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Two-dimensional (2D) ferroelectric materials with robust polarization down to atomic
thicknesses provide novel building blocks for functional heterostructures. The effects of
ferroelectric polarization on the electronic properties of 2D ferroelectric heterostructures
are rarely investigated. Here, based on the first-principles calculations, we study the effect
of ferroelectric polarization and interlayer coupling on the electronic properties of the 2D
In2Se3/InSe ferroelectric heterostructure. It is found that the ferroelectric polarization of
In2Se3 can effectively tune the band alignments of the In2Se3/InSe heterostructure. When
the direction of ferroelectric polarization is reversed (i.e., from up to down), the band
alignments of In2Se3/InSe heterostructures transition from type I to type II. Meanwhile, we
find that the transition between type I and type II band alignments can be induced by
means of interlayer coupling (i.e., varying interlayer distances). The results demonstrate
that ferroelectric polarization and interlayer coupling are effective methods to modulate the
band alignments of In2Se3/InSe heterostructures.
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INTRODUCTION

2D materials have attracted considerable attention due to their promising mechanical,
electrochemical, electronic, and optical characteristics as well as great potential applications in
the next generation of nanoelectronic and optoelectronic devices [1–4]. Owing to weak van der
Waals interaction between different layers of 2D materials, 2D materials can be isolated from their
layered bulk counterparts [5–7]. Accordingly, we can stack different 2D materials on top of each
other layer by layer to fabricate van der Waals heterostructures [8–11]. van der Waals
heterostructures with two or more layered materials demonstrate many new properties which
are absent in respective materials while preserving the intrinsic properties of individual constituents
[12–15]. For instance, Tan et al [16] reported that the CrI3/NiCl2 van der Waals heterostructure
showed a nearly perfect thermal spin-filtering effect in each layer while generating a well-defined
spin-Seebeck effect in the whole system.

The band alignment is crucial for the stability and transport of electrons and holes in the van der
Waals heterostructure. An intensive understanding of the material intrinsic band alignment
properties is necessary for the optimization and design of effective and high-capacity
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micro–nano devices. From the view of band alignment, the band
alignments of van der Waals heterostructures usually can be
divided into three types, i.e., straddling (type I), staggered (type
II), and broken (type III) [17]. Type I heterostructures consist of
two layer materials whereby the conduction band minimum
(CBM) and valence band maximum (VBM) of one material
are localized within the band gap of the other material;
consequently, electrons and holes accumulate on the same
material [18]. Type II heterostructures denote the staggered
alignment with the CBM and VBM of one material is higher
than that of the other material, resulting in an effective
electron–hole separation [19–21]. For type III heterostructures,
the VBM of one material is higher than the CBM of the other
material which gives a broken alignment. However, the van der
Waals heterostructure with a fixed band alignment cannot realize
multifunctional applications. To broaden the application range,
the tuning of band alignment in a heterostructure by the external
electric field has been studied extensively [22–24]. Studies show
that applying the external electric field is usually low-efficiency
and high-energy consumption. Alternatively, 2D ferroelectric
materials with a non-volatile remanent polarization electric
field can be used for modulating the band alignment.

Recently, monolayer In2Se3 has been proposed as a new
member of 2D ferroelectric material, and the room
temperature ferroelectricity has been confirmed experimentally
[25, 26]. The crystal structures of layered In2Se3 are composed of
sets of quintuple layers, Se–In–Se–In–Se, with each atomic layer
containing only one elemental species arranged in a triangular
lattice. Within the quintuple layers, the atoms form strong
covalent/ionic bonds, while the interactions between
neighboring quintuple layers are weak and of the van der
Waals type. The most studied phases of layered In2Se3 are the
α phase. In the α-In2Se3 structure, space group R3m, the
Se–In–Se–In–Se atomic layers are stacked in the ABBCA
sequence, where one of the In atoms is fourfold coordinated
in a tetrahedral environment and the other is sixfold coordinated
in an octahedral environment. Zhou et al [26] reported that the
polarization is potentially switchable for α-In2Se3 nanoflakes with
thicknesses down to ~10 nm. Different from other 2D and
conventional ferroelectrics, In2Se3 demonstrates intrinsically
intercorrelated out-of-plane and in-plane polarization, where
the reversal of the out-of-plane polarization by a vertical
electric field also induces the rotation of the in-plane
polarization [27]. The polarization in In2Se3 provides a non-
volatile remanent built-in electric field, which can tune the band
alignment of the 2D ferroelectric heterostructure consisting of
In2Se3 and other materials. In particular, ferroelectric In2Se3-
based vdW heterostructures have attracted a great deal of
attention.

