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We present experiments on the motion of swimming microbes in a laminar, hyperbolic
flow. We test a theory that predicts the existence of swimming invariant manifolds (SwIMs)
that act as invisible, one-way barriers that block the motion of the microbes. The flow is
generated in a cross-channel in a PDMS cell, driven by syringe pumps. The swimming
microbes are euglena and tetraselmis, both single-celled, eukaryotic algae. The algae are
not ideal smooth-swimmers: there is significant rocking in their motion with occasional
tumbles and a swimming speed that can vary. The experiments show that the swimming
algae are bound very effectively by the predicted SwIMs. The different shapes and
swimming behavior of the euglena and tetraselmis affect the distribution of swimming
angles, with the elongated euglena having a larger probability of swimming in a direction
parallel to the outflow directions. The differences in swimming orientation affect the ability of
themicrobes to penetrate themanifolds that act as barriers to passive tracers. The differing
shapes of the euglena and tetraselmis also affect probabilities for themicrobes to escape in
one direction or the other along the outflow.
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1 INTRODUCTION

In the 1980s and 1990s, the tools of dynamical systems and chaos theory were applied to developing
an understanding of fluid mixing in laminar flows [1, 2]. In particular, manifolds were identified
[3–5] that were found to act as barriers that block the motion and mixing of impurities in a wide
range of laminar flows. Furthermore, lobes (or “turnstiles”) formed from these manifolds were found
to explain long-range transport in flows with simple periodic time dependence [6–8]. These
dynamical tools have been extended to identify local barriers and “Lagrangian coherent
structures” that guide and organize transport and mixing in spatially- and temporally-
complicated fluid flows [9–14]. These results have led to a range of applications in diverse
physical systems such as the spread of pollution in the oceans and atmosphere [12, 15],
transport barriers in nuclear fusion plasmas [16], blood transport in cardiovascular flows [17]
and morphogenesis in developing embryos [18].

For most of these studies, mixing is passive, characterized by impurities that simply follow a flow
without any deviations and without any influence on the flow itself. But mixing in real systems is
often active, involving impurities that deviate from the flow and/or impurities that feed back and alter
the flow. The behavior of propagating reaction fronts in a fluid flow is an example of active mixing,
since the reaction fronts are able to move across a fluid even in the absence of flows. The theory of
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manifolds developed for passive mixing has been extended to the
problem of front propagation in fluid flows [19, 20]. In this case,
burning invariant manifolds (BIMs) permeate the fluid system
and act as one-way barriers that both hinder and guide the
behavior of fronts in a wide range of fluid flows. We have
done numerous experiments that have demonstrated the role
of BIMs as one-way barriers in a wide range of two-dimensional
[21–23] and three-dimensional laminar fluid flows [24].

Another class of active impurities are those that are self-
propelled, such as biological organisms ranging from bacteria
[25–28] to birds and people [29], and artificial swimmers ranging
from microscopic Janus particles [30–32] to ships. A modified
and extended version of the burning invariant manifold theory
[33, 34] predicts similar manifolds—referred to as swimming
invariant manifolds (SwIMs)—that act as barriers that inhibit and
organize the mixing of self-propelled tracers in a flow. Edges of
SwIMs act as one-way barriers when projected into (x, y) position
space, similar to the one-way blocking of BIMs of reaction fronts
in (x, y). In fact, the burning invariant manifold theory is a special
case of the more general swimming invariant manifold approach.
We have previously tested parts of this theory experimentally in a
hyperbolic flow with rod-shaped, prokaryotic swimming bacteria,
some of which were genetically mutated to inhibit tumbling [33].

In this paper, we present the results from additional
experiments that test the applicability of SwIM theory to
larger, less idealized swimmers with different shapes (both
rod-shaped and circular) and different swimming behavior.
We choose one of the simplest, non-trivial flows: a laminar,
hyperbolic fluid flow in a cross channel. The hyperbolic flow is
particularly special since the vorticity is zero everywhere. The
self-propelled particles are two different types of eukaryotic
swimming algae—freshwater algae (euglena) and marine algae
(tetraselmis) that are both an order of magnitude larger in size
than the prokaryotic bacteria studied earlier. We examine
trajectories of these swimming microbes in the flow to see if
they are bounded by the one-way barriers that are predicted by
the SwIM theory. We also analyze orientation and escape
probabilities in the context of the SwIM theory.

In Section 2, we present background about dynamical systems
theory of manifolds as applied to the mixing of passive and self-
propelled tracers. We discuss the experimental methods used to
generate the hyperbolic fluid flow in Section 3, along with the
techniques used for handling the microbes. Trajectories of the
microbes in the flow are presented in Section 4, highlighting the
SwIMs that act as barriers that impede their motion. We also
present a statistical analysis of trajectories through (x, y, θ) phase
space and orientation distributions in Section 4, interpreted using
the SwIM framework. In Section 5we discuss these results, as well
as continuing work that is needed to further explore the range of
applicability of SwIM theory for active mixing.

