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Two-phase flow through porous media leads to the formation of drops and fingers, which
eventually break and merge or may be trapped behind obstacles. This complex dynamical
behavior highly influences macroscopic properties such as the effective permeability and it
also creates characteristic fluctuations in the velocity fields of the two phases, as well as in
their relative permeability curves. In order to better understand how the microscopic
behavior of the flow affects macroscopic properties of two phases, we simulate the velocity
fields of two immiscible fluids flowing through a two-dimensional porous medium. By
analyzing the fluctuations in the velocity fields of the two phases, we find that the system is
ergodic for large volume fractions of the less viscous phase and high capillary numbers Ca.
We also see that the distribution of drop sizesm follows a power-law scaling, P(m)∝m−ξ .
The exponent ξ depends on the capillary number. Below a characteristic capillary number,
namely Ca* ≈ 0.046, the drops are large and cohesive with a constant scaling exponent ξ ≈
1.23 ± 0.03. Above the characteristic capillary number Ca*, the flow is dominated by many
small droplets and few finger-like spanning clusters. In this regime the exponent ξ

increases approaching 2.05 ± 0.03 in the limit of infinite capillary number. Our analysis
also shows that the temporal mean velocity of the entire mixture can be described by a
generalization of Darcy’s law of the form �v(m) ∝ (∇P)β where the exponent β is sensitive to
the surface tension between the two phases. In the limit of infinite capillary numbers the
mobility term increases exponentially with the saturation of the less viscous phase. This
result agrees with previous observations for effective permeabilities found in dissolved-
gas-driven reservoirs.

Keywords: porous media, two phase flow, Onsager symmetry, computational fluid dynamics, generalized
Darcy’s law

1 INTRODUCTION

Due to its technological application, two-phase flows in porous media have been an active subject of
research for decades [1–4]. It is well known, for instance, that the flow of a water/oil mixture through
a porous rock strongly depends on the volume ratio of the two fluids, the surface tension between the
two phases and their wetting interactions with the solid walls [5–8]. Phenomenologically, this
behavior has been described by relative permeability curves, which need to be determined
experimentally. Over the years, many models have been proposed to explain those experimental
measurements, or to approximate them when experimental gauging curves are not available [9–11].
Most of these studies focused on the displacement of an interface moving in a transient regime, such
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as in gas/oil drainage or water/oil imbibition. Understanding this
process is of great practical relevance in petroleum engineering
where the main goal is to increase production by delaying the
breakthrough of the injected fluid, i.e., to increase the amount of
the displaced fluid by extending the time the injected fluid takes to
reach the producing well [12].

Immiscible two-phase flows in porous media commonly
exhibit intriguing phenomena that arise due to the
competition between capillary and viscous effects. Generally
speaking, the resulting interface formation is controlled by two
dimensionless numbers, namely, the capillary number Ca,
which describes the balance of viscous forces to capillary
forces, and the ratio of the two viscosities. By carrying out
multiple experiments, Lenormand classified the emerging
patterns in two-phase flow into three major regimes,
depending on these two dimensionless parameters. This
classification is today known as the so-called Lenormand’s
phase-diagram [13], which was recently extended including
effects of surface adhesion, namely, also considering contact
angles [14]. While the general partitioning of the different flow
regimes is characterized by Lenormand’s phase diagram, the
transitions at which one regime changes to another are not
universal and depend on the particular pore geometry and the
dimensionality of the system [7, 15, 16]. Low capillary
numbers and high viscosity ratios are frequently associated
with a “capillary fingering” regime, while high capillary
numbers and high viscosity ratios to a “stable
displacement.” In addition, when a low viscous fluid
displaces a high viscous one (low viscosity ratio), the
resulting interface forms unstable patterns, known as
“viscous fingering” [17–19], which can be obtained for any
value of the capillary number. This flow regime can be
described in terms of a Laplacian growth problem [20],
which is also equivalent to diffusion-limited-aggregation
(DLA) systems [21]. Experimental studies have also
revealed that the capillary number influences the effective
permeability of two immiscible phases in terms of a power-
law keff ~Ca

α [22, 23] and numerical studies suggest that the
exponent α depends on the relative fraction of the two phases
in the mixture [24].

