
3

− �
3

√ ∑2
i�1

Y 6( )
5,i

⎛⎝ ⎞⎠
4

�
6

√ ∑2
i�1

Y 6( )
5,i

⎛⎝ ⎞⎠
2

− ∑2
i�1

Y 6( )
5,i

⎛⎝ ⎞⎠
1

− �
3

√ ∑2
i�1

Y 6( )
5,i

⎛⎝ ⎞⎠
3

− ∑2
i�1

Y 6( )
5,i

⎛⎝ ⎞⎠
1

�
6

√ ∑2
i�1

Y 6( )
5,i

⎛⎝ ⎞⎠
5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
LR

.

(13)
The masses for the heavy superfields can be found in the basis
(NR, SL)T as

Mhf � 0 MRS

MT
RS 0

( ). (14)

Hence, one can have three doubly degenerate mass eigenstates for
the heavy superfields upon diagonalization.

2.4 Linear Seesaw Framework for the Light
Neutrino Masses
In the present scenario of A5′ modular symmetry, the light
neutrino masses can be generated in the framework of linear
seesaw. Thus, the mass matrix in the flavor basis of (]L,Nc

R, SL)T
can be manifested as

The mass formula for the light neutrinos in the framework of
linear seesaw is governed by the assumption thatMRS≫MD,MLS

and is given as follows:

m] � MDM
−1
RSM

T
LS + transpose. (16)

In addition to the light neutrino masses, other related parameters
in the leptonic sector are the Jarlskog invariant, which signifies
the measure of CP violation and the effective neutrino mass
parametermee that plays a key role in the neutrinoless double beta
decay process. These parameters can be obtained from the PMNS
matrix elements through the following relations:

JCP � Im Ue1Uμ2Ue2* Uμ1*[ ] � s23c23s12c12s13c
2
13 sin δCP,

(17)
mee � |m1 cos

2θ12 cos
2θ13 +m2 sin

2θ12 cos
2θ13e

iα21

+m3 sin
2θ13e

i α31−2δCP( )|. (18)
Tremendous experimental efforts are being undertaken to
measure the effective Majorana mass parameter mee, and it is
expected to be measured by the KamLAND-Zen experiment in
the near future [76].

3 NUMERICAL ANALYSIS

For numerical analysis, we use the neutrino oscillation
parameters from the global-fit results [77–79] obtained from
various experiments, as given in Table 2. The numerical
diagonalization of the light neutrino mass matrix given in Eq.
16 is done through U†

]MU] � diag(m2
1, m

2
2, m

2
3), where M �

m]m†
] andU] is an unitary matrix. Thus, the leptonmixing matrix

is given as U � U†
l U], from which the mixing angles can be

excerpted using the standard relations:

sin2θ13 � |U13|2, sin2θ12 � |U12|2
1 − |U13|2,

sin2θ23 � |U23|2
1 − |U13|2. (19)

To fit to the current neutrino oscillation data, we use the following
ranges for the model parameters:

Re τ[ ] ∈ 0, 0.5[ ], Im τ[ ] ∈ 1, 3[ ], GD ∈ 10−7, 10−6[ ],
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GLS ∈ 10−4, 10−3[ ] vζ ∈ 10, 100[ ] TeV, BMRS ∈ 10−3, 10−2[ ],
Λ ∈ 104, 105[ ] TeV. (20)
The input parameters are varied randomly in the ranges as
provided in Eq. 20 and constrained by imposing the 3σ
bounds on neutrino oscillation data, that is, the solar and
atmospheric mass-squared differences and the mixing angles,
as presented in Table 2, as well as the sum of active neutrino
masses Σmi < 0.12 eV [80, 81]. The typical range of the modulus τ

is found to be: 0 ≲ Re [τ] ≲ 0.5 and 1 ≲ Im [τ] ≲ 3 for normal
ordered neutrino masses. In Figure 1, we show the variation of
the sum of active neutrino masses (Σmi) with the reactor mixing
angle sin2θ13 in the left panel, while the right panel demonstrates
Σmi versus sin2θ12 and sin2θ23. From these figures, it can be
observed that the model predictions for the sum of neutrino
masses as 0.058 eV ≤ Σmi ≤ 0.062 eV for the allowed 3σ ranges of
the mixing angles.

