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Speed-of-sound and attenuation of ultrasound waves vary in the tissues. There exist
methods in the literature that allow for spatially reconstructing the distribution of group
speed-of-sound (SoS) and frequency-dependent ultrasound attenuation (UA) using
reflections from an acoustic mirror positioned at a known distance from the
transducer. These methods utilize a conventional ultrasound transducer operating in
pulse-echo mode and a calibration protocol with measurements in water. In this study,
we introduce a novel method for reconstructing local SoS and UA maps as a function of
acoustic frequency through Fourier-domain analysis and by fitting linear and power-law
dependency models in closed form. Frequency-dependent SoS and UA together
characterize the tissue comprehensively in spectral domain within the utilized
transducer bandwidth. In simulations, our proposed methods are shown to yield low
reconstruction error: 0.01 dB/cm·MHzy for attenuation coefficient and 0.05 for the
frequency exponent. For tissue-mimicking phantoms and ex-vivo bovine muscle
samples, a high reconstruction contrast was achieved. Attenuation exponents in a
gelatin-cellulose mixture and an ex-vivo bovine muscle sample were found to be,
respectively, 1.3 and 0.6 on average. Linear dispersion of SoS in a gelatin-cellulose
mixture and an ex-vivo bovine muscle sample were found to be, respectively, 1.3 and
4.0 m/s·MHz on average. These findings were reproducible when the inclusion and
substrate materials were exchanged. Bulk loss modulus in the bovine muscle sample
was computed to be approximately 4 times the bulk loss modulus in the gelatin-cellulose
mixture. Such frequency-dependent characteristics of SoS and UA, and bulk lossmodulus
may therefore differentiate tissues as potential diagnostic biomarkers.

Keywords: ultrasound tomography, ultrasound attenuation, viscoelasticity, complex bulk modulus, speed of sound

1 INTRODUCTION

Medical imaging methods aim to characterize and spatially map different soft tissue properties in
order to provide diagnostic information regarding pathological structures and processes. Ultrasound
imaging is a cost-effective, real-time and non-ionizing medical imaging modality. Conventional
B-mode ultrasound imaging aims to map the amplitude of ultrasound waves scattered and reflected
from tissue structures. Complementary to this, several methods exist in the literature to quantify
various tissue characteristics. For instance, shear-wave elastography imaging (SWEI) aims to infer
local soft tissue shear moduli, often derived from the group speed of propagating shear-waves that are
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induced using acoustic radiation force pushes [1,2]. Since soft
tissues are inherently viscoelastic [3], several ultrasound-based
imaging techniques were proposed to fully characterize the soft
tissues in spectral domain by imaging the shear-wave speed [4–6]
and shear-wave attenuation as a function of frequency [7–9],
which then help to determine the shear and storage moduli of the
medium. Methods also exist in the shear-wave literature that aim
to characterize the nonlinear response of soft tissues given elastic
[10–14] or viscoelastic [15–17] constitutive models and
assumptions.

Inspired by such comprehensive mechanical characterization
of soft tissue using group speed, phase velocity, and attenuation of
shear waves as a function of frequency, we herein propose to
extend similar characterization to ultrasound waves themselves.
Ultrasound is a longitudinal (compressional) mechanical wave,
and through its propagation in tissues, its characteristics also
change based on tissue mechanical properties. Accordingly,
ultrasonic group speed, phase velocity, and attenuation as a
function of frequency can be used for further characterization
of soft tissues. Indeed, ultrasound group speed (commonly called
speed-of-sound, SoS) is related to medium bulk modulus while
phase velocity and attenuation are related to bulk storage and loss
moduli. Imaging of (group) SoS has been studied in the literature
using tomographic approaches with custom made ultrasound
transducer and data acquisition solutions in [18–20], which
involve bulky and costly setups and submersion of the imaged
anatomy in water. To utilize the practical advantages of
commercial transducer arrays, SoS imaging using conventional
transducers in pulse-echo mode has been proposed recently,
following two approaches: A group of methods measure
apparent displacements of backscattered signals when
insonified from different angles [21–23]. Alternative methods
use an additional passive acoustic reflector on the opposite side of
the imaged anatomy tomeasure several time-of-flight values from
which to tomographically reconstruct local SoS distribution
[24,25].

Similarly to SoS imaging, imaging ultrasound attenuation
(UA) was also proposed using custom-made water-submersion
setups [18]. Using conventional ultrasound transducers, some
methods utilize the fact that the ultrasound center frequency
decreases as a function of propagation depth and medium UA,
since attenuation affects higher frequencies more prominently.
Based on this, a spectral difference method [26] and spectral log
difference methods [27,28] were proposed using typical B-mode
images together with reference phantom measurements. An
adjacent frequency normalization was proposed in [29] to
cancel out systemic effects such as focusing and time-gain-
compensation without the need of reference phantom
measurements. Alternatively, reference measurements from a
passive acoustic mirror was used in [30,31] to estimate UA
values, however this requires apriori segmentation masks to be
given and hence do not allow the UA imaging of arbitrary
unknown domains. Recently, imaging of local UA has been
proposed in [32] using a limited-angle computed tomography
(LA-CT) method.