The description of two-phase flow at the Darcy scale as an
effective medium has a long history [25, 26], but the dynamics of
the interface between the different phases at the pore scale still
represents a challenging and scientifically important problem. In
this case, the geometric properties of the substrate create
heterogeneous flow paths which can be invaded by one fluid
or the other or both. In such mixing flows, drops of many sizes
and shapes naturally emerge. These drops may split and re-merge
while they are dragged by the flow through the porous medium or
maybe trapped behind obstacles for some time. Numerical
simulations [5] and micro-tomography [6, 27] have been used
to understand the interplay between two phases inside a porous
medium on the scale of individual pores, but the connection
between this micro-dynamic behavior and macroscopic
quantities such as permeability or displacement efficiency is
still poorly understood [28]. Over time, the dynamic of a two-
phase flow inside a heterogeneous medium eventually reaches a

stationary regime, where certain variables fluctuate around a
long-time averaged value [8]. In this regime the application of
novel techniques from non-equilibrium statistical physics [29]
proved to be very helpful in establishing a proper connection
between micro and macro scale. Recent studies of fluctuations in
mesoscopic properties, such as relative permeability and flow
velocity, paved the way to a new perspective on the conceptual
description for two-phase flow at low Reynolds numbers [30–32]
with focus on its statistical properties. Here, we study through
two-dimensional simulations the characteristic fluctuations in the
velocity time series of two immiscible fluids flowing through an
irregular porous medium.

The paper is organized as follows: In Section 2, we present
the details of our pore geometry, the mathematical model and
numerical technique used to calculate the velocity fields of the
two phases. Section 3 covers the analysis of the numerical
results. More specifically, we analyze temporal correlations in
the spatially averaged time series of the velocity fields of the
different phases and the mixture in the stationary regime and
apply Onsager’s reciprocal relations in order to investigate
time reversibility. Moreover, we show that the drop size
distribution follows a power-law scaling and propose a
generalization of Darcy’s law with a non-linear coupling
between flow rate and pressure drop in Section 3.4. We
close our analysis with discussions and conclusions in
Section 4.

2 MATHEMATICAL MODEL

The pore geometry of our system consists of a two-dimensional
“Swiss cheese” type of porous medium [33–35], which is made of
circular obstacles that can overlap with each other. More
specifically, the porous domain is composed of a 50 mm ×
50 mm square, which is iteratively filled with randomly placed
discs of 1 mm in diameter until a desired porosity ϱ is reached.
For all simulations performed here, ϱ = 0.8. Periodic boundary
conditions are applied in both directions in order to avoid finite-
size effects. The pore space is filled with two immiscible
Newtonian fluids with a surface tension, γ, acting at the
interface between them. A global pressure gradient, ∇P, in the
horizontal direction (x-direction) drives the flow. Figure 1A
shows the initial condition of the system, where the filling
fraction S1 of the low viscous phase (blue) is set to 0.2. The
two phases flowing through the pore space are solved numerically
by a Volume-of-Fluid (VoF) formalism [5, 36], which is an
adaptation of the Navier-Stokes equations for multi-phase flow
as implemented in the Ansys Fluent™ software [37]. This
numerical technique has been previously validated in several
studies through numerous distinct applications [38–44]. In
particular, the surface tension and contact angle in the model
of Fluent’s VoF scheme have been successfully applied to
quantitatively describe the droplet pinch-off dynamics in a
microfluidic step emulsification device [45].