On the contrary, InSe [28, 29] is suitable to form van der
Waals heterostructures with In2Se3 due to the similar hexagonal
lattices and the close lattice constants. InSe crystals are
anisotropic layered materials comprising covalently bonded
layers stacked together by van der Waals forces. Each layer
consists of four atomic planes (Se–In–In–Se) arranged in a
hexagonal atomic lattice. In bulk, a hexagonal β-structure
belongs to the D4

6h space group. In this paper, we construct

In2Se3/InSe heterostructures and study their electronic
properties. The results show that the band alignments of
In2Se3/InSe heterostructures transition from type I to type II
when the direction of ferroelectric polarization is reversed
(i.e., from up to down). Moreover, the transition between type
I and type II band alignments can be induced by means of
interlayer coupling (i.e., varying interlayer distances). The
results indicate that ferroelectric polarization and interlayer
coupling are effective methods to modulate the band
alignments of In2Se3/InSe heterostructures.

COMPUTATIONAL METHODS

The first-principles calculations are performed by means of the
Vienna Ab initio Simulation Package (VASP) with the projector-
augmented wave (PAW) pseudopotentials [30, 31] and the
Perdew–Burke–Ernzerhof (PBE) exchange–correlation
functional [32]. Since the PBE functional usually
underestimates the band gap, the band structures are
calculated by the hybrid Heyd–Scuseria–Ernzerhof (HSE06)
functional [33]. To describe the van der Waals interactions
between In2Se3 and InSe, the DFT-D3 method within the
Grimme scheme is adopted [34]. The plane-wave cutoff energy
is set to be 500 eV. All atoms are fully relaxed till the atomic
Hellmann–Feynman forces are less than 0.01 eV/Å, and the
energy convergence threshold is selected to be 10−5 eV
between two steps. The Brillouin zone was sampled with a fine
grid of 9 × 9 × 1 for structure optimization and electronic
structures. A 20 Å vacuum spacing is chosen to avoid
interactions between the adjacent slabs. Moreover, a dipole

FIGURE 1 | (A) Top view and (C) side view of In2Se3/InSe
heterostructures with the up polarization electric field. (B) Top view and (D)
side view of In2Se3/InSe heterostructures with the down polarization electric
field. The black arrow denotes the direction of polarization electric field.
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correction is employed to cancel the errors of electrostatic
potential, atomic forces, and total energy under periodic
boundary conditions.

RESULTS AND DISCUSSION

Geometry Structure and Stability of the
In2Se3/InSe Heterostructure
First of all, we explore the structural parameters of In2Se3 and
InSe. The optimized lattice constants of monolayers In2Se3 and
InSe are 4.05 and 4.09 Å, respectively, which are in excellent
agreement with those in previous studies [35, 36]. The In2Se3
monolayer has been prepared by using the physical vapor
deposition (PVD) method [37], which indicates that the In2Se3
monolayer is stable in reality. Thus, the integration of In2Se3 and
InSe has feasibility and research value. Owing to the close lattice
constants of In2Se3 and InSe, In2Se3/InSe heterostructures are
fabricated with a 1 × 1 supercell of In2Se3 and a 1 × 1 supercell of
InSe, leading to a lattice mismatch of 0.9%. A spontaneous
polarization electric field exists in monolayer In2Se3. We
construct In2Se3/InSe heterostructures considering two
different polarization electric field directions, namely, In2Se3/
InSe (up) and In2Se3/InSe (down), as shown in Figure 1.

To evaluate the stability of In2Se3/InSe (up) and In2Se3/InSe
(down), the binding energies Eb of In2Se3/InSe (up) and In2Se3/
InSe (down) heterostructures are calculated, which can be
defined as

Eb � EH − EIn2Se3 − EInSe, (1)
where EH, EIn2Se3, and EInSe represent the total energy of the
heterostructure and In2Se3 and InSe monolayers, respectively.
The results demonstrate that the binding energies of In2Se3/InSe
(up) and In2Se3/InSe (down) heterostructures are −0.161 eV
and −0.172 eV, respectively. In2Se3/InSe (down) has more

negative binding energy than In2Se3/InSe (up), which indicates
that In2Se3/InSe (down) is more stable than In2Se3/InSe (up). The
binding energies of In2Se3/InSe (up) and In2Se3/InSe (down)
heterostructures are both negative, which shows that both
heterostructures are easy to fabricate in experiments.

Electronic Properties of In2Se3/InSe
Heterostructures
In order to understand electronic properties of In2Se3/InSe
heterostructures, firstly, the band structures of monolayers
In2Se3 and InSe calculated by the HSE06 hybrid functional are
given in Figure 2. As can be seen from Figure 2, the VBM of
In2Se3 and InSe is located at the Γ point, while the CBM of In2Se3
and InSe is located at a point between M and Γ points, indicating
monolayers In2Se3 and InSe are both indirect band gap
semiconductors. The band gaps of In2Se3 and InSe are 1.59
and 2.34 eV, respectively.