Formally, UA α(ω) is a function of ultrasound frequencyω and
it typically follows a power-law relation of the form α(ω) = α0ω

y,

where α0 is called the attenuation coefficient and y the power
exponent. The above-mentioned methods in the literature either
estimate a single UA map, e.g., at the ultrasound transmit center
frequency or estimate the attenuation coefficient α0 map
assuming y = 1. The latter assumption of y ≈ 1 is not
necessarily valid in general as it was shown that soft tissues
exhibit varying UA power exponents y [26,33]. Furthermore,
using a single (center) frequency for the analysis neglects the fact
that the spectral composition of propagating waves change given
the larger attenuation at higher frequencies. Characterizing UA
using a parametric model over a frequency range would enable a
complete spectral characterization. This would allow for treating
the UA variation within the utilized bandwidth as information,
which is treated as noise when the underlying model is neglected.
The parameters of such model can also yield additional imaging
biomarkers characterizing the spectral tissue behaviour.With this
motivation, recently in [34] it was proposed to reconstruct
multiple UA maps (α) at different band-pass filtered frequency
bands. To estimate α0 and y locally, these UA maps were then
pixel-wise fitted with a power-law model by assuming the UA
estimates to characterize the response at the central frequency of
each band. However, band-pass filtering the signal over a
frequency band then averages the cumulative effect of the
entire frequency band. Also, the pixel-wise model fitting
ignores the spatial continuity of the image, where the
individual frequency band reconstructions cannot benefit from
each other and the SNR loss due to dividing into separate pass-
bands cannot be recovered. A frequency-domain solution, similar
to those in shear-wave applications and which takes into account
the entire bandwidth in a single inverse problem formulation,
could mitigate the above shortcomings and is proposed herein for
UA reconstruction.

Similarly to UA, SoS also varies not only across tissues, e.g., in
the human liver depending upon water, fat, and collagen
concentrations [33], but also across acoustic frequencies
[35–38]. SoS is shown to vary with respect to frequency in
soft tissues in the literature [39]. For instance, it was shown in
[40] that SoS varies with frequency in human brain tissues. Thus,
frequency-dependent characterization of SoS may be an
additional biomarker for tissue characterization.

In this study, we introduce a new method based on general
wave theory in frequency domain to compute both SoS and UA
across frequencies and compute the SoS and UA model
parameters together using a inverse problem formulation. We
have conducted simulations and ex-vivo phantom studies to
discuss the reconstruction results.

2 METHODS

We acquire ultrasound data in multistatic mode, in which a single
transducer element at a time is used for transmitting (Tx) a
broadband ultrasound pulse into the medium and an acoustic
mirror is placed at a predefined distance from the ultrasound
transducer surface. The reflected ultrasound echoes are recorded
as received (Rx) with all the transducer elements. This process is
repeated until all the transducer elements are used for the
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transmission. Multistatic data acquisition is schematically
described in Figure 1A for transmission with an element and
receiving at different transducer elements with varying path
lengths (marked with different colors). Full-matrix multistatic
data is then processed using the algorithm in [41] to delineate the
reflector profile in the echoes reflected from the acoustic reflector
positioned at a pre-defined depth. A sample delineation for Tx#64
of a 128 element transducer is marked on the pre-beamformed
channel data in Figure 1B. Other high amplitude echo profiles
below the first arrival echoes seen in Figure 1B correspond to
reflections from different interfaces of the acoustic reflector, for

more details please refer to Figure 1 in [41]. Sample cropped
reflector echo profiles for Tx#64 and Rx#{8,16, . . . ,120} are
plotted in Figure 1C. For reconstruction of SoS and UA at a
particular frequency we use phase spectrum and amplitude
spectrum values, respectively, obtained by the Fourier
transform (FT) of the above echo profiles around the
delineated reflector time points. Phase and amplitude
spectrums for some of the echo profiles shown in Figure 1 are
plotted in Figures 2A,B respectively. For reconstruction of SoS
and UA at a particular frequency we use the amplitude and phase
spectrum values at that frequency, for all combinations of Tx-Rx

FIGURE 1 | (A) Schematic of the imaging setup where an acoustic mirror (reflector) is positioned at a pre-defined distance from the ultrasound transducer surface,
with coloured paths representing the traversal of different acoustic wavefront paths from a single transmit element to different receivers through a discretized tissue
representation, (B) Pre-beamformed data received by all the receive channels of the transducer when the transducer element #64 is used for transmission (Tx). (C)
Cropped reflector echo profiles corresponding to different Rx elements, from which the reflector is next delineated precisely.

FIGURE 2 | Procedure of estimating SoS and UA distribution maps at frequency ω. 1D temporal Fourier transform is performed on the echo profiles obtained at
different Rx channels to obtain (A) phase spectrum ∠U (d, ω) and (B) amplitude spectrum |U (d, ω)| for three sample profiles shown in Figure 1C. Phase and amplitude
spectrum values for all Tx-Rx combinations at a selected sample frequency of 5 MHz are shown, respectively, in (C) and (D). These values are then calibrated as
described in Sec. 2.2 leading to the calibrated phase (E) and amplitude (F) spectrum values, which are used for solving inverse problems to reconstruct local SoS
(G) and UA (H) distributions at ω.
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as shown in Figures 2C,D. These phase and amplitude spectrum
readings for all Tx-Rx combinations are then corrected using pre-
acquired calibration measurements in water, cf. Figures 2E,F,
which are used for solving inverse problems to reconstruct SoS
and UA at that chosen frequency as shown in Figures 2G,H. The
above method overview is elaborated and detailed in the
following sections.