In the Volume-of-Fluid formalism, the Navier-Stokes and
continuity equations describe the conservation of linear
momentum and mass of the entire mixture,
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ρ
zu
zt

+ ρ∇ · u ⊗ u( ) � −∇p + ∇ · μ ∇u + ∇uT( )[ ] + γκ∇s,

∇ · u � 0,
(1)

where ρ, μ, p and u are density, viscosity, pressure, and the fluid
velocity, respectively. The term u › u is an outer product, and
s(x) is the fraction function of phase 1 in a given control volume.
Due to mass conservation, the fraction of phase 2 is given by 1 −
s(x). Because Eq. 1 describes the motion of both phases, ρ and μ
are not constants, but scalar fields, which depend on the fraction
function s(x). More specifically, a linear mixing rule μ(x) = μ1 ·
s(x) + μ2 · [1 − s(x)] is used to define a local effective viscosity of
the mixture, where the constants μ1 and μ2 stand for the
viscosities of phase 1 and 2, respectively. The same holds for
the density in case of phases with different densities, ρ1 and ρ2.
The term γκ∇s in Eq. 1 describes the interfacial tension force and
is proportional to the gradient of s normal to the interface. Here,
the variable κ = ∇·n is the curvature of the interface. Because ∇s is
nonzero only along the interface, interfacial tension forces vanish
in the bulk of phase 1 and phase 2, where s is constant. As
boundary conditions on the solid walls, we limit our study to
neutral wettability (contact angle α = 90°) and no slip. The
fraction function s(x) has a sharp interface at the border
between the two phases, and is advected by the flow via

zs

zt
+ u · ∇s � 0. (2)

In this analysis, we keep the density of the two fluids equal ρ1 =
ρ2 = 1.0 kg/m3, to avoid disturbance by inertial effects. Moreover,

we set μ2 = 1.0 Pa·s and keep the viscosity ratioM = μ2/μ1 at either
1 or 10. During a simulation, the integration time step dt is kept
fixed and small enough to avoid high Courant numbers, generally
dt ≈ 10−4 s. If not mentioned otherwise, our fluid mixture consists
of 20% of phase 1 (blue, lower viscous phase) and 80% of phase 2
(red, high viscous phase). Initially, the two phases are placed in
vertical strips (see Figure 1A) in the fluid domain with their
interface perpendicular to the pressure gradient. Different initial
configurations have been tested in multiple simulations to ensure
that the stationary regime does not depend on this initial
condition. Using this setup, we study the behavior of the
mixture as we change the two major interactions between the
phases, namely, the viscous forces, which is controlled here by the
global pressure gradient, ∇P, and interfacial forces, which
depends on surface tension, γ. We also ran simulations with
vanishing surface tension and equal viscosities in order to test
whether our two-phase model recovers the properties of a single-
phase flow. Simulation data are only analyzed after the stationary
state is reached, in order to produce statistically meaningful time
series. This highly increases the computational costs as the initial
transient part of the calculation has to be discarded.

3 RESULTS

Shear and surface tension exert forces on the fluid while it flows
through the porous medium. These forces eventually lead to the
breakup of connected components of a phase and, thus, to the
generation of drops. These drops may flow separately through the

FIGURE 1 | Time evolution of the two-phase flow starting from an initial condition (A) where the filling fraction of the lower viscous phase is set to S1 = 0.2. (B–D)
describe the case for Ca→ ∞ while the case for Ca = 0.006 is shown in (E–G). In both cases, the pressure drop is ∇P = 1.0 kPa/m and the viscosity ratio isM = 10. The
time series of the averaged x-component velocity for phase 1 (blue curves), phase 2 (red curves), and the mixture (black curves), computed with Eqs 3–5, are shown in
(B,E). (C,F) show typical configurations of the two-phase flow in the stationary regime. For high capillary numbers, (B) phase 1 is scattered into several small
droplets and few fingers (long and thin clusters), while for small capillary numbers, (F) phase 1 forms large drops. The corresponding velocity fields of the mixture are
shown in (D,G), with velocities ranging from 0.0 to 4.0 mm/s. Brighter colors represent regions of high speeds. Large bubbles, of the order of the system size, can be
trapped and cause large fluctuations as shown in (E).