2 BACKGROUND

2.1 Passive Mixing
The motion of passive tracers in a fluid flow is governed by the
differential equations _x � ux and _y � uy, where ux and uy are the

x- and y-components of the velocity field. For a hyperbolic flow
(Figure 1) with fluid going inward in the y-direction and outward
in the x direction, the velocity field is described by the equations

ux � Ax, (1a)
uy � −Ay. (1b)

There is a passive fixed point at (x, y) = (0, 0) where ux and uy are
both zero (Figure 1B). Attached to this fixed point are two passive
invariant manifolds. The unstable manifold of the fixed point is
defined by starting with an infinite number of passive tracers
initially located infinitesimally close to the fixed point and allowed
to evolve in time. In the long-time limit, the locations to where those
tracers have moved define the unstable manifold which, for a time-
independent, hyperbolic flow is the line y = 0 (horizontal, red dashed
line in Figure 1B). Similarly, the stable manifold of the fixed point is
defined using the same approach, but integrating the trajectories
backward in time. Alternately, the stable manifold is the locus of
points that ultimately will end up infinitesimally close to the fixed
point. For the hyperbolic flow of Eq. 1a, Eq. 1b, the stable manifold of
the fixed point is the line x = 0 (vertical, red dashed line). The passive
stable and unstable manifolds act as transport barriers for passive
mixing. For the time-independent hyperbolic flow of Figure 1, the
stable and unstable manifolds divide the flow into four quadrants, and
passive tracers initially in one quadrant remain in that quadrant. For a
time-independent flow, the identification of manifolds as transport
barriers for passive mixing is a somewhat trivial result since passive
tracers do not deviate from the streamlines in the flow. But the nature
of manifolds as barriers persists to the less-trivial case of flows with
periodic time-dependence [8, 35]. Studies during the past two decades
have extended the ideas of manifolds as barriers to aperiodic and even
turbulent flows, typical of flows in the oceans and atmospheres [9–14].

2.2 Self-Propelled Tracers
An example of a tracer that is not passive is one that is self-
propelled such as a biological organism (e.g., swimming
microbes, birds, people), synthetic microscale swimmers such
as Janus particles [30–32], and larger-scale devices (e.g., cars,
boats, drones, planes). In many cases, the self-propelled tracer is
itself subject to flows in the surrounding medium; e.g., fish in a
river, bacteria in the lungs or bloodstream, ships on the ocean.

Figure 2 shows an ellipsoidal swimmer. The aspect ratio γ = l‖/l⊥
is the ratio of the long and short dimensions of the ellipsoid, with l‖
defined parallel to the swimming direction. We assume a two
dimensional flow, and assume that the self-propelled tracer swims
at a constant speed V0 relative to the fluid without any noise or
internally-imposed change in swimming direction (e.g., tumbling for
a microbe). With these assumptions, the motion of the tracer is
described by the following set of differential equations [36, 37, 38, 33]:

_x � ux + V0 cos θ, (2a)
_y � uy + V0 sin θ, (2b)

_θ � 1 + α( ) ω/2( ) − α 2ux,x cos θ sin θ(
−ux,y cos

2 θ + uy,x sin
2 θ),

(2c)

where (x, y) are the coordinates of the tracer, θ is the angle of the
tracer’s swimming relative to the horizontal, and ω = uy,x − ux,y is
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the vorticity of the flow. The parameter α = (γ2 − 1)/(γ2 + 1)
denotes the shape and swimming direction of the swimmer
(Figure 2). Eq. 2a, Eq. 2b, Eq. 2c assume that the motion of
the swimmers does not alter the fluid flow.

For the zero-vorticity hyperbolic flow Eq. 1a, Eq. 1b, Eq. 2a,
Eq. 2b, Eq. 2c simplify [33]:

_x � Ax + V0 cos θ, (3a)
_y � −Ay + V0 sin θ, (3b)
_θ � −αA sin 2θ( ) (3c)

If the self-propelled tracer swims smoothly with no internally-
driven changes in swimming direction or external noise, there is no
mechanism for the swimmer to rotate through angles θ = 0, π/2, π or
3π/2. In fact, swimming orientations of θ = 0 and π are stable
attractors for any tracer with positive α, and swimming orientations
of θ = π/2 and 3π/2 are stable for swimmers with negative α.

We can rewrite Eq. 3a, Eq. 3b, Eq. 3c in non-dimensional
form by scaling distances by the distanceV0/A and scaling time by
A. Dimensionless coordinates are then defined as

~x � xA/V0, (4a)
~y � yA/V0, (4b)

~t � tA. (4c)
With these definitions, dimensionless versions of Eq. 3a, Eq. 3b,
Eq. 3c are:

_~x � ~x + cos θ, (5a)
_~y � −~y + sin θ, (5b)
_θ � −α sin 2θ( ). (5c)

There are swimming fixed points of Eq. 5 where _~x, _~y and _θ are all
zero. As is the case for passive mixing (Section 2.1), these swimming
fixed points have stable and unstable manifolds, referred to as
swimming invariant manifolds (or SwIMs). Like the manifolds for
passive mixing, SwIMs act as barriers. In the three-dimensional
(~x, ~y, θ) space, the swimming invariant manifolds form curved
sheets, as shown in Figure 3 [34]. For the hyperbolic flow, the stable
manifold of the inward-blocking fixed points (blue sheet in
Figure 3A) is independent of the y-coordinate and therefore
projects into (~x, θ) space as a 1D curve (Figure 3B). This
projection separates all left-escaping from all right-escaping
trajectories in (~x, θ) space. Similarly, the unstable manifold of the
outward-blocking fixed points (red sheet in Figure 3A) projects into
(~y, θ) space as a 1D curve (Figure 3C) that separates trajectories
coming from above and below.

Projections (called “SwIM edges”) of the edges of the SwIMs
into physical (~x, ~y) space are one-way barriers that block the
motion of swimmers in one direction but allow them to pass in the
other direction. If swimmers are released at the passive fixed point
at the center of the hyperbolic flow (Figure 1C), they can swim
outward (±x-direction) with the flow; i.e., in the unstable direction.
But they can also swim up and down (±y) against the incoming
flow (along the stable direction) until they reach swimming fixed
points (colored red in Figure 1C) where the incoming flow has a
speed V0, equal and opposite the swimmers. Thus, the red
swimming fixed points at (~x, ~y) � (0,± 1) and the red SwIM
edges at ~y � ± 1 in Figure 1C block any outgoing ± y swimmers.