2.1 Ultrasound Wave Propagation in
Viscoelastic Medium
As a broadband ultrasound wave passes through a medium, its
waveform changes according to the phase velocity and
attenuation of the medium. Ultrasound waves travelling
through a viscoelastic medium can be defined in the frequency
domain as:

U d,ω( ) � G ω( )e−ik̂ ω( )d (1a)
with k̂ ω( ) � ω

c ω( ) − iα ω( ) (1b)

where U (d, ω) is the FT of the ultrasonic wave u (d, t), ω is the
angular frequency, d is the propagation distance, k̂(ω) is the
complex wave number, c(ω) is the phase velocity, and α(ω) is
attenuation at ω, and G(ω) accounts for the transmit and receive
transducer responses at frequency ω.

As seen in Eq. 1a, ultrasonic wave amplitude decreases as a
function of propagation distance d due to absorption, relaxation,
scattering, etc. Indeed using this wave equation, ultrasound phase
velocity and attenuation can be derived using amplitude and
phase spectrums by taking the natural logarithm of amplitude |U
(d,ω)| and separating the phase terms to equate to phase angle ∠U
(d, ω), which yield respectively:

∠U d,ω( ) � ω

c ω( ) d + ∠G ω( ), (2a)
ln |U d,ω( )|( ) � ln G ω( )( ) − α ω( )d. (2b)

2.2 Forward Problem of Ultrasound Wave
Propagation
Phase and amplitude spectra for the reflector echo corresponding
to Tx element t and Rx element r relates, respectively, to slowness
sp(ω) = 1/c(ω), i.e., the inverse of phase velocity, and attenuation
α(ω) along the traversed ray path p as follows:

∠Ut,r ω( ) � ω∫
p
s ω( ) dl + ∠Gt,r ω, θt,r( ), (3a)

|Ut,r ω( )| � exp −∫
p
α ω( ) dl( ) + |Gt,r ω, θt,r( )|. (3b)

where p represents the acoustic ray path and l is the
traversed distance. ∠Gt,r (ω, θt,r) and |Gt,r (ω, θt,r)| are the
confounding factors attributable to transducer Tx-Rx phase
and amplitude transfer characteristics at different angles (e.g.,
the aperture opening and side-lobes) as well as the acoustic
reflector reflection characteristics, i.e., the incidence angle

dependent specular and diffuse reflection and transmission
characteristics of the reflector surface. These have to be
compensated for in order to be able to measure the actual
ultrasound phase velocity and attenuation effects. For this
purpose, we calibrate these measurements by normalizing
with measurements in water (Uwater

t,r (ω)) at a known water
temperature and using the same ultrasound pulses
(bandwidth) as in the targeted tissue imaging setup. From
the given water temperature, we compute the ground-truth
water SoS using the relationship in [42], which was 1,483.1 m/s
in our setup. Water UA is known from [43] to be α(f) = 2.17 ×
10−15f2.

We used the procedure described in [34] to compensate for the
confounding effects in |Gt,r (ω, θt,r)|. The reflector does not
change the phase of the reflected ultrasound signals, since its
acoustic impedance is higher than water and soft tissues. Thus,
for factoring out the confounding effects in ∠Gt,r(ω), we used
simply the phase angles of reflector echo profiles from water
calibration experiments. We denote these calibrated amplitude
and phase spectrum values as |Ut,r′ (ω)| and ∠Ut,r′ (ω),
respectively, which are given by

∠Ut,r′ ω( ) � ∠Ut,r ω( ) − ∠Uwater
t,r ω( ) (4a)

|Ut,r′ ω( )| � Ut,r ω( )Rwater θ( )
Uwater

t,r ω( )R θ( ) . (4b)

where Rwater(θ) and R(θ) are the ultrasound reflection
coefficients of the reflector in water and in targeted imaging
medium, respectively, for incident angle θ. It can be estimated
using Snell’s law with the SoS in water (cwater) and an approximate
SoS of the targeted medium, as in [34].

For acoustic propagation, refractions are herein ignored
and the travel of acoustic wave from a transmitting to receiving
element is modeled using a straight ray approximation as
depicted in Figure 1A. For a straight acoustic path, the first
wavefront from a Tx element, reflecting from the reflector and
arriving at an Rx element can be assumed to follow the shortest
path, thus being reflected at the mid-point between these Tx
and Rx element locations projected on the reflector,
cf. Figure 1A. To cast this as a tomographic reconstruction
problem, the relation in Eq. 3 above can be discretized on a
Cartesian grid as

∠Ut,r′ ω( ) � ω∑Ni

n�1
sk ω( ) lik, (5a)

|Ut,r′ ω( )| � exp −∑Ni

n�1
αk ω( ) dl⎛⎝ ⎞⎠. (5b)

where sk(ω) and αk(ω) represents the slowness and
attenuation, respectively, in pixel k along ray i spanning Ni

pixels, where lik represents the partial acoustic path length of
ray i within this pixel k.

Collocating Eq. 5 for each ray path along all Tx-Rx
combinations and taking logarithm on both sides of Eq. 5b,
the forward-problem of ultrasound propagation can then be
represented with the following systems of linear equations
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ωLs ω( ) � ϕ ω( ), (6a)
Lα ω( ) � b ω( ), (6b)

where ϕ(ω) and b(ω) are, respectively, the column vectors of
phase ∠Ut,r′ (ω) and amplitude ln |Ut,r′ (r,ω)| values along all ray
paths at frequency ω; s(ω) and α(ω) are the column vectors of,
respectively, the slowness and attenuation values for all
reconstruction grid pixels at frequency ω; and the system
matrix L encodes the discretized ray integrals for each ray
onto the pixel grid as in [25]. Note that L is constant for
given transducer geometry and reflector position.