Frontiers in Physics | www.frontiersin.org March 2022 | Volume 10 | Article 8601903

Sales et al. Bubble Dynamics in Porous Media

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


porous channels or may be trapped for some time by the porous
matrix. Moreover, colliding drops may also merge with each
other forming larger clusters. This complex dynamics of merging
and disconnecting drops dominates the flow’s microscopic
behavior in the stationary state. As a result, the velocity fields
of the two phases show typical transient fluctuations.

3.1 Velocity Time Series
In the VoF method, the volumetric average velocity of a phase, at
time t, may be written in terms of the fluid velocity, u, and the
fraction function s(x, t). For the x-component of phase 1’s velocity
we find

v 1( ) t( ) � 1
Ω1

∫
Ω
ux x, t( ) · s x, t( )dΩ, (3)

whereΩ1 = ∫
Ω
s(x)dΩ is the domain occupied by phase 1,Ω is the

total porous space occupied by the fluid mixture and ux(x, t) is the
x-component of u, solved with Eqs 1, 2. Equivalently, the mean x-
velocity of phase 2 is given by

v 2( ) t( ) � 1
Ω2

∫
Ω
ux x, t( ) · 1 − s x, t( )[ ]dΩ, (4)

with Ω2 � ∫Ω[1 − s(x)]dΩ. Since the two phases are
incompressible and mass is conserved, Ω1 and Ω2 are
constants. Finally the mean x-velocity of the entire mixture is
given by

v m( ) t( ) � 1
Ω∫Ω

ux x, t( )dΩ. (5)

The temporal mean values of these time series are computed
through �v(j) � 1/T∫ t0+T

t0
v(j)dt, where j = 1, 2,m stands for the two

phases (1,2) or the mixture (m). The variable T corresponds to the
time window spanning the stationary regime. The capillary
number describes the ratio between viscous forces and surface
tension being defined here in terms of the mean mixture
velocity as

Ca � �v m( )μ2/γ. (6)
Figure 1 shows the influence of the capillary number on the

two-phase flow in the stationary regime. The initial configuration
is shown in panel (A), where the volume fraction of phase 1 is set
to S1 = 0.2. Panels (B-D) show the case of Ca → ∞ while panels
(E-G) the case for Ca = 0.006. The velocity time series computed
through Eqs 3–5 are presented in panels (B) and (E) where phase
1, phase 2, and the mixture are marked by blue, red and black
lines, respectively. Note that, although the pressure drop is
constant, the flow rate can actually vary due to the
fluctuations in hydraulic resistance. These inherent
fluctuations in the velocity time series reflect the dynamics of
the drops and their interactions with the pore geometry. When
drops get trapped in a region of the porous medium, the average
velocity is slowed down. Conversely, when drops are released at a
later time, the flow accelerates resulting in one or multiple peaks
appearing in the time series.

The snapshots in panels Figures 1C,F show the distribution of
phase 1 (blue) and phase 2 (red) in the pore space for the two
cases Ca → ∞ (equivalent to γ = 0) and Ca = 0.006. At high

FIGURE 2 | Time correlation functions computed with the velocity time series of the two phases and the mixture, like those shown in Figures 1B,E, forM = 10 and
∇P = 1.0 kPa/m.C12 is the cross-correlation function between the velocity time series of phase 1 and phase 2, where the evolution of phase 2 is shifted forward in time by
τ relative to phase 1, while C21 is the opposite case. Cmm is the autocorrelation of the velocity of the entire fluid. The top panels show the effect of decreasing the capillary
number from Ca → ∞ in (A) to 0.078 in (B), and to 0.006 in (C), while the volume fraction of phase 1 is kept at S1 = 0.2. In (D–F) we keep Ca → ∞, as in (A), but
increase the saturation of the less viscous phase systematically from S1 = 0.4 to 0.6, and to 0.9, respectively.
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capillary number, the flow is characterized by a large number of
small droplets with a highly active merging and splitting
dynamics. In some of these cases, the formation of one or
more finger-like cluster spanning from left to right along a
major flow path can be observed. In the case with low
capillary number, the phases stick together and create more
cohesive drops, preventing split-merging events. In cases of
very small capillary numbers, the pressure gradient may even
not be sufficient to overcome the interfacial forces and thus the
formation and motion of drops may be suppressed. In this
situation, permanently trapped drops are observed in the
porous medium. The velocity maps corresponding to the
snapshots shown in (C) and (F) are plotted in panels (D) and
(G). Darker colors represent regions with low velocities, while
brighter colors indicate fast flowing regions.