The variation of the effective neutrinoless double beta decay
mass parameter mee with Σmi is displayed in Figure 2, from
which the upper limit on mee is found to be 0.025 eV satisfying
KamLAND-Zen bound. Furthermore, we display the variation of
δCP and JCP in the left and right panels of Figure 3, respectively,
where 100° ≤ δCP ≤ 250° and |JCP| ≤ 0.004.

4 COMMENT ON NON-UNITARITY OF
LEPTONIC MIXING MATRIX

Here, we present a brief discussion on the non-unitarity of the
neutrino mixing matrix UPMNS′ in the context of the present model.
Due to the mixing between the light and heavy fermions, there will
be a small deviation from the unitarity of the leptonic mixingmatrix,
which can be expressed as follows [82]:

UPMNS′ ≡ 1 − 1
2
FF†( )UPMNS. (21)

Here, UPMNS denotes the leptonic mixing matrix that
diagonalizes the light neutrino mass matrix and F

TABLE 2 | Global-fit values of the oscillation parameters along with their 1σ, 2σ, and 3σ ranges [77–79].

Oscillation parameter Best fit ± 1σ 2σ Range 3σ Range

Δm2
21[10−5 eV2] 7.56 ± 0.19 7.20–7.95 7.05–8.14

|Δm2
31|[10−3 eV2] (NO) 2.55 ± 0.04 2.47–2.63 2.43–2.67

sin2θ12/10
–1

3.21+0.18−0.16 2.89–3.59 2.73–3.79

sin2θ23/10
–1 (NO) 4.30+0.20−0.18, 5.98

+0.17
−0.15 3.98–4.78 & 5.60–6.17 3.84–6.35

4.09–4.42 & 5.61–6.27 3.89–4.88 & 5.22–6.41
sin2θ13/10

–2 (NO) 2.155+0.090−0.075 1.98–2.31 2.04–2.43

δCP/π (NO) 1.08+0.13−0.12 0.84–1.42 0.71–1.99

FIGURE 1 | Left (right) panel displays the correlation between sin2θ13 (sin
2θ12 and sin2θ23) with the sum of active neutrino masses. The vertical lines represent 3σ

allowed ranges of the mixing angles.

FIGURE 2 | Correlation plot between the effective neutrino mass mee of
neutrinoless double beta decay and the sum of active neutrino masses.
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represents the mixing of active neutrinos with the heavy
fermions, approximated as F ≡ (MT

NS)−1MD ≈ gDv
αRSvζ

, and is a
Hermitian matrix. The local constraints on the non-unitarity
parameters [83–85] are obtained through various experimental
results on electroweak parameters, for example, the mass of W
boson (MW), the Weinberg mixing angle (θW), several ratios of
fermionic Z boson decays as well as its invisible decay, bounds from
CKM unitarity, and lepton flavor violations. In the context of the
present model, we presume the following approximated
normalized order for the Dirac, pseudo-Dirac, and heavy
fermion masses for correctly generating the observed solar and
atmospheric mass-squared differences, as well as the sum of active
neutrino masses of desired order as follows:

m]

0.1 eV
( ) ≈

MD

10−3 GeV
( ) MRS

103 GeV
( )−1 MLS

10−4 GeV
( ). (22)

With these chosen order masses, we obtain an approximated
non-unitary mixing for the present model as follows:

|FF†|≤
4.5 × 10−13 2.3 × 10−13 6.2 × 10−13

2.3 × 10−13 2.08 × 10−12 4.5 × 10−12

6.2 × 10−13 4.5 × 10−12 5.6 × 10−12
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (23)

As the mixing between the active light and heavy fermions in our
model is quite small, it leads to a negligible contribution for the
non-unitarity.