2.3 Reconstruction of Phase Velocity and
Attenuation
Given calibrated phase spectrum ϕ(ω) and amplitude spectrum
b(ω) measurements, one can then reconstruct the local slowness
and UA maps at frequency ω by solving the following inverse
problems:

ŝ ω( ) � argmin
s ω( )

‖ωLs ω( ) − ϕ ω( )‖1 + λ‖Ds ω( )‖1 (7a)
α̂ ω( ) � argmin

α ω( )
‖Lα ω( ) − b ω( )‖1 + λ‖Dα ω( )‖1 (7b)

where λ is the weight parameter of regularization required to
help robustly solve these ill-posed problems. Similarly to
[22,25,32,34], we herein use l1-norm for both the data and
regularization terms for robustness to outliers in, respectively,
the measurements and the reconstructions [44]. For
regularization, in order to suppress the typical streaking
artifacts associated with LA-CT due to missing orthogonal
projections as well as the uneven distribution of measurement
paths, we use anisotropic weighting of directional gradients
proposed in [45], with a weighting of k = 0.9 as in [25].
Accordingly, the regularization matrix D is composed of a mix
of Sobel (axis-aligned) and Robert (diagonal) kernels with
corresponding weights and locations, as in [23]. In this paper
we empirically set λ = 0.6 for all experiments of phase velocity and
UA reconstructions. For the numerical solution of the

FIGURE 3 | Illustration of parameter estimation for SoS and UA on a sample simulated numerical phantom: SoS (A) and UA (B) reconstructions at frequencies f =
{4, 5, 6}MHz obtained by following the procedure in Figure 2. Fitting frequency-dependent models as in Eqs. 8 for SoS (C) UA (D) at two sample locations inside and
outside the inclusion. By solving the inverse problem in Eq. 9, spatial distributions of the following model parameters are obtained: SoS coefficient i.e., cy (E), SoS
dispersion coefficient c0 (F), UA power-law exponent y (G), and UA coefficient α0 (H).
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optimization problem Eq. 7, a limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [46–49] is used
from the unconstrained optimization package minFunc1.

2.4 Model Fitting
Ultrasound phase velocity c(ω) and attenuation α(ω) reconstructions
are computed for a range of frequencies [ωc − nΔω, . . . ,ωc, . . . ,ωc +
nΔω] around the center frequency ωc of the ultrasound pulse with
Δω being the frequency resolution used for computing the FT of the
reflector profiles. Sample reconstructions at three frequency values
are shown in Figures 3A,B. Phase velocities for wide range of
frequenciesmay exhibit complex profiles as in [50–52]. Nevertheless,
for small ranges of ultrasound imaging frequencies, such frequency
dependence can be approximated with a linear disperse model,
similarly to the shear-wave phase velocity studies in [16,53]. Given
the relatively small bandwidth of the utilized ultrasound pulse, the
phase velocity is expected to vary linearly within this bandwidth, as
illustrated by two sample profiles in Figure 3C. For frequency
characterization of attenuation, it is well known in the literature
that attenuation as a function of frequency obeys the power-law,
which corroborates the observation inFigure 3D. One could fit these
models pixel-wise for the given range frequencies and solve for the
model parameters in the least square sense, as in [34]. However, this
may be error prone as it ignores the spatio-spectral continuity in the
medium. Herein, we incorporate frequency-dependent models of
speed and attenuation into the reconstruction process, such that the
inverse problem solution is informed by and can leverage the
measurements at each frequency and path concurrently, while
estimating the frequency-dependent medium parameters.

As models of the frequency-dependent nature of ultrasound
phase velocity and attenuation, we use herein the following linear
and power-law relations, respectively:

c f( ) � c0 + cyf (8a)
α f( ) � α0f

y; (8b)
where c(f) and α(f) are the frequency-dependent SoS and

attenuation, c0 and α0 the medium-specific SoS and
attenuation coefficients, cy the medium-specific SoS dispersion
coefficient, and y the medium-specific attenuation exponent.

By colocating SoS reconstructions for all measurement
frequencies from Eq. 7a in Eq. 8a, a comprehensive system of
equations that encodes both SoS model parameters for all image
locations is arrived as follows:

θ̂ � argmin
θ

‖Aθ − v‖1 + λ‖D′θ‖1 (9)

where θ � [c0 cy]T, v � [cf1 cf2 / cfn]T, D′ = [D D], and

A �
Inp f1pInp
Inp f2pInp
..
. ..

.

Inp fnpInp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with bold variables denoting size-np row vectors of the sought
parameters in the imaged field-of-view, Inp is the identity matrix
of size np and np is the total number of reconstruction grid pixels.

For estimating UA parameters, we colocate UA
reconstructions for all measurement frequencies from Eq. 7b
in Eq. 8b. Taking the logarithm of both sides (in order to drop
down the exponent) a similar linear problem as in Eq. 9 is arrived,
but this time with the variables θ � [logα0, y]T,
v � [logαf1, logαf2, . . . , logαfn]T, and

A �
Inp log f1( )pInp
Inp log f2( )pInp
..
. ..

.

Inp log fn( )pInp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

Solving these inverse problem formulations we estimate the
spatial maps of SoS model parameters c0 and cy, and of UAmodel
parameters α0 and y. Sample reconstructions from the earlier
simulated example can be seen in Figures 3E–H.