3.2 Time Correlations in Two-phase Flow
In order to develop a description of the flow as a stochastic
dynamical system, it is important to know whether the system
is ergodic or not. Although originally applied to thermal

fluctuations on the molecular scale, Onsager symmetries [46,
47] have been successfully applied to describe the behavior of
multi-phase flows in macroscopic porous media [48] and in
pore-network models [30–32]. For this purpose, we apply
Onsager’s reciprocal relations in order to study ergodicity.
Onsager’s reciprocal relations are based on time correlations
which can be calculated as follows

CAB τ( ) � 1
T
∫ T−τ

0

ΔA t( )ΔB t + τ( )
σAσB

dt. (7)

HereΔA(t) � A(t) − �A are the fluctuations of the time seriesA(t)
and ΔB(t + τ) are the corresponding fluctuations of B(t)
shifted by τ. The mean values, �A and �B, and the variances,
σA and σB, are all computed over the time window, [0, T − τ],
shared by both time series. If A(t) and B(t) are identical, then
Eq. 7 recovers the autocorrelation function, otherwise the
cross-correlation function is calculated. Accordingly, a
dynamical process is considered to be time reversible if the
cross correlation function is symmetric, thus the integrals of

A

C

B

FIGURE 3 | (A,B) show the distributions of drop sizes, normalized by the amount of total fluid, in the stationary regime for different values of Ca. The solid lines
correspond to the best fit of a power law to the data, P(m)∝m−ξ , whose exponent ξ depends on the capillary number. For better visibility, the different power laws are
shifted by one order of magnitude with respect to each other, vertically. The (A) shows cases for small values of Ca, while (B) for high values of Ca. In (C), ξ is plotted in
terms of Ca. The exponent remains approximately constant for Ca ≲ 0.046, with average given by 1.23 ± 0.03, as indicated by the red line. Above this value, ξ
increases quickly. In the limiting case of Ca → ∞, the exponent is ≈ 2.05 ± 0.03, as indicated by the black line.
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CAB and CBA are equal [49]. This condition is satisfied when
CAB(τ) collapses on CBA(τ) at all times, except for some very
small timescales in which the contribution to the integral is
negligible [32]. Autocorrelations, on the other hand, measure
the randomness in the time series and the rate at which
fluctuations change with respect to the time scale τ. It can also
be interpreted as the memory of a stochastic process,
determining whether successive observations are
independent or not.

In the following, we analyze the correlations in the time series
of the spatially averaged x-velocity of phase 1, phase 2, and the
entire fluid as defined through Eqs 3–5. Here, C12(τ) and C21(τ)
describe the cross-correlation between phase 1 (2) and phase 2
(1), where the evolution of phase 2 (1) is shifted forward in time
relative to phase 1 (2). Cmm(τ) is the autocorrelation of the
mixture. Figure 2 shows C12(τ), C21(τ), and Cmm(τ) for ∇P =
1.0 kPa/m and M = 10. Generally, for small delays, phase 1 and
phase 2 tend to be anti-correlated and weakly correlated for
increasing τ, i.e., if one phase speeds up (comparing to its average
velocity) the other phase slows down. In the limit of very large
delays, the cross correlations of C12(τ) and C21(τ) both vanish.
Conversely, the autocorrelation functions show the opposite
behavior with strong correlations for small delays, slight anti-
correlations in a intermediate range, and vanishing correlations
for τ → ∞.