FIGURE 1 | (A) Sketch of the PDMS cross-channel cell. Fluid is pumped in at the top and bottom and pumped out at the left and right. The dashed box in themiddle
of the intersection is the region where the flow is approximately hyperbolic. (B) Zoom in of flow in the dashed box in (A). The vertical (horizontal) red dashed line is the
stable (unstable) passive manifold of the passive fixed point (dot at center). (C) Diagram showing swimming fixed points qin and qout, and swimming invariant manifolds
(SwIM edges) in red and blue (from Ref. [34]). The red and blue arrows perpendicular to the SwIM edges in (C) show the swimming direction that is blocked by these
structures.

FIGURE 2 | Sketch of ellipsoidal swimmer with labelled dimensions and
special cases for swimmers with α = 1, 0 and −1.
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However, if a swimmer moves inward along the y-axis, the red
SwIM edge along its path no longer blocks the swimmer, since the
direction of the flow and the swimming are the same. The red
SwIM edges are one-way barriers, blocking outward—but not
inward—swimming tracers. Similarly, the blue swimming fixed
points at (~x, ~y) � (± 1, 0) and SwIM edges at ~x ± 1 in Figure 1C
are one-way barriers, but these block inward-swimming (and not
outward-swimming) tracers.

One-dimensional swimming invariant manifolds for α = −1
(which coincide with BIMs that block reaction fronts in the same
flow) have been shown theoretically [34] to block all swimmers,
even those that tumble or have rotational diffusion or added
rotational noise, as long as their swimming speed remains
constant. The location of the swimming fixed points and

SwIM edges are independent of α for the hyperbolic flow and
coincide with the BIMs. Consequently, the SwIM edges in the
hyperbolic flow are predicted theoretically to be barriers even for
tumbling swimmers.

3 EXPERIMENTAL METHODS

3.1 Microbes
The microbes (Figure 4) used in these studies are two types of
motile algae—euglena and tetraselmis. Euglena gracilis
(Figure 4A) are freshwater algae that measure approximately
40–50 μm in length with a width of around 8–12 μm with aspect
ratios γ ~ 3–5 and α ~ 0.8–0.9. (The euglena are not rigid and

FIGURE 3 |Manifolds in (~x, ~y, θ) space for α = 1 (from Ref. [34]). (A) Swimming invariant manifolds in three-dimensional (~x, ~y, θ) space. The blue shaded sheet is the
stable manifold of the two inward-blocking swimming fixed points qin, and the red shaded sheet is the unstable manifold of the outward-blocking points qout. (B)
Projection of the stable manifold of qin into (~x, θ) space. (C) Projection of the unstable manifold of qout into (~y, θ) space. The green and magenta curves show projections
of trajectories in the phase space.

FIGURE 4 | (A) Image of euglena, viewed at 40Xmagnification with a field of view of 320 μm. (B) Streak image showing motion of the euglena in the channel with no
imposed flow; 4X magnification (3 mm field of view). (C) Measured probability distribution function (PDF) of speeds of swimming euglena in the absence of an imposed
flow. (D) Image of tetraselmis, viewed at 40X magnification. (E) Motion of tetraselmis with no imposed flow; 4X magnification. (F) PDF of speeds of tetraselmis in the
absence of an imposed flow. (Movies corresponding to the images in (B) and (E) are available online in Supplementary Material).
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occasionally undulate in shape.) The euglena are propelled by a
trailing flagellum that push the body forward. Tetraselmis
(Figure 4D) are green marine algae that are almost circular
with a typical diameter 10–15 μm; we estimate α to be
approximately 0.3–0.4. Tetraselmis are pullers with four
flagella at the front that beat in a breast-stroke pattern to pull
the body forward.

The estimates of α for both euglena and tetraselmis are crude.
First, neither of them are perfect ellipsoids. Second, the shape
varies from one organism to the next, especially for the euglena
which are not even rigid. Furthermore, we neglect any effects of
the extended flagella on α. But the difference in α is quite
significant between the two organisms, with euglena being a
reasonable approximation of an organism with α ≈ 1 and
tetraselmis being a reasonable approximation of an organism
with α ≈ 0.

The euglena and tetraselmis used in these experiments are
standard, commercially-available samples obtained from
Carolina Biological Supply without any effort at purifying the
strain. The euglena are stored in the shipping tubes with
continuous fluorescent illumination. Even a few months after
shipment, euglena stored in this manner still swim actively. For
use in an experimental run, the euglena samples from these tubes
are diluted in soil-water medium (Carolina Biological Supply
catalog #153785) at a concentration of 15–20% euglena sample by
volume. For the tetraselmis, portions of the sample obtained from
Carolina are cultured in Alga-Gro® Seawater medium (catalog
#FAM_153754) with stirring and fluorescent illumination for
2 weeks, then transferred to 12 ml centrifuge tubes. Samples from
these tubes are then diluted 1:1 with fresh Alga-Gro Seawater
immediately before each experimental run.

3.2 PDMS Cells, Flow Generation and
Measurement
The experiments are conducted in cross-channel cells (Figure 1)
made from polydimethylsiloxane (PDMS); the channels are
4.0 mm wide and 2.0 mm deep. The flow is produced with two
syringe pumps, one with two syringes attached via tubing to
inlets/outlets at the top and bottom of the cross, and a second
syringe pump with two syringes connected to inlets/outlets at the
left and right ends of the cross. For a particular run, one syringe
pump infuses fluid from two 1-ml syringes into the cell while the
other syringe pump withdraws fluid at the same flow rate. The cell
is mounted on an inverted microscope and imaged with a 4X
objective. With this magnification, the visible region at the
intersection of the two channels in the cross has a width and
height of 3 mm.