2.5 Complex Bulk Modulus
Given ultrasound phase velocity c(ω) and attenuation α(ω) maps
reconstructed above, complex bulk modulus K̂ can be determined
in a model-independent way to characterize the viscoelastic
nature of the tissue through its relationship to complex wave
number as follows:

K̂ ω( ) � K′ ω( ) + iK″ ω( ) � ρω2

k̂
2
ω( )
, (10)

where ρ represents tissue density. Substituting Eq. 1b in Eq. 10
allows to derive the bulk storage modulus K′ and bulk loss
modulus K″ as follows:

K′ ω( ) � ρω2
ω

c ω( )( )2 − α ω( )2
ω

c ω( )( )2 + α ω( )2( )2, (11a)

K″ ω( ) � 2ρω2
ω

c ω( )( )α ω( )
ω

c ω( )( )2 + α ω( )2( )2. (11b)

2.6 Evaluation Metrics
In this study, the following metrics are used for a quantitative
analysis of the simulation results:

• Root-mean-squared-error (RMSE)

RMSE �
����������
1
np
(x+ − x̂)2

√
, where x represents a reconstructed

parameter map with the number of pixels np. The ·+ and ·̂
indicate, respectively, the ground-truth and a reconstruction.

• Contrast-ratio fraction (CRF)

CRF � Ĉ
C+, where C � |μinc−μbg|

|μinc |+|μbg| with mean inclusion and
background values μinc and μbg, respectively, where the
inclusion is delineated using the ground-truth map.1https://www.cs.ubc.ca/schmidtm/Software/minFunc.html.
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• Contrast-to-noise ratio (CNR)

CNR � |μinc|−|μbg|�����
σ2inc+σ2bg

√ , where σ2 represents the variance.

2.7 Simulation Experiments
Numerical simulations were conducted to study the
reconstruction accuracy of the proposed methods. These
simulations were conducted by varying local distribution of
SoS and UA patterns and varying their frequency dependency
characteristics. An open-source acoustics toolbox k-Wave [54]
was used for this purpose. k-Wave uses Kramers–Kronig relations
[50–52] to simulate the dispersive phase speed based on given
spatial maps of UA coefficient α0 (x, y) and SoS cfc(x, y) at the
center frequency, as well as the power-law dependency parameter
y. Note that in k-Wave, y is a single constant for the entire
domain/simulation and cannot be controlled spatially.

The transducer was simulated as a linear array of 128 elements
with a pitch of 0.3 mm. Full-matrix multistatic data was simulated
at a center frequency of 5 MHz with a 5-cycle input pulse. For the
simulation, we used a temporal resolution of 160 MHz and a
spatial grid resolution of 37.5 μm. In the physical experimental
setup, the acoustic mirror is made of plexiglass, so it was
simulated using plexiglass’s acoustic properties (density ρ =
1180 kg/m3, SoS c = 2700 m/s), as positioned at a distance of
42 mm from the transducer surface in all three simulations. A
single circular inclusion with 5 mm radius is placed at the center
of the imaging field-of-view. SoS at center frequency (cfc) in the
background and inclusion were set, respectively, 1,540 m/s and
1,601.6 m/s (for 4% contrast). The inclusion and background
attenuation coefficient (α0) were set, respectively, 0.2 dB/
cm·MHzy and 0.1 dB/cm·MHzy.

We repeated the simulations three times by varying the power
exponent y = {1.1, 1.5, 1.9}, which led to three numerical
phantoms referred hereafter as sim{#1, #2, #3}, respectively.
Note that given constraints in k-Wave, SoS and UA cannot be
controlled independently and arbitrarily, and the variation of
such exponent y changes both SoS and UA with a known relation.

2.8 Phantom and ex-Vivo Experiments
These were conducted using the data from [34]. In the first
phantom #A we used, the background has 10% gelatin 1%
Sigmacell Cellulose Type 50 (Sigma Aldrich, St. Louis, MO,
United States), into which a bovine skeletal muscle sample was
inserted as an inclusion. For the second phantom #B, the
background and inclusion compositions were interchanged,
i.e., a gelatin phantom piece was inserted as the inclusion
inside a bulk muscle sample. Data acquisitions were conducted
on a research ultrasound machine (Verasonics, Kirkland, WA,
United States) with a 128-element linear-array transducer
(Philips, ATL L7-4). Similarly to the simulation setup, a
wideband Tx pulse with a center frequency of 5.2 MHz and a
pulse length of five cycles was used. For the calibration procedure,
multi-static data sets were acquired in distilled water at room
temperature by placing the reflector at multiple depths {31, 35, 39,
43, 47}mm. For any intermediate reflector depths used in the
phantom measurements, calibration data was interpolated from
the available water measurements above, as described in [32].

3 RESULTS AND DISCUSSION

First, the reflector profiles are delineated in the multistatic data
for each Tx event using [41]. To identify the acoustic reflector
surface, we tuned this reflector delineation framework to use the
so-called “edge” feature with a window length of 200 and 50,
respectively, for simulations and ex-vivo experiments. A cubic
RANSAC [55] model was used for outlier removal, to estimate an
initial contour, which was next refined using an optimization-
based active contours [56] method, which hence utilizes the
expected temporal continuity of the neighbouring profiles for
a robust estimation. This then yields the final delineation of
reflector echoes to estimate the time-of-flights as well as the
temporal echo profiles around the delineated reflector surface (to
further process) as exemplified in Figure 1C. This delineation
procedure was repeated for all 128 Tx events. For each delineated
reflector profile of a Tx-Rx combination, 43 RF samples (within
which the surface echo is observed, also corresponding roughly to
the 5 cycles of a Tx pulse) around the delineated location is taken
out, zero-pad to 128 samples, and input to a 1-D temporal Fourier
transform using FFT, leading to a spectral resolution of 312.5 and
325.5 kHz, respectively, for simulations and ex-vivo experiments.
The above yields phase and amplitude spectrums, as exemplified
in Figures 2A,B. Repeating this for all Tx-Rx combinations yields
128 × 128 spectrum profiles for phase and amplitude. Next, phase
and amplitude values at a frequency of interest are extracted and
calibrated using the respective calibration parameters, derived
separately for (simulated) numerical and physical experiments.
From the calibrated measurements for all Tx-Rx combinations,
SoS and UA maps are reconstructed using Eqs 7–9).