Figure 2 shows how the filling fraction of phase 1 and the
capillary number affect the different correlations in the flow.
Panels (A), (B), and (C) show the cross-correlation functions for
decreasing Ca, keeping a constant filling fraction of S1 = 0.2. For
Ca→ ∞ and S1 = 0.2, C12(τ) and C21(τ) seem to collapse only for
large values of τ. As Ca decreases, the cross-correlation functions
approach zero more rapidly, but the fluctuations also increase and
thus the collapse of C12 with C21 is not completely clear for small
Ca. For capillary-dominant systems, Ca→ 0, time-reversibility is
less clear, similar to a recent experiments with two-phase flows
in three-dimensional heterogeneous systems [30]. The figure
also shows the effect of increasing filling fraction of the less
viscous phase. Here S1 is varied from 0.2 in panel (A) to 0.4 in
(D), to 0.6 in (E), and to 0.9 in (F) while all other parameters are
kept fixed. For filling fractions of 0.4, 0.6, and 0.9 the cross
correlation functions almost perfectly collapse onto each other
suggesting a more time reversal dynamics compared to the case
with only 0.2 filling fraction, as shown in panel (A). In fact, by
varying the saturation S1 from 0.1 to 0.9, a good collapse of the
two cross-correlation function is observed for S1 ≥ 0.4 at all time
scales. Regarding the autocorrelation functions (black lines in
Figure 2), our results show that they slowly become
decorrelated, which is similar to Brownian motion [50].
However, as the surface tension increases, Cmm(τ) vanishes
sooner, at smaller values of τ.

3.3 Drop Size Distribution
In order to study how the agglomerates of drops may influence
the mesoscopic behavior of the two-phase flow, we determine the
sizes of the different drops for every time step during the
stationary regime and then calculate their distributions.
Figure 3A shows the drop size distribution P(m) as a

function of capillary number for ∇P = 2.0 kPa/m and M = 10,
where m is the drop size normalized by the whole fluid volume.
The distribution follows a power law, P(m)∝m−ξ , whose
exponent ξ depends on the capillary number. For Ca ≲ 0.046,
the exponent ξ is roughly constant with a value of ξ ≈ 1.23 ± 0.03.
In this capillary range, the drops are mostly large and the split-
merging events (as well as the spanning channels) are rarely
observed. For Ca > 0.046, however, the drops are shattered into
many smaller droplets and few fingers (thin elongated clusters)
along higher speed channels. In this regime, ξ increases from
1.73 ± 0.06 to 1.92 ± 0.06 for Ca = 0.078 and 0.150, respectively,
and then converging to 2.05 ± 0.03 as Ca approaches infinity. The
characteristic capillary number, Ca* ≈ 0.046, separates the two
regimes, which are marked by light blue and cream background
in Figure 3. The heavy-tail scaling of the drop sizes in the large
capillary regimemay be associated with the emergence of long-
range correlations, similar to those found in anomalous
diffusion [51].

3.4 Generalized Darcy Law
Next, we analyze the stationary state from a single-phase Darcy
flow perspective, namely, how the averaged fluid velocity
depends on the pressure gradient. Figure 4 shows the x-
velocity of the mixture averaged over space and time, �v(m), as
a function of the applied pressure drop ∇P. As depicted, the
temporal average velocity follows a power-law scaling,
�v(m) ∝ (∇P)β, for different values of the surface tension γ.
This equation can be interpreted as a non-linear form of
Darcy’s law for two-phase flows. A similar generalization
between flux and pressure drop has been successfully applied
to non-Newtonian flows in pipes and pore networks [52, 53].
The exponent β varies as a function of surface tension. As

FIGURE 4 | Temporal average velocity of the mixture in the stationary
regime as a function of the pressure gradient, for different values of surface
tension. Each point on the graph correspond to a specific capillary number.
For better visibility, the curves for different values of γ were shifted
vertically by one order of magnitude with respect to each other. The velocity
can be described as a generalized Darcy’s law, �v(m) ∝ (∇P)β, where the
exponent increases with the surface tension. Green markers present the
traditional Darcy’s law with β = 0.99 ± 0.01, obtained for γ = 0 andM = 1, while
β = 1.09 ± 0.02, for γ = 10−3 N/m, and β = 1.34 ± 0.03, for γ = 10−2 N/m. The
cases where drops are permanently trapped in the pore matrix are not plotted
in the graphs.