For velocimetry measurements, 5.0 μm dyed (blue)
polystyrene microspheres are used as passive tracers. In all
experiments (both with passive and with swimming particles),
the tracers are imaged only in a region near the mid-height of the
cell to avoid slow-down in the flow due to the no-slip boundary
conditions at the top and bottom.

Images are acquired using a CCD video camera. A background
image determined by averaging frames over several seconds is
subtracted from each image, and the resulting image is

thresholded. These thresholded images are analyzed in IDL
with a package developed by John Crocker and Eric Weeks
[39] that determines centroid coordinates for clusters of pixels
(with each cluster identified as a tracer), and then links
coordinates in successive frames to determine trajectories. For
the passive tracers, these trajectories are then used to determine
local velocities. With a sufficient density, a velocity field is
constructed, as shown in Figure 5A. (The region of interest is
not centered on the flow, but that has no bearing on the analysis.)
Linear regressions of slices of this velocity (Figure 5B) are used to
determine the parameter A that denotes the strength of the
velocity field of Eq. 1a, Eq. 1b. Deviations of the experimental
velocity field from a true hyperbolic flow are shown in Figure 5C.
Not surprisingly, the linear growth in the velocity is limited to a
finite distance from the fixed point, since the fluid velocity has a
finite peak at the inlet and outlet channels. This shows up in
Figure 5C by the difference vectors which are opposite the flow
far from the fixed point.

For runs with swimming microbes, we fit x − and y −
components of the trajectories separately to sliding parabolas
and take derivatives to determine the x − and y − components of
the total velocity of the trajectory �Vtot � �Vswim + �uflow.
Subtracting the measured fluid velocity �uflow Eq. 1a, Eq. 1b
from �Vtot gives us the swimming velocity �Vswim from which we
can determine both the swimming speed and direct ion
θ = arctan (Vswim,y/Vswim,x) for each individual microbe. The
average swimming speed 〈V0〉 is determined for each trajectory.
We classify each trajectory as “tumbling” or “non-tumbling” by
comparing the swimming orientation θ(t) at different times
along the trajectory, as shown in Figure 6. The angles θ(t) are
“unwrapped” so as not to be confined to the range 0 to 2π. For
example, if a microbe is swimming with an orientation θ = 6.1
radians and then rotates another +0.4 radians, the orientation θ
= 6.5 radians with no wrap-around past zero. A microbe is
deemed to “tumble” if Δθ ≥ π between any two points in the
trajectory, e.g., red and green curves in Figure 6. This is
somewhat arbitrary—ideally, no smooth-swimming microbe
should ever rotate beyond an angle of π/2 in a hyperbolic
flow; however, periodic rocking motion of the swimming
algae microbes (visible in the plots of θ(t) in Figure 6 and
discussed in Section 4.1 below) can produce deviations in θ by as
much as a radian, so a threshold Δθ of π/2 would result in a
significant number of trajectories being labelled incorrectly as
tumblers. The trajectories labelled non-tumblers (e.g., black
curve in Figure 6) by this approach are not perfect smooth
swimmers, partially because of the rocking motion of the
swimming and also because of noise due to rotational diffusion
(which is likely minimal considering the size of the microbes used
in these studies) and other irregularities in the swimming motion.

A series of experimental runs for swimming microbes is
obtained using the following protocol. After loading the tubing
and PDMS cell with microbe-laden fluid, 1 ml syringes are loaded
with new fluid and then data is taken with the flow in the
“forward” direction (fluid pumped in along the vertical
channel and out along the sides). After 1.0 ml of fluid is
pumped (the capacity of the syringe), the flow is stopped.
Data is then taken for a minute or two of the microbes
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swimming without a flow. The flow is then reversed and data is
taken with the fluid pumped in along the horizontal and out along
the vertical. Another no-flow run is taken at the end of the
“reverse” run, after which another forward run is obtained. This
process of forward/no-flow/reverse/no-flow/forward/no-flow . . .
continues for 2–3 h for each set of data or until the microbe
swimming is diminished.

4 RESULTS

4.1 No Flow
The euglena used in these studies swim fairly smoothly with only
occasional tumbling. Even in the absence of tumbling, though,
there is still variation in the swimming direction due to rocking
back and forth in the swimming (a two-dimensional projection of

helical swimming) and noise in the swimming behavior.
Figure 4B shows a streak image of euglena swimming in the
cross-channel cell with no imposed flow. (Movies of this are
available online in Supplementary Material) Close inspection of
some of the streaks in Figure 4B shows periodic wiggling due to
the rocking motion. Virtually every euglena remains motile
throughout the course of a sequence of experiments, which
continue for 2–3 h.

The swimming behavior of the tetraselmis is more varied. Not
all of the tetraselmis in a sample are motile; during any run, some
of the tetraselmis remain sessile with the fraction of sessile
microbes increasing over the course of a sequence of
experimental runs. A streak image of tetraselmis in the
channel with no flow is shown in Figure 4E. Similar to the
euglena, some of the tetraselmis tumble noticeably and others
swim more smoothly, although there is clear rocking (wiggling of
some of the trajectories in Figure 4E) and noise in the
orientations even for the tetraselmis that are not undergoing
classic run-and-tumble motion.