Systemmatrix L is constant for given transducer geometry and
reflector position. It, however, needs to be recomputed if the
reflector distance changes, e.g., based on the imaged organ’s
physical dimension. Nevertheless, L can be precomputed for
several potential imaging distances and loaded at imaging time
based on the current reflector distance. It is further possible to
have a reflector setup where physical distances are constrained
mechanically to certain increments as in [45]. Reconstruction of
SoS or UA at a single frequency takes ≈8.2 s. Assuming that this
can be parallelized for multiple frequencies we utilize and by
using L and D matrices precomputed for a given distance, then
our proposed reconstruction including preprocessing for reflector
delineation and postprocessing by parameter fitting would take
12.6 s, using unoptimized MATLAB code. Single frequency
reconstructions or the overall parameter estimation can be
accelerated to real-time via loop-unrolling of tomographic
reconstruction using variational networks as in [57,58].

We assume that reconstructions are thin planar slices,
although ultrasound propagation has a finite elevational
thickness, e.g. attenuations caused by out-of-plane structures.
Nevertheless, such out-of-plane effects are less likely to affect
measurements with a reflector where only specular (direct)
reflections arrive back at a receive element.

3.1 Simulation Results
SoS and UA reconstructions for sim#2 are presented in Figure 2.
Reconstructed c0 (i.e., SoS at the center frequency c (fc)) and the
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linear dispersion coefficient cy for the three simulations are
depicted in Figure 4. From the ground-truth and
reconstructed SoS maps at the center frequency in Figures
4A,B, it can be seen that the background SoS at the center
frequency is reconstructed with some success in all cases.
However, the inclusion SoS values are seen to be shifted
towards background values, which corroborates the findings in
[25]. This is due to the limited-angle tomographic nature of the
problem, where the lack of lateral projections combined with the
regularization needed for robust solutions cause the smoothing
and axial elongation of the inclusions, hence spreading them over
a larger area. Since the cumulative SoS effect shall stay the same,
per-pixel inclusion values are effectively averaged with the
background, inversely proportional to such artifactual area
increase.

Note that as y varies across the simulations, so does cy,
according to Kramers–Kronig relationship [51]. Therefore, the
cy maps in Figures 4D are expected to present contrast between
the three simulations with different y values. An analytical
computation of expected SoS dispersion in the utilized
frequency range of 4–6 MHz according to the Kramers–Kronig
relationship is illustrated in Figure 5. Accordingly, in this
frequency range a linear SoS dispersion (cy) of {6.5, 9.7, 5.3}

cm/s·MHz for the background and {14.1, 21.0, 11.4} cm/s·MHz
for the inclusion are expected for each respective simulation.
These are used as ground-truth cy values for the following
evaluation.

For a quantitative evaluation, we computed the metrics RMSE,
CNR, and CRF for each simulation, as reported in Table 1. We
computed the mean and standard deviation for the background
and inclusion using their respective masks from simulations. The
average RMSE of c (fc) is 8.50 ± 0.24 m/s and the average mean
values of c (fc) in the background region is 1,542.3 ± 0.1 m/s,
demonstrating that an accurate reconstruction of the speed of
sound is possible. The contrast metrics CNR and CRF for c (fc)
and for c0 indicate that the inclusions can be successfully
distinguished in SoS reconstructions, with a contrast similar to
their prescribed ground-truth value. Note that cy reconstructions
for all the simulations show large RMSE errors of 39–53 cm/
s·MHz. This is mainly due to the relatively minute dispersion
values of [5.3–9.7] cm/s·MHz and hence their minimal effect in
SoS change within the given frequency interval (see the changes in
y-axis in Figure 5 being < 0.4 m/s for inclusion < 0.2 m/s for the
background). Note that this is partly due to our earlier-mentioned
experimental limitations with k-Wave parameterizations, where
SoS frequency dispersion can only be generated by varying y,

FIGURE 4 | Comparison of frequency-dependent SoS imaging for the three different simulations with y = {1.1, 1.5, 1.9} in each row, with columns from left to right
(A-D): ground-truth SoS maps cGT (fc) at the center frequency fc = 5 MHz; reconstructed SoS maps c (fc) at the center frequency; reconstructed c0 maps; and
reconstructed cy maps.
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which then has a much more prominent impact on UA. To
capture such variation, very high SNR and precision would be
required in SoS reconstructions. Despite the accuracy being low
for these, nevertheless, the relative differences and contrasts are
recovered successfully: For instance, cy for the inclusion of sim #2

is higher than that of sim #1 and #3, which corroborates the
analytical expectation from Figure 5. Similarly, corroborating the
analytical expectation, the inclusions in sim #1 and #2 show
roughly twice the dispersion that their backgrounds. The average
ratio of μ

cy
inc to μ

cy
bg is ≈2.4, which is close to the ground truth cy

FIGURE 5 | SoS dispersion characteristics for the background (A) and inclusion (B) for k-Wave simulations with power-law exponent y = {1.1, 1.5, 1.9} according
to the Kramers–Kronig relationship that is being used in the simulation toolbox k-Wave [50–52].