The projected band structures of In2Se3/InSe (up) and In2Se3/
InSe (down) heterostructures are plotted in Figure 3. The size of
the circles denotes the proportion of In2Se3 and InSe. As can be
seen form Figures 2, 3, the band structures of In2Se3/InSe
heterostructures are equal to the simple sum of In2Se3 and
InSe due to weak van der Waals interlayer interaction. The
In2Se3/InSe (up) heterostructure has an indirect band gap of
1.35 eV with the CBM located at the Γ point and VBM located at a
point betweenM and Γ points. The CBM andVBM of In2Se3/InSe
(up) are both dominated by In2Se3; therefore, In2Se3/InSe (up) is a
type I heterostructure, which indicates that the excited electrons
and holes are confined inside the In2Se3 layer and results in the
formation of direct excitons. The excited electrons and holes will
recombine quickly in the heterostructure, which indicates In2Se3/
InSe (up) is suitable for applications in the light-emitting diode.
For the In2Se3/InSe (down) heterostructure, the CBM comes from
the contribution of In2Se3, while the VBM arises from InSe;
consequently, a type II band alignment is formed in the In2Se3/
InSe (down) heterostructure. Therefore, the InSe layer can be
used as the electron donor and the In2Se3 layer can be used as the
electron acceptor, resulting in an effective electron–hole
separation. Such a band alignment makes the In2Se3/InSe
(down) heterostructures attractive candidates for the potential
application in photovoltaic devices owing to the separated
photogenerated electrons and holes at the interface. The band
alignments of In2Se3/InSe heterostructures transition from type I
to type II when the direction of ferroelectric polarization is
reversed (i.e., from up to down), which demonstrates that the
ferroelectric polarization can effectively tune the band alignments
of the In2Se3/InSe heterostructure. The above results show that
the In2Se3/InSe heterostructure is a potential candidate for
multifunctional devices.

To obtain further insight, the electrostatic potentials of In2Se3,
InSe, In2Se3/InSe (up), and In2Se3/InSe (down) heterostructures
are plotted and shown in Figure 4. For In2Se3, the difference of
electrostatic potential (Δϕ) between two surfaces is 1.41 eV, and
an intrinsic ferroelectric field is introduced into In2Se3 due to
ferroelectric polarization. As can be seen from Figure 4, the
differences of electrostatic potential(Δϕ) between In2Se3 and InSe

FIGURE 2 | Band structures of monolayers (A) In2Se3 and (B) InSe
calculated by the HSE06 hybrid functional.

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 8614653

Du et al. Modulating Band Alignments of In2Se3/InSe

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


are 1.41 eV for In2Se3/InSe (up) and 1.31 eV for In2Se3/InSe
(down), respectively; therefore, built-in electric fields are
induced at the interfaces of both In2Se3/InSe (up) and In2Se3/
InSe (down). The electrostatic potential difference in In2Se3/InSe
(down) is smaller than that of In2Se3/InSe (up), which can be
attributed to the screening effects due to the charge transfer and
depolarizing electrostatic field between In2Se3 and InSe in the
heterostructure.

The band alignments are very important in designing
multifunctional devices. Thus, the band alignments of
monolayer In2Se3, monolayer InSe, and In2Se3/InSe (up) and
In2Se3/InSe (down) heterostructures are plotted in Figure 5. It

can be seen that the work functions of monolayer In2Se3,
monolayer InSe, and In2Se3/InSe (up) and In2Se3/InSe (down)
heterostructures are 7.25, 6.34, 7.37, and 6.79 eV, respectively.
The work function of InSe is smaller than that of In2Se3; therefore,
the electrons transfer from InSe to In2Se3. Eventually, InSe will
gather positive holes, and In2Se3 will accumulate negative
electrons. A built-in electric field occurs at the interface of the
In2Se3/InSe heterostructure, which will hinder the diffusion of
electrons and holes, and finally, the built-in electric field force and
the diffusion force exactly balance each other. Meanwhile, the
Fermi level of InSe moves downward, while that of In2Se3 shifts
upward, and the two Fermi levels reach the same level at last. The

FIGURE 3 | Projected band structures of (A) In2Se3/InSe (up) and (B) In2Se3/InSe (down) heterostructures calculated by the HSE06 hybrid functional. The blue and
red circles represent In2Se3 and InSe components, respectively. The Fermi level is set to zero.

FIGURE 4 | Electrostatic potentials of (A)monolayer In2Se3, (B)monolayer InSe, and (C) In2Se3/InSe (up) and (D) In2Se3/InSe (down) heterostructures. The dotted
lines and the red arrows represent the vacuum level and the direction of the built-in electric field, respectively.
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intrinsic ferroelectric field induced by In2Se3 has an external
electric field–like tuning effect on the electronic properties of
In2Se3/InSe (up) and In2Se3/InSe (down) heterostructures. Thus,
under the influence of the intrinsic ferroelectric field induced by
In2Se3, the band edge of InSe moves downward gradually, and the
band edge shift of InSe in In2Se3/InSe (up) is larger than that of
InSe in In2Se3/InSe (down), which leads to type I and type II band
alignments in In2Se3/InSe (up) and In2Se3/InSe (down),
respectively.