Probability distributions of average swimming speeds in the
absence of a flow are shown for euglena and tetraselmis in Figures
4C,F, respectively. (For the tetraselmis data in Figure 4F, the
sessile microbes are excluded.). The mean swimming speed (with
no flow) is 90 and 120 μm/s for the euglena and tetraselmis,
respectively. (The imposed flows in these experiments have no
significant measurable effect on these mean swimming speeds.)
Unlike the bacteria in the previous study [33], the swimming
speed for an individual microbe is not necessarily constant in
time. In fact, when tetraselmis tumble, they slow down to a stop
before changing orientation.

4.2 Euglena in Hyperbolic Flow
A streak image of euglena moving in the hyperbolic flow is shown
in Figure 7A. (Amovie of the euglena swimming in the same flow
can be found in online Supplementary Material) The effects of
the swimming on the motion are clear in this figure, signified by

FIGURE 5 | (A) Experimental velocity field, determined with passive tracers; flow rate 200 μl/min, A = 3.6 s−1. The red circle shows the region of interest used for all
of the statistical analyses of microbe data. (B) Slices of the velocity field; ux along a horizontal line through the fixed point (blue), and uy along a vertical line through the fixed
point (red). These curves are fit to a line to determine A in Eq. 1a, Eq. 1b. (C) Vector field showing the deviation of the experimentally-measured velocity field from an ideal
hyperbolic velocity field Eq. 1a, Eq. 1b; i.e., Δ �v � �vexp − �videal . The arrows are scaled up by a factor of five larger than those for Figure 5A. The color map shows the
magnitude |Δ �v|/〈v〉 of the velocity deviations, normalized by the average flow speed.

FIGURE 6 | : Sample plots of swimming orientation θ for three microbes
in the hyperbolic flowwith A = 1.8 s−1 (flow rate 0.100 ml/min).Δθ is the largest
angular difference between any two points in the trajectory. The red and green
trajectories have |Δθ| > π and are labelled as “tumblers” whereas the
black trajectory with |Δθ| < π is labelled a “non-tumbler.” The rocking motion of
the swimming can be seen as oscillations in these plots.
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frequent crossing of the trajectories. As can be seen in the movie
and the plot of the orientation for a typical non-tumbling microbe
(black curve in Figure 6), there is a strong preference for the
euglena to be oriented horizontally (θ = 0 or π radians),
particularly near the unstable passive manifold of the flow’s
fixed point. This is consistent with Eq. 3c, which indicates
that _θ should cause all swimmers with α > 0 in a hyperbolic
flow to orient toward one of these two angles.

Figure 6 shows the swimming orientation θ for three different
types of trajectories observed in these experiments. Non-
tumbling (“smooth”) trajectories often look like the black
curve in Figure 6. There are two ways in which a tracer can
show tumbling behavior. In some cases, similar to the red curve in
Figure 6, the swimming is mostly smooth, with occasional and
well-defined tumbling events where the orientation θ quickly
changes. Inmany cases, though, the tumbling is more continuous,
similar to the green curve in Figure 6. For the rest of the data
analysis, we consider only the trajectories that are classified as
non-tumbling.

Figure 7B shows a small sampling of trajectories determined
by tracking the euglena; this figure shows the longest-duration,
tracked, non-tumbling trajectories that initially enter from the
bottom. It is difficult to interpret this plot vis-a-vis SwIM theory;
since different euglena microbes swim with different average
speed 〈V0〉, the location of the swimming fixed points and
manifolds differ between each of the trajectories. To compare
the trajectories with the swimming invariant manifold theory, we
need to take into account the fact that each microbe has a
different swimming speed. We use the dimensionless
coordinates ~x and ~y defined in Eq. 4, approximating the
swimming speed V0 with the average speed 〈V0〉 over a
trajectory. When plotted using these dimensionless variables
(Figure 7C), we can see that the trajectories from Figure 7B
all pass very close to the predicted inward-blocking swimming
fixed points at (~x, ~y) � (± 1, 0). This is, in fact, the reason why
these are the longest-duration trajectories. The nature of these
swimming fixed points can be seen clearly in Figure 7C, as all of

the trajectories come in vertically along the ~x � ± 1 line, then
make a sharp turn and move off either left or right horizontally
from the swimming fixed points.

The blocking behavior of the SwIMs can be seen by plotting
the trajectories in groupings sorted by the directions from which
they enter and to which they leave the hyperbolic flow region.
Figure 8A shows all of the microbes that enter from the top and
depart the hyperbolic flow to the left. Virtually none of these
trajectories appear at any point to the right of the inward-
blocking SwIM edge at ~x � 1. Similar behavior can be seen in
Figures 8B–D. Virtually none of the trajectories that leave to the
left ever have coordinate ~x> 1 (i.e., to the right of the left-blocking
SwIM edge at ~x � 1), and virtually none of the trajectories that
leave to the right ever have ~x to the left of the right-blocking
SwIM edge at ~x � −1.

In earlier studies with bacteria [33] (and with more than an
order of magnitude fewer trajectories), the barriers due to the
SwIM edges at ~x � ± 1 were never violated. For the euglena,
these barriers are not perfect; there are a small number of
crossings visible in Figure 8. The blocking behavior can be
quantified by considering the probability pleft (or pright) for a
microbe to escape to the left (right), given its initial starting
location. In calculating these probabilities, we truncate all of
the raw trajectories, excluding any motion outside a circle
drawn around the flow’s fixed point with the largest radius
that keeps all of the circle within the microscope’s field of view
(red circle in Figures 5A,C). To account for any deviations in
the left-right orientation symmetry in the sample of
trajectories, we weight the left-going probability plg for a
microbe eventually to move left (i.e., ~x(tend)< ~x(0)) by the
left-facing probabilities plf for tracers initially to be facing with
their swimming direction to the left (i.e., with θ(0) between π/
2 and 3π/2):

pleft �
plg
plf

plg
plf

+ prg
prf

.