FIGURE 6 | Comparison of frequency-dependent UA imaging for simulations varying the power-law dependence parameter y = {1.1, 1.5, 1.9}, with columns from
left to right (A-D): ground-truth UA maps at center frequency 5 MHz; reconstructed UA maps at the center frequency; reconstructed α0 maps; reconstructed y maps.
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contrast of 2 between inclusion and background. Therefore,
despite not being accurate reconstructed cy values are still
correlated with ground truth counter-parts and hence may
potentially act as an imaging biomarker.

Reconstructed UA at the center frequency αfc, UA coefficient
α0, and exponent y are plotted in Figure 6. Given the groundtruth
and reconstructed αfc maps in Figures 6A,B, it can be seen that
the UA at center frequency is successfully reconstructed in all
cases. In Figures 6B,C it is observed that the reconstructed αfc and
α0 values in the inclusions are shifted towards the background
values, similarly to SoS results in Figure 4B and also in line with
previous observations in [34]. The UA exponent y maps in
Figure 6C should not present any contrast since the power
exponent y are constant across each domain. Although this is
true for sim #1, the other two simulations exhibit a slight
deviation of y in the inclusion region. This is due to the
relatively more pronounced artifactual elongations of the
inclusion in UA reconstructions with increased frequency
dispersion, which then slightly reduce the per-pixel
reconstructed UA value (through averaging as reasoned
above), which in turn is erroneously attributed by the model
fitting to an increased y in the inclusion.

To quantify UA reconstructions, we report RMSE, CNR,
and CRF in Table 1. Average RMSE of α(fc) is 0.16 ± 0.09 dB/
cm at center frequency 5 MHz. Considering the range of

ground-truth SoS values, this demonstrates that an accurate
reconstruction of UA is possible. With an RMSE of {0.04, 0.05,
0.06} respectively for prescribed y values {1.1, 1.5, 1.9}, the
relative estimation error becomes below 3.3%, indicating a
robust estimation of frequency exponent y. The contrast
metrics CNR and CRF for α(fc), α0, and y demonstrate that
the inclusions can be successfully distinguished in UA
reconstructions, with a contrast similar to their prescribed
ground-truth values.

3.2 Ex-Vivo Experiments Results
The SoS reconstruction results of the gelatin phantom and ex-
vivo experiments are shown in Figure 7 with their
corresponding B-Mode images in Figure 7A. Reconstructions
of SoS maps at the center frequency are shown in Figure 7B,
while reconstructed c0 and cy are shown in Figures 7C,D. The
reconstructed results in Figure 7B were overlaid with inclusion
markings annotated from the B-mode images. A clear contrast is
visible in Figure 7 for all our proposed reconstructions. The
reconstructed maps c (fc) and cy for gelatin and bovine tissue
regions are consistent in phantoms #A and #B; i.e., the
reconstructions show inverted images between these two
phantoms, indicating that these quantities can be
reproducibly used for tissue differentiation. From Figure 7C,
it is observed that the tissue samples show much higher

TABLE 1 | Quantitative evaluation of SoS and UA frequency-dependent model parameter reconstructions for simulations. μbg and σbg are mean and standard deviation of
background, μinc and σinc are mean and standard deviation of inclusion.

Sim c (fc) (m/s) at fc = 5 MHz c0 (m/s) Dispersion Coefficient (cy) (cm/s·MHz)

μbg ± σbg μinc ± σinc RMSE CRF CNR μbg ± σbg μinc ± σinc RMSE CRF CNR μbg ± σbg μinc ± σinc RMSE CRF CNR

#1 1,542.4 ±
6.1

1,568.2 ±
2.5

8.8 0.4 5.6 1,542.0 ±
6.1

1,564.4 ±
1.7

9.7 0.4 5.0 38.4 ±
22.8

74.5 ±
35.0

50.2 16.3 1.2

#2 1,542.2 ±
6.0

1,569.8 ±
1.3

8.4 0.5 6.0 1,541.7 ±
5.7

1,565.4 ±
2.1

9.2 0.4 5.5 39.0 ±
24.6

87.3 ±
33.3

53.2 19.5 1.7

#3 1,542.2 ±
5.9

1,569.5 ±
1.9

8.4 0.5 6.0 1,542.0 ±
5.6

1,565.5 ±
2.2

9.1 0.4 5.5 19.0 ±
24.8

79.3 ±
16.2

39.4 31.3 2.9

Sim α(fc) (dB/cm) at fc = 5 MHz UA coefficient (α0) (dB/cm·MHzy) UA exponent (y) (unitless)

μbg ± σbg μinc ± σinc RMSE CRF CNR μbg ± σbg μinc ± σinc RMSE CRF CNR μ ± σ - RMSE - -

#1 0.6 ± 0.1 1.0 ± 0.2 0.1 0.7 2.4 0.1 ± 0.01 0.17 ± 0.03 0.01 0.8 2.6 1.1 ± 0.03 - 0.04 - -
#2 1.1 ± 0.1 1.8 ± 0.2 0.1 0.7 4.9 0.1 ± 0.01 0.14 ± 0.01 0.01 0.5 4.5 1.5 ± 0.05 - 0.05 - -
#3 2.2 ± 0.2 3.4 ± 0.3 0.3 0.6 4.3 0.1 ± 0.01 0.15 ± 0.01 0.01 0.5 4.2 1.9 ± 0.06 - 0.06 - -

TABLE 2 | Quantitative evaluation of SoS and UA model parameter reconstructions for ex-vivo experiments.