5 LEPTOGENESIS

The present universe is clearly seen to be baryon-dominated, with
the ratio of the measured over-abundance of baryons over anti-
baryons to the entropy density is found to be

YB � 8.56 ± 0.22( ) × 10−11. (24)
If the universe had started from an initially symmetric state
of baryons and antibaryons, the following three conditions
have to be fulfilled for generating a non-zero baryon
asymmetry. According to Sakharov [86], the three
criteria are Baryon number violation, C and CP
violation, and departure from equilibrium during the
evolution of the universe. Although the SM assures all

these criteria for an expanding universe are akin to ours, the
extent of CP violation found in the SM is quite small to
accommodate the observed baryon asymmetry of the universe.
Therefore, additional sources of CP violation are absolutely
essential for explaining this asymmetry. The most common new
sources of CP violation possibly could arise in the lepton sector,
which is however not yet firmly established experimentally.
Leptogenesis is the phenomenon that furnishes a minimal setup
to correlate the CP violation in the lepton sector to the observed
baryon asymmetry, as well as imposes indirect constraints on the
CP phases from the requirement that it would yield the correct
baryon asymmetry. It is seen that the scale of CP asymmetry
generated from the heavy neutral fermion decays can come down
to as low as TeV [87–90] due to resonant enhancement. However,
the present scenario is realized by involving six heavy states, which
comprise three pairs of heavy neutrinos with doubly degenerate
masses (Eq. 14). Nevertheless, introduction of higher dimensional
mass terms for the Majorana fermions (NR) can be made through
the following superpotential:

WMR � −GR ∑2
i�1

Y 4( )
5,i N

c
RN

c
R

⎡⎣ ⎤⎦ ζ′2
Λ , (25)

which gives rise to a petty mass splitting between the heavy
neutral fermions and hence provides an enhancement in the
CP asymmetry for generating the required lepton
asymmetry [91, 92]. Thus, from Eq. 25, one can construct
the Majorana mass matrix for the right-handed neutrinos NR

as follows:

MR � GRv2ζ
2Λ

��
30

√

2 ∑2
i�1

Y 4( )
5,i

⎛⎝ ⎞⎠
1

− �
3

√ ∑2
i�1

Y 4( )
5,i

⎛⎝ ⎞⎠
4

− �
3

√ ∑2
i�1

Y 4( )
5,i

⎛⎝ ⎞⎠
3

− �
3

√ ∑2
i�1

Y 4( )
5,i

⎛⎝ ⎞⎠
4

�
6

√ ∑2
i�1

Y 4( )
5,i

⎛⎝ ⎞⎠
2

− ∑2
i�1

Y 4( )
5,i

⎛⎝ ⎞⎠
1

− �
3

√ ∑2
i�1

Y 4( )
5,i

⎛⎝ ⎞⎠
3

− ∑2
i�1

Y 4( )
5,i

⎛⎝ ⎞⎠
1

�
6

√ ∑2
i�1

Y 4( )
5,i

⎛⎝ ⎞⎠
5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
LR

.

(26)
The coupling GR is considered as extremely small to preserve the
linear seesaw texture of the neutrino mass matrix (Eq. 15), that is,
MD,MLS≫MR, and hence, inclusion of such additional term does
not alter the previous results. However, this added term generates

FIGURE 3 | Left (right) panel shows the plot of δCP (JCP) with sin2θ13 within its 3σ bound.
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a small mass splitting. Hence, the 2 × 2 submatrix of Eq. 15 in the
basis of (NR, SL) becomes

M � MR MRS

MT
RS 0

( ), (27)

which can be block diagonalized by the unitary matrix

1�
2

√ I −I
I I

( ) as follows:

M′ �
MRS + MR

2
−MR

2

−MR

2
−MRS + MR

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≈
MRS + MR

2
0

0 −MRS + MR

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (28)