FIGURE 7 | Euglena swimming in a hyperbolic flow with A = 1.8 s−1 (flow rate 0.100 ml/min). (A movie showing the motion of the euglena can be found online with
Supplementary Material) (A) Random sampling of a very small subset of the trajectories. (B) Sampling of eight of the longest-duration trajectories with minimal
tumbling that entered the region from the bottom. (C) Same as (B), but plotted using non-dimensional variables ~x and ~y. In all of the panels, the red dashed lines show the
location of the passive invariant manifolds going through the passive fixed point of the hyperbolic flow.
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For instance, since right-facing microbes move more slowly
near the (~x, ~y) � (−1, 0) swimming fixed point, right-facing
microbes can be oversampled in that region. Defined as above,
pleft is the probability that a swimmer will end up moving left,
assuming an equal number of left- and right-facingmicrobes at all
points in the flow.

Plots of pleft for euglena are shown in Figure 9A. Theoretically,
any microbe with ~x< − 1 should have pleft = 1 since no microbe
can cross over the right-blocking SwIM edge at ~x � −1. Similarly,
any microbe with ~x> 1 should have pleft = 0. The slight crossing of
the tails of this distribution beyond ~x � ± 1 is indicative of the
slight leakage in the SwIM edges seen in Figure 8.

The slight leakage of the SwIMs as one-way barriers can be
understood by considering the swimming speeds. Unlike the
bacteria studied previously [33], the euglena do not always
swim at a constant speed. The speed 〈V0〉 used to non-
dimensionalize the coordinates is an average of the swimming
speed during a trajectory. If the microbe is momentarily
swimming with a speed larger than 〈V0〉, it can cross over
what would be the barrier for a microbe swimming at the
lower average speed.

The functional form of pleft(~x) between ~x � −1 and 1
depends on several factors [34]. For perfectly smooth-
swimming microbes with α = 1, inspection of the relative
areas of left- and right-going regions in Figure 3B indicates
that if microbe orientations θ are left-right symmetric, roughly
half would escape to the left for most values of ~x between −0.5 and
0.5 transitioning up to 1 approaching ~x � −1 and down to 0
approaching ~x � +1. Qualitatively, this is consistent with the
shape of the curve in Figure 9A. As discussed in Ref. [34], the
presence of tumbling and rotational noise in the swimming
modifies this curve, with the transition of pleft from 1 down to
0 approaching and even passing a straight diagonal line (dashed
line in Figure 9A) with more tumbling and rotational noise. The
lack of an appreciable change in the experimental curve for a
variation in A by a factor of 4 indicates that these data are close to
the limit of low noise. This is further indicated by the good
agreement between the experimental data and the theoretical
prediction (in green, from Ref. [34]) for the case with no noise
and no tumbling. (Note, however, that the prediction assumes a
uniform initial distribution of angles, whereas the calculated pleft
is weighted only for left-right symmetry in the initial angles.)

FIGURE 8 | Trajectories of euglena in hyperbolic flow with A = 1.8 s−1. (These data exclude trajectories with classic run-and-tumble events during a trajectory.) The
blue and red lines show the inward- and outward-blocking SwIM edges, respectively. (A) All trajectories that enter from the top and leave to the left. (B) All trajectories that
enter from the bottom and leave to the left. (C) All trajectories that enter from the bottom and leave to the right. (D) All trajectories that enter from the top and leave to
the right.

FIGURE 9 | : Probability pleft for swimming microbes to move leftward, given a starting location ~x. (A) Euglena in flow with A = 1.8s−1 (blue squares) and A = 7.2s−1

(red circles). The theoretical curve (from Ref. [34]) for perfectly smooth swimmers with α = 1 is shown in green. The theoretical curve for α = 0.8 is indistinguishable from
the green curve. (B) Tetraselmis in flow with A = 1.8s−1 (blue squares) and. A = 3.6s−1 (red circles). The theoretical curve for perfectly smooth swimmers with α = 0 is
shown in light green, and the theoretical curve for α = 0.3 is in dark green. The dashed diagonal line is included to illustrate deviations of the probabilities from a linear
relation between the SwIMs at ~x � ± 1.
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Looking again at Figure 8, there is very little penetration of the
euglena past the horizontal passive manifold at ~y � 0. This is
consistent with the observation that most of the euglena are
oriented horizontally (θ = 0 or π) as they are moving in the
vicinity of the unstable passive manifold of the hyperbolic flow.
Without a significant vertical component in their swimming
orientation, there is no mechanism for them to swim past the
passive manifold. The microbes that do pass ~y � 0 are likely those
that tumbled before the beginning of the tracked trajectory.

We make a 3D histogram in (~x, ~y, θ) space from all of the
“non-tumbling” trajectories that are also confined to the circular
region around the flow’s fixed point (see Figure 5A). Projections
of this histogram for the euglena are shown in Figures 10A–C. A
few features are notable in the (~x, θ) and (~y, θ) projections. First,
there is a clear preference for horizontal orientations, shown by
the dark bands at θ = 0 and π in Figures 10B,C. Second, there is a
low-density band in the region between ~x � −1 and 1 in the (~x, θ)
projection (Figure 10B) that matches up well with the projection
of the SwIM (dashed blue) from Figure 3B. This is potentially a
manifestation of the manifold as being repelling in (~x, θ) space.
As shown in Ref. [33], this SwIM projection also very effectively
divides the left- and right-going trajectories.