Interlayer Coupling Modulations of Band
Structures in the In2Se3/InSe
Heterostructure
In fact, the interlayer coupling effect has an important impact on
the band structures of two-dimensional van der Waals

heterostructures. By means of varying interlayer distances, we
can tune the interlayer coupling effects of monolayer In2Se3 and
monolayer InSe in the heterostructure. In order to understand the
interlayer coupling effects on the band structures of the
heterostructures, the projected band structures of the In2Se3/
InSe heterostructures with different interlayer distances are
shown in Figure 6. It is obvious at a glance that the band
gaps of both In2Se3/InSe (up) and In2Se3/InSe (down) are
driven continuously to zero with decreasing interlayer
distances. Nevertheless, the band gaps of In2Se3/InSe (up) and
In2Se3/InSe (down) change slightly when interlayer distances are
increased. We note that both In2Se3/InSe (up) and In2Se3/InSe
(down) have the indirect band gap feature with varying interlayer
distances. It is clearly found that the CBM and VBM of In2Se3/
InSe (up) are both dominated by In2Se3; therefore, In2Se3/InSe
(up) is a type I heterostructure. By decreasing interlayer distances,
we find that the CBM and VBM of InSe shift down continuously,
inducing a transition from type I to type II heterostructure. For
In2Se3/InSe (down), the CBM comes from the contribution of
In2Se3, while the VBM arises from InSe, and a type II band
alignment is formed in the In2Se3/InSe (down) heterostructure.
When the interlayer distance is decreased, eventually the CBM
and VBM of In2Se3/InSe (down) are both attributed from In2Se3,
which results in the transition from type II to type I band
alignment. Interestingly, In2Se3/InSe (up) maintains type I
band alignment and In2Se3/InSe (down) retains type II band
alignment when interlayer distances are increased. The results
indicate that interlayer coupling is an effective method to
modulate the band structures of In2Se3/InSe heterostructures.
Charge transfer between In2Se3 and InSe is enhanced as interlayer
distances decrease, which may induce the modulation of the band
alignments of In2Se3/InSe heterostructures.

To shed more light on the charge transfer with different
interlayer distances, the Bader charge analysis is performed.
The results show that there are 0.034, 0.021, 0.0022, and
0.0003 electrons transferring from In2Se3 to InSe at 2.4 Å,

FIGURE 5 | Band alignments of monolayer In2Se3, monolayer InSe, and
In2Se3/InSe (up) and In2Se3/InSe (down) heterostructures. The horizontal
dashed lines represent the Fermi level.

FIGURE 6 | Projected band structures of (A) In2Se3/InSe (up) and (B) In2Se3/InSe (down) heterostructures with different interlayer distances. The blue and red
circles represent In2Se3 and InSe components, respectively. The Fermi level is set to zero.
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2.8 Å, 3.8 Å, and 4.8 Å for In2Se3/InSe (up), respectively.
Similarly, for the In2Se3/InSe (down) heterostructure, there are
0.0568, 0.0284, 0.0119, and 0.0013 electrons transferring from
InSe to In2Se3 at 2.4 Å, 2.8 Å, 3.7 Å, and 4.8 Å, respectively. The
amount of charge transfer increases with decreasing interlayer
distances, no matter what In2Se3/InSe (up) or In2Se3/InSe
(down). More charge transfer between In2Se3 and InSe leads
to the shift of band edges, which results in the modulation of band
gap and band alignment.

CONCLUSION

In summary, we have studied the electronic properties of the
In2Se3/InSe heterostructures based on the first-principle
calculations. Our results indicate that the ferroelectric
polarization of In2Se3 can effectively tune the band alignments
of the In2Se3/InSe heterostructure. When the direction of
ferroelectric polarization is reversed (i.e., from up to down),
the band alignments of In2Se3/InSe heterostructures transition
from type I to type II, and the band gap changes slightly from 1.35
to 1.25 eV. The band gaps of both In2Se3/InSe (up) and In2Se3/
InSe (down) are driven continuously to zero with decreasing
interlayer distances. In particular, interlayer coupling
(i.e., varying interlayer distances) can effectively modify the
band edges of both In2Se3/InSe (up) and In2Se3/InSe (down);
eventually, the transition between type I and type II band
alignments is realized. Our results provide interesting
guidelines for using the In2Se3/InSe heterostructure in future

optoelectronic devices and open the path for further theoretical
and experimental studies of this system.
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