Thus, one can express the mass eigenstates (N±) in terms of the
flavor states (NR, SL) as follows:

SLi
NRi

( ) � cos θ −sin θ
sin θ cos θ

( ) N+
i

N−
i

( ). (29)

Assuming the mixing to be maximal, one can have

NRi � N+
i +N−

i( )�
2

√ , SLi � N+
i −N−

i( )�
2

√ . (30)

Hence, the interaction superpotential (Eq. 8) can bemanifested in
terms of the new basis. The mass eigenvalues of the new states N+

and N− can be obtained by diagonalizing the block diagonal form
of the heavy fermion masses and are found as MR

2 +MRS and
MR
2 −

MRS (Eq. 28).
The Dirac (Eq. 10) and pseudo-Dirac (Eq. 11) terms are now

modified as follows:

WD � GDLLHu Y 2( )
5

N+
i +N−

i( )�
2

√( )[ ], (31)

and

WLS � GLSLLHu ∑i�1
2

Y 6( )
4,i

N+
i −N−

i( )�
2

√( )⎡⎣ ⎤⎦ ζ
Λ. (32)

Thus, one can symbolically express the block diagonal matrix for
the heavy fermions (Eq. 28) as follows:

MRS ±
MR

2
� vζ�

6
√

0
BMRS

2a d e
d b f
e f c

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
LR

±
GRv2ζ
2Λ

��
30

√
2a′ d′ e′
d′ b′ f′
e′ f′ c′

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
LR

, (33)

where the different matrix elements are defined as follows:

a a′( ) � ∑2
i�1

Y6 4( )
5,i

⎛⎝ ⎞⎠
1

, b b′( ) � �
6

√ ∑2
i�1

Y6 4( )
5,i

⎛⎝ ⎞⎠
2

, c c′( ) � �
6

√ ∑2
i�1

Y6 4( )
5,i

⎛⎝ ⎞⎠
5

, (34)

d d′( ) � − �
3

√ ∑2
i�1

Y6 4( )
5,i

⎛⎝ ⎞⎠
4

, e e′( ) � − �
3

√ ∑2
i�1

Y6 4( )
5,i

⎛⎝ ⎞⎠
3

,

f f′( ) � −a a′( ). (35)
One can obtain the diagonalized mass matrix from Eq. 33 through
rotation to the mass eigenbasis as
(M±)diag � UTBMUR(MRS ±

MR
2 )UT

RU
T
TBM, and thus, three sets of

nearly degenerate mass states can be obtained upon diagonalization.
We further presume that the lightest pair among them with mass in
the TeV range contributes predominantly to the CP asymmetry. The
small mass difference between the lightest pair demonstrates that the
CP asymmetry generated from the one-loop self-energy contribution
of heavy particle decay dominates over the vertex part. Thus, the CP
asymmetry can be expressed as follows [87, 93]:

ϵN−
i
≈

1
32π2AN−

i

Im
~MD

v
− ~MLS

v
( )† ~MD

v
+ ~MLS

v
( )2 ~MD

v
− ~MLS

v
( )†⎡⎣ ⎤⎦

ii

rN
r2N + 4A2

N−
i

,

(36)

where ~MD(LS) � MD(LS)UTBMUR, ΔM � M+
i −M−

i ≈ MR, and
the parameters rN and AN− are given as follows:

rN � M+
i( )2 − M−

i( )2
M+

i M
−
i

� ΔM M+
i +M−

i( )
M+

i M
−
i

,

AN− ≈
1

16π

~MD

v
− ~MLS

v
( ) ~MD

v
+ ~MLS

v
( )[ ]

ii

.
(37)

FIGURE 4 | Correlation plot demonstrating the dependence of CP
asymmetry with the parameter rN.

FIGURE 5 | Evolution of the yield parameters YN and YL as a function of
z � MN− /T .
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In Figure 4, we depict the behavior of CP asymmetry with rN,
which satisfies both neutrino oscillation data and the CP
asymmetry required for leptogenesis [94–95], which will be
discussed in the next subsection.