There are significant density variations in the (~y, θ)
projections (Figure 10C). The euglena enter the field of view
(away from ~y near 0) with a broad angle distribution, but near
the centerline ~y � 0, the distribution is peaked heavily at θ = 0
and π, as expected from the earlier discussion about the
preference of horizontal orientations for the almost rod-
shaped euglena with α near 1. It is also intriguing that there
is a noticeable edge in the distribution that is close to—but not
identical to—the projection of the SwIM into (~y, θ) space. A

slice of the (~y, θ) projection at ~y � 0 can be normalized to obtain
a probability function for the microbe orientations, as shown in
Figure 11A. As was the case for the left- and right-going
probabilities (Figure 9A), these orientation distributions are
roughly the same for the different flow rates studied in the
experiments.

The distributions in Figure 11A cannot be compared
quantitatively with the theoretical predictions for orientation
distributions in Ref. [34]. The theoretical predictions assume a
flow that is hyperbolic over an infinite extent, which is clearly not
the case for the experiments. (In fact, there are even deviations
within the field of view of the camera, as seen in Figure 5C.) In the
experiments, the fluid and microbes are pumped through long
tubes and then through channels leading to the intersection of the
cross, and only in this intersection is the flow well approximated
as hyperbolic. Furthermore, in the theoretical predictions, the
distribution is calculated over all values of ~y, not just for ~y � 0.
Qualitatively, though, the strong peaks in the experimental
distribution at θ = 0 and π are consistent with similar features
in the theoretical predictions for swimmers with α near 1. The
theory predicts that these peaks broaden with additional noise or
for weaker flows (smaller A). The peaks for the lower flow case
(blue symbols) in Figure 11A are slightly broader than those for
the higher flow case (red symbols). But the differences are
minimal, a further indication that the euglena data are in or
near the low-noise limit.

Slices of the (~x, ~y, θ) histograms at different orientational
angles θ (Figures 10D–G) also reveal features predicted by the
theory. The hyperbolic structure of the trajectories at θ = 0
(Figure 10D) and θ = π (Figure 10F) show the inward-
blocking swimming fixed points qin and their 1D manifolds.

FIGURE 10 | : Projections of euglena histograms (0.200 ml/min flow, A = 3.6s−1) into (A) (~x, ~y) space, (B) (~x, θ) space, and (C) (~y, θ) space. The darker shades
correspond to the larger values. The blue and red dashed curves in panels (B,C) correspond to the top half of projections of the SwIMs seen in Figures 3B,C. Slices of
euglena histograms (0.200 ml/min flow, A = 3.6s−1) for data within 0.1 radian of (D) 0, (E) π/2, (F) π, and (G) 3π/2 radians. In panels (D–G), the red dashed lines are the
passive manifolds of the flow’s fixed point.
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Slices at θ = π/2 (Figure 10E) and θ = 3π/2 (Figure 10G) show
faint ghosts of the outward-blocking swimming fixed points,
although these are difficult to see because there simply are not
many tracers that reach the vicinity of these swimming fixed
points.

4.3 Tetraselmis in Hyperbolic Flow
Trajectories of tetraselmis swimming in a hyperbolic flow are
shown in Figure 12. These plots do not include the sessile
microbes (determined by a threshold in measured 〈V0〉); we
also exclude trajectories that are undergoing classic run-and-
tumble behavior (determined again by examining differences in
orientation Δθ). Once again, we plot the longest-duration
trajectories in Figure 12B,C

There is a notable qualitative difference between these plots
and those for the euglena (Figures 7B,C). Whereas the longest-
duration euglena trajectories are those that pass closest to the
inward-blocking swimming fixed points at (~x, ~y) � (± 1, 0), the
longest-duration trajectories for the tetraselmis that enter from
the bottom are those that display hyperbolic behavior around the
outward-blocking swimming fixed point at (~x, ~y) � (0, 1).
Furthermore, whereas the smoothest-swimming euglena rarely

penetrate the passive manifold at ~y � 0, it is not uncommon for
non-tumbling tetraselmis to pass ~y � 0 and approach the
outward-blocking SwIM edge at ~y � 1.

The ability of tetraselmis to penetrate the passive manifold at
~y � 0 can be seen by plotting all of the trajectories in four
quadrants (Figure 13). In contrast to the euglena (Figure 8),
the tetraselmis often swim vertically near—but rarely
beyond—the outward-blocking SwIMs at (~x, ~y) � (0,± 1).
Similar to the euglena, the inward-blocking SwIM edges
mostly define the range of the left-going and right-going
microbes. This is supported by a plot of the fraction pleft(~x)
of left-escaping tetraselmis (Figure 9B), which is 1 for ~x< − 1
and 0 for ~x> 1 with only slight leakage. This leakage is again due
to variations in swimming speed around the average 〈V0〉.

There are two main reasons for the differences between the
behavior of the euglena and tetraselmis. First, since tetraselmis are
more circular than euglena, there is less of a tendency for them to
orient horizontally in the hyperbolic flow. Unlike with the
euglena, the orientations are not readily visible in the
microscopic images. We determine the orientations of the
tetraselmis using the same technique used with the euglena,
subtracting the flow velocity from the total trajectory

FIGURE 11 | Probability distribution of swimming angles for microbes at ~y � 0. (A) Euglena, A = 1.8 s−1 (blue), A = 3.6 s−1 (red). (B) Tetraselmis, A = 1.8 s−1 (blue), A
= 3.6 s−1 (red).