Phantom c (fc) (m/s) at fc = 5.2 MHz c0 (m/s) cy (cm/s·MHz)

Gelatin Tissue CNR Gelatin Tissue CNR Gelatin Tissue CNR

#A 1,519.8 ± 06.69 1,535.5 ± 03.11 3.00 1,526.5 ± 3.60 1,525.1 ± 01.50 0.51 100.0 ± 165.0 430.0 ± 101.0 2.41
#B 1,522.7 ± 06.82 1,535.7 ± 12.85 1.27 1,518.1 ± 7.22 1,520.1 ± 11.59 0.21 152.0 ± 682.0 372.0 ± 698.0 0.32

Phantom α(fc) (dB/cm) at fc = 5.2 MHz UA coefficient α0 (dB/cm·MHzy) UA exponent y (unitless)

Gelatin Tissue CNR Gelatin Tissue CNR Gelatin Tissue CNR

#A 1.39 ± 0.38 2.95 ± 0.40 4.02 0.24 ± 0.32 1.43 ± 0.61 2.44 1.26 ± 0.39 0.54 ± 0.29 2.09
#B 1.73 ± 1.58 4.69 ± 0.89 2.30 0.19 ± 0.40 1.43 ± 0.75 2.06 1.30 ± 0.25 0.76 ± 0.31 1.91

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 86072510

Chintada et al. Speed-of-Sound and Attenuation Imaging

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


dispersion than in the simulations. This indicates the selection
of frequency for SoS quantification being an important factor in
practice. This also signifies the need for imaging C0 and Cy to
image the SoS of the targeted medium comprehensively. In
other words, UA dispersion estimation can help both as
additional parameters to characterize tissues and also for
disambiguation of SoS measurement, which are seen here to

be highly frequency dependent; also corroborating tissue
observations in the literature, e.g. [33,39].

The UA results of the gelatin phantom and ex-vivo
experiments are shown in Figure 8. A clear contrast is visible
for all the UA reconstructions using our proposed methods.
Furthermore, all three reconstructed parameters between
phantoms #A and #B are consistent, i.e., inclusion and

FIGURE 7 | Comparison of frequency-dependent SoS imaging for phantom and ex-vivo tissues, with columns from left to right (A-D): B-mode image; c at the
center frequency 5.2 MHz; reconstructed c0 maps; reconstructed cy maps.

FIGURE 8 | Comparison of frequency-dependent UA imaging for phantom and ex-vivo tissues, with columns from left to right (A-D): α at the center frequency
5.2 MHz; reconstructed α0 maps; reconstructed y maps.
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background values inverted, showing reproducibility under
different experimental settings. Axial edge artifacts, especially
in y and α0 maps were much reduced compared to results in [34]
thanks to solving model parameters collectively in a closed form
as in Eq. 9. The average and standard deviation values of SoS and
UA obtained in gelatin and bovine tissue were tabulated along
with CNR of the reconstructions in Table 2.

Using the relationship in Eq. 11, the complex bulk modulus of
the gelatin phantom and ex-vivo tissues at ultrasound center
frequency can be computed to be 2.31 + i (2.42 × 10–3) GPa and
2.33 + i (10.01 × 10–3) GPa, respectively. These values indicate 1)
that the bulk loss modulus in both media is three orders of
magnitude smaller than the bulk storage modulus; and 2) that
although both media have similar bulk storage modulus, the bulk
loss modulus in ex-vivo bovine tissue is ≈4 times higher than that
of gelatin. This striking difference indicates that the complex bulk
modulus may act as a new imaging biomarker, where the loss
modulus component potentially having superior tissue
differentiation compared to its storage component.

4 CONCLUSION

In this study, a novel method for reconstructing local SoS and
UA maps as a function of frequency is introduced, through
frequency domain analysis followed by a closed-form fitting of
linear SoS and power-law UA dependency models. We first
delineate the reflector profiles in multi-static data and compute
Fourier transforms of these profiles to estimate phase and
amplitude spectra. After calibrating these with water
measurements, we use them to solve closed-form inverse
problems over all frequencies to reconstruct SoS and UA
frequency-dependent model parameters. We have studied
these reconstructions with simulations and ex-vivo phantom
studies, with our results indicating the following observations:
The introduced SoS model parameters c(fc) (SoS at center
frequency), c0 (SoS intercept), and cy (SoS dispersion) were
reconstructed with average RMSEs of 8.50 ± 0.24 m/s, 9.30 ±
0.31 m/s, and 47.6 ± 7.3 cm/s·MHz, respectively. These results
show that c (fc) and c0 can be reconstructed with high accuracy,

while cy reconstructions were relatively poorer within the
simulated low-dispersion regime. Still, the reconstructed cy
maps and their contrasts correlated with the ground-truth
values. UA model parameters α(fc), α0, and y were
reconstructed with average RMSEs of 0.16 ± 0.1 dB/cm,
0.01 ± 0dB/cm·MHzy, and 0.05 ± 0.01, respectively, which
indicate a high overall reconstruction accuracy using our
proposed methods. From phantom and ex-vivo tissue sample
experiments, the attenuation exponents in a gelatin-cellulose
mixture and an ex-vivo bovine muscle sample were found to be,
respectively, 1.3 and 0.6 on average. Linear dispersion of SoS in a
gelatin-cellulose mixture and an ex-vivo bovine muscle sample
were found to be, respectively, 1.3 and 4.0 m/s·MHz on average.
Bulk loss modulus in bovine muscle sample was ≈4 times the
bulk loss modulus in the gelatin-cellulose mixture. Our results
show the feasibility of estimating spatial maps of frequency-
dependent characteristics of SoS and UA, as well as the complex
bulk modulus as potential imaging biomarkers.
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