5.1 Boltzmann Equations
Boltzmann equations are invoked to solve for the lepton
asymmetry. It should be reiterated that the Sakharov criteria
[86] require the decay of the parent heavy fermion which ought to
be out of equilibrium for generating the lepton asymmetry. In
order to implement this condition, one has to confront the
Hubble rate to the decay rate as follows:

KN−
i
� ΓN−

i

H T � M−
i( ). (38)

Here, H � 1.67
��
g+

√
T2

MPl
is the Hubble expansion rate, with g+ =

106.75 is the number of relativistic degrees of freedom in the thermal
bath andMPl = 1.22 × 10

19 GeV is the Planckmass. Coupling strength
becomes the deciding factor that guarantees inverse decay does not
come into thermal equilibrium. For instance, if the strength is below
10–7, it gives KN− ~ 1. The Boltzmann equations associated with the
evolution of the number densities of right-handed fermion field and
lepton, articulated in terms of yield parameter (ratio of number density
to entropy density), are given by the following expression [96–99]:

dYN−

dz
� − z

sH MN−( )
YN−

Yeq
N−

− 1( )γD + YN−

Yeq
N−

( )2

− 1( )γS[ ],
dYB−L
dz

� − z

sH MN−( ) 2
YB−L
Yeq

ℓ

γNs − ϵN−
YN−

Yeq
N−

− 1( )γD[ ],
(39)

where, s denotes the entropy density, z � M−
i /T andYL � Yℓ − Y�ℓ ,

and the equilibrium number densities are given as follows [94]:

Yeq
N− � 135gN−

16π4g+

z2K2 z( ), Yeq
ℓ
� 3
4
45ζ 3( )gℓ

2π4g+

. (40)

Here, K1,2 are the modified Bessel functions, gℓ = 2 and gN− � 2
represent the degrees of freedom of lepton and RH fermions, and
γD is the decay rate and is given as follows:

γD � sYeq
N−ΓN−

K1 z( )
K2 z( ). (41)

While γS represents the scattering rate of N
−N− → ζζ [99] and γNs

denotes the scattering rate of ΔL = 2 process. One can keep away
the delicacy of the asymmetry being produced even when N− is in
thermal equilibrium by subtracting the contribution arising from
on-shell N− exchange: (γD4 ) from the total rate γNs, given as γsubNs �
γNs − γD

4 [97]. The solution of Boltzmann (Eq. 39) is displayed in
Figure 5. For large coupling strength, YN− (green thick curve)
almost traces Yeq

N− (black solid curve), and the lepton asymmetry
(red dashed curve) is generated. The obtained lepton asymmetry
can be converted to the baryon asymmetry through the process of
sphaleron transition given as follows [96]:

YB � − 8Nf + 4NH

22Nf + 13NH
( )YL, (42)

where Nf represents the number of fermion generations and NH

denotes the number of Higgs doublets. The observed baryon
asymmetry can be expressed in terms of baryon to photon ratio as
follows [81]:

η � ηb − η�b

ηγ
� 6.08 × 10−10. (43)

The current bound on the baryon asymmetry can be procured
from the relation YB = η/7.04 as YB ~ 8.6 × 10–11. Using the
asymptotic value of YL as (8.77 × 10–10) from Figure 5, the
obtained baryon asymmetry is YB � −28

79 YL ~ 10−10.

5.2 A Note on Flavor Consideration
In leptogenesis, one flavor approximation is sufficient when (T >
1012 GeV), meaning all the Yukawa interactions are out of

TABLE 3 | CP asymmetries and mass splitting obtained from the allowed range of
model parameters which satisfy neutrino oscillation data.

eN− μN− τN− N− ΔM (GeV)

−1.78 × 10–5 −2.6 × 10–5 −4.15 × 10–5 −8.53 × 10–5 4 × 10–6

FIGURE 6 | After including the flavor effects, the yield is shown in the left panel, whereas the right panel shows the enhancement in the yield due to flavor effects.
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equilibrium. But for temperatures T ≪ 108 GeV, several charged
leptonYukawa couplings come into equilibrium,making flavor effects
an important consideration for generating the final lepton asymmetry.
For temperatures below 106 GeV, all the Yukawa interactions are in
equilibrium and the asymmetry is stored in the individual lepton
flavor. The detailed investigation of flavor effects in type I leptogenesis
can be seen in myriads of studies [100–105].