Frontiers in Physics | www.frontiersin.org March 2022 | Volume 10 | Article 8601906

Sales et al. Bubble Dynamics in Porous Media

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


expected, the case γ = 0 and M = 1 (green markers) recovers
the traditional linear relation predicted by Darcy for a single
phase, with β = 0.99 ± 0.01 ≈ 1.

In regimes of very high capillary numbers, the flow behavior is
dominated by the presence of many small droplets. Figure 5 shows
how the filling fraction of the less viscous phase (phase 1) impacts
the average velocity for ∇P = 1 kPa/m andM = 10. The plot shows
that �v(m) increases exponentially with filling fraction �v(m) ∝ e(δS1)
with an exponent δ = 2.34 ± 0.07, where e(δS1) is a mobility
coefficient for the mixture [54]. In a single phase flow, the
mobility term is the ratio between the permeability and the
viscosity. In a two-phase flow system, the mobility term is
related to relative permeability curves [10]. The effective
permeability in the form of an exponential increase with
saturation fits particularly well with measurements of gas
percolation in dissolved gas-driven reservoirs [55], where the oil
phase is saturated with dispersed small bubbles, the so-called “foamy
oil” [56, 57], in order to enhance the recovery rates. Despite the
complexity involved in the two-phase flow dynamics, our results
suggest that the mean flow velocity of the mixture can be described
by a simple function of the saturation and the gradient of pressure.

4 DISCUSSION AND CONCLUSION

We investigated the stationary flow regime of two immiscible
and incompressible Newtonian fluids in porous media by
solving Navier-Stokes equations in multi-phase flow in two
dimensions. The behavior of the time series of the fluid’s
velocity is influenced by the complex dynamics of drops
which form as the two phases interact with each other and
the heterogeneous pore space. Despite the apparent disorder,
in the stationary regime, the drop size distribution follows a
well-defined power law, P(m)∝m−ξ , whose exponent ξ

depends on the capillary number. This exponent is roughly
constant ξ ≈ 1.23 for Ca ≲ 0.046, where the drops are mostly
large and cohesive, and splitting and merging are less
common. For Ca > 0.046, however, ξ increases
systematically, reaching 2.05 ± 0.03 for Ca → ∞. This
regime is characterized by the presence of a large number
of small droplets and few finger-like clusters. Fluctuations in
the time series are analyzed via cross-correlation functions
between the x-velocities of the two phases showing that
Onsager’s reciprocal relations and time reversal symmetry
are fulfilled for volume fraction above 0.4 and high capillary
number. At lower capillary numbers Ca the time reversibility
of the flow is less clear which is consistent with observations
made in three dimensional two-phase experiments. Finally,
we study the macroscopic scaling of the average velocity. Our
results show that two-phase flows can be modeled by an
effective Darcy type of description, namely, �v(m) ∝ (∇P)β. In
this generalization of Darcy’s law, the exponent β depends on
the surface tension between the phases (and, thus, on the
capillary number). When the surface tension is neglected and
the viscosity ratio is unity, the traditional Darcy relation is
recovered, β = 1. For Ca→∞, when the systems is dominated by
the presence of many small droplets, the averaged fluid velocity
increases exponentially with the filling fraction of the lower
viscous phase, �v(m) ∝ e(δS1), where this term represents the
mobility coefficient and δ is a constant. This behavior is
similar to effective permeabilities found in dissolved-gas-
driven reservoirs. We believe that our results have direct
applications in the behavior of the mesoscopic flow (at the
level of the pore) in several real situations, and can help in the
description of the macroscopic propagation of the invasion
front in oil reservoirs.
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FIGURE 5 | Log-linear graph showing that, for Ca → ∞, the behavior of
the temporal average velocity can be described by an exponential function of
the filling fraction, �v(m) ∝ e(δS1 ), where S1 is the saturation of phase 1 (the less
viscous phase) with exponent δ = 2.34 ± 0.07, for M = 10 and ∇P =
1.0 kPa/m.
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