FIGURE 12 | Tetraselmis swimming in a hyperbolic flow with A = 3.6 s−1 (flow 0.100 ml/min). (A) Random sampling of a very small subset of the trajectories. (B)
Sampling of twelve of the longest-duration trajectories with minimal tumbling that entered from the bottom. (C) Same as (B), but plotted using non-dimensional variables
~x and ~y. In all three panels, the red dashed lines show the location of the passive invariant manifolds going through the passive fixed point of the hyperbolic flow.
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velocities. The (~x, θ) and (~y, θ) distributions are shown in
Figures 14A–D for two different flows. For weaker flows,
(Figures 14A,B), there is a broad distribution in angles, with a
slight preference for vertical orientation, likely due to alignment
of the tracers in the inflow tubing and channels. This broader
angle distribution—especially for weaker flows—can be seen by
plotting the probability distribution for angles at ~y � 0
(Figure 11B).

With swimming velocities that have non-zero ~y-components,
there is significantly less tendency for the tetraselmis to explore
the inward-blocking fixed points and a stronger tendency for
them to cross the passive manifold at ~y � 0 and explore the
outward-blocking fixed points. This can be seen in slices of the
(~x, ~y, θ) histograms (Figures 14E–H) for which the outward-
blocking fixed points are much more clearly sampled (Figures
14F,H) than for the euglena (Figures 10E,G).

The swimming of the tetraselmis is also noisier than that of the
euglena, even in the absence of classic run-and-tumble events. This
can be seen qualitatively in the no-flow streak plots (Figure 4). The
noisier motion results in a distribution of orientations (Figure 11B)
that is much broader than that for euglena (Figure 11A).
Furthermore, the distribution is significantly more broad for
weaker flows, as seen by comparing the blue and red symbols in
Figure 11B, qualitatively consistent with the theoretical predictions
about the effects of noise on the angle distributions. Noise in the
swimming orientations is another mechanism that causes non-zero
y-components in the swimming that enable tracers to pass the passive
manifold at ~y � 0 and explore the outward-blocking SwIM edges.

Plots of escape probability pleft(~x) for tetraselmis differ
significantly from those for euglena (compare Figures 9A,B).
We plot the theoretical curves for smooth-swimmers with both
α = 0 (light green curve) and α = 0.3 (dark green) which

FIGURE 13 | : Trajectories of tetraselmis in hyperbolic flowwith A = 1.8 s−1. (These data exclude trajectories with classic run-and-tumble events during a trajectory.)
The blue and red lines show the inward- and outward-blocking SwIM edges, respectively. (A) All trajectories that enter from the top and leave to the left. (B) All trajectories
that enter from the bottom and leave to the left. (C) All trajectories that enter from the bottom and leave to the right. (D) All trajectories that enter from the top and leave to
the right.

FIGURE 14 | : Projections of (~x, ~y, θ) histograms for tetraselmis data. The blue and red dashed curves correspond to the top half of projections of the SwIMs seen in
Figures 3B,C. (A,B) A = 1.8s−1 (0.100 ml/min). (C,D) A = 3.6s−1 (0.200 ml/min). Slices of tetraselmis histograms (0.200 ml/min flow, A = 3.6s−1) for data within 0.1
radian of (E) 0, (F) π/2, (G) π, and (H) 3π/2 radians. In panels (E–H), the red dashed lines are the passive manifolds of the flow’s fixed point.
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corresponds to the experimental estimate of α for tetraselmis.
The experimental escape probability is strikingly similar to the
theoretical predication for an ideal, circular (α = 0), smooth-
swimming microbe, although it is possible that orientational
noise in the swimming of the tetraselmis is playing a role in the
shape of the plots in Figure 9B.

5 DISCUSSION

Overall, the experimental results are mostly consistent with
predictions [33, 34] of swimming invariant manifolds as one-
way barriers that impede the motion of self-propelled tracers in
a hyperbolic fluid flow. In fact, the theory is quite robust. The
swimming of both euglena and tetraselmis is not perfectly
smooth and not even necessarily constant in time.
Furthermore, the euglena are not even rigid—their shapes
can undulate. Nevertheless, the SwIM theory still effectively
predicts the one-way barriers that limit the motion of these
microbes.

An important question is how to extend and apply SwIM
theory to more realistic swimmers and more realistic flows. On
the first point, it may be possible to modify the theory to
account for swimming with a varying swimming speed, either
by using perturbation methods for small variations in
swimming speed or by explicitly adding terms to the _x and
_y equations to account for fluctuations in swimming speed. It
would also be interesting to study the range of validity of the
SwIM approach to larger organisms (e.g., fish, birds), including
those with the ability to make decisions and change their
swimming/flying behavior in response to various stimuli.
On the second point, further experiments are needed to test
the SwIM theory in different laminar flows and to explore the
potential applicability of the theory to time-periodic and time
aperiodic fluid flows. Presumably, theoretical methods similar
to Lagrangian Coherent Structure (LCS) approaches used for
passive transport can be adapted to the more general active
mixing problem.

It would also be of interest to do experiments with self-
propelled particles with negative α. Swimmers like this do not
typically exist in nature, although it should be possible to
fabricate synthetic swimmers such as Janus particles [31] that
swim in a direction perpendicular to their semi-major axis. Of
particular interest is the case where α = −1 where the system of
equations Eq. 2a, Eq. 2b, Eq. 2c are the same as those for front
propagation.

We are also interested in the importance of SwIMs on the
simultaneous mixing of both passive and active tracers in the
same flow [40], and the effects of chemotaxis on the nature of
SwIMs as barriers for active mixing, especially in cases where a
flow is mixing both the self-propelled tracers and also the
nutrients toward which they exhibit chemotaxis. The effects of
scattering of swimmers off physical boundaries [41] on the
SwIMs is another important issue. Another problem of interest
is the case where the behavior of the active tracers does alter the
flow field (e.g., bacterial turbulence [42–44]), resulting in a
self-consistent process whereby the swimmers generate a flow

which then imposes barriers due to swimming invariant
manifolds.
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