The Boltzmann equation for generating the lepton asymmetry
in each flavor is given as follows [101]:

dYα
B−Lα
dz

� − z

sH M−
1( ) ϵαN−

YN−

Yeq
N−

− 1( )γD − γαD
2

( )AααY
α
B−Lα

Yeq
ℓ

[ ],
(44)

where, ϵαN− (α = e, μ, τ) represents the CP asymmetry in each
lepton flavor.

γαD � sYeq
N−ΓαN−

K1 z( )
K2 z( ), γD � ∑

α

γαD.

The matrix A is given by the following expression [102]:

A �

−221
711

16
711

16
711

16
711

−221
711

16
711

16
711

16
711

−221
711

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

From the benchmark considered in Table 3, we estimate the B− L
yield with flavor consideration in the left panel of Figure 6. It is
quite obvious to notice that the enhancement in B − L asymmetry is
obtained in the case of flavor consideration (blue line) over the one
flavor approximation (red line), as displayed in the right panel.
This is because in one flavor approximation, the decay of the heavy
fermion to a particular lepton flavor final state can get washed away
by the inverse decays of any flavor unlike the flavored case [103].

6 SUMMARY AND CONCLUSION

In this work, we have investigated the implications of A5′ modular
symmetry on neutrino phenomenology. The important feature of
modular flavor symmetry is that it reduces the complications of
accommodating multiple flavons, which are usually associated with
the use of discrete flavor symmetries. In the present model, we
consider the SM to be extended by the A5′ modular symmetry
along with a U(1)B−L local gauge symmetry. It encompasses three
right-handed and three left-handed heavy fermion superfields to
explore the neutrino phenomenology within the context of the
linear seesaw. In addition, it contains a pair of singlet weightons,
which play a vital role in the spontaneous breaking of U(1)B−L local
symmetry and provide masses to the heavy fermions. The Yukawa
couplings are considered to transform non-trivially in themodularA5′
group, which replace the role of conventional flavon fields. This, in
turn, leads to a specific flavor structure for the neutrino mass matrix
and helps in exploring the phenomenology of neutrino mixing. We
numerically diagonalized the neutrino mass matrix to obtain the

allowed regions for themodel parameters, compatible with the current
3σ limit of oscillation data. Furthermore, our model predicts the CP-
violating phase δCP to be in the range of (100°–250°) and the Jarlskog
invariant to beO(10−3). The sum of active neutrino masses is found
to be in the range 0.058 eV ≤Σmi ≤ 0.062 eV and the value of effective
neutrinoless double beta decay mass parameter mee as (0.001–0.025)
eV, which is quite below the current upper limits from KamLAND-
Zen experiment, that is, < (61 − 165) meV. In addition, the flavor
structure of heavy fermions gives rise to three sets of doubly
degenerate mass eigenstates, and hence, to incorporate leptogenesis,
we introduced a higher dimension mass term for the right-handed
neutrinos for generating a small mass splitting. We then obtained a
non-zero CP asymmetry from the lightest heavy fermion decay where
the self-energy contribution is partially enhanced due to the small
mass splitting between the two lightest heavy fermions. Utilizing a
particular benchmark of model parameters consistent with oscillation
data, we tackled coupled Boltzmann equations to get the evolution of
lepton asymmetry at TeV scale that emerges to be of the order≃ 10–10,
which is adequate to explain the present baryon asymmetry of the
universe. In addition, we have shed light on the increase in asymmetry
due to flavor consideration.
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