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Radiations towards the continuum not only brings non-Hermicity to photonic systems but
also provides observable channels for understanding their intrinsic physics underneath. In
this article, we review the fundamental physics and applications of topological polarization
singularities, which are defined upon the far-field radiation of photonic systems and
characterized by topological charges as the winding numbers of polarization
orientation around a given center. A brief summarizing of topological charge theory is
presented. A series of applications related to topological polarization singularities are then
discussed.
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1 INTRODUCTION

Waves are ubiquitous phenomena in the nature. Serving as one of the most fundamental
concepts in modern physics and applications, the examples range from electromagnetic waves,
acoustic waves, to matter waves. Ever since the discovery of the transverse nature of some waves,
the study of the polarization properties of those vector waves has attracted a great deal of
attention, and varieties of novel mathematical concepts have been introduced. Among them, the
most direct representation of polarization is the elliptically polarized state. For a generic plane
wave, its field vector can be traced from the evolution of amplitudes and phases along two
orthogonal directions, and correspondingly, the wave motion becomes a rotating vector that
follows an ellipse path. In addition, the complicated polarization states can be projected onto the
Poincaré sphere for better visualization, by using the Stokes’ parameters [1]. Such a geometric
representation shed lights upon deeper understanding of polarization from topological
perspectives [2].

From a topological point of view, the objects of interest are some special points or regions on the
Poincaré sphere, known as the singularities, such as lines where the polarization gets linear (“L
lines”), points with circular polarization (“C points”), and centers of polarization vortices (“V
points”) [2–6]. At these regions, one or two components that compose the polarization, namely
amplitude and phase, are ill-defined, so that the waves may exhibit some abnormal behavior, leading
to exotic and potential useful physical phenomena. In particular, a special attention has been paid to
the realization of singularities in optical domain [2, 6–9]. Examples include optical vortex beam
generation [10–12], cylindrically polarized laser beams for tighter focusing [13–16], and the bound
states in the continuum (BICs) [17–20]. It is noteworthy to highlight the BICs. Although the BICs
have been developed from different contexts in history, their nature was found to be topological.
Since first proposed in 1929 by von Neumann and Wigner [21], the BICs are understood as an
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elimination of radiation in the case that radiation is allowed. After
the first photonic realization [22], the BICs had been intensively
investigated in various systems from a picture of destructive
interference of waves [17, 18, 23, 24].

Later, the topological picture regarding BICs was
established: they are interpreted as the vortex centers in far-
field polarization orientation field where the polarization is ill-
defined and all the radiation is forbidden [25]. In other words,
BICs are a type of V-points in k-momentum space. By counting
on the winding times of polarization direction around a
specific center in momentum space, a conserved quantity
called “topological charge” was defined, which was proved
to be a topological invariant. It is found that the BICs possess
integer topological charges [25]. Besides, the circularly-
polarized states (CPs) carry half-integer topological charges,
as a type of C-points. Furthermore, the topological charges
defined on polarization are connected to the non-trivial band
topology of non-Hermitian systems: half charges have been
observed from a bulk Fermi arc encircling paired exceptional
points (EPs) [26]. These findings built a framework to
understand the polarization singularities, and utilize them
for many applications.

In this article, we review the fundamental physics and
applications of the research field of topological polarization
singularities. We start from briefly summarizing the general
principles and theory framework, and then present a
comprehensive review on a series of applications related to
polarization singularities. At last, we give our prospect and
summary.

2 PRINCIPLES AND THEORY

The concept of optical singularities provide vivid and useful
representations to understand the exotic phenomena of light,
and thus they are applied in a series of investigation for different
purposes. To keep the review focused, we concentrate on
topological polarization singularities in this article. Specifically,
we review the theoretical framework of polarization topological
charges in this section, including their definitions, origins, and the
methods for manipulating them. More information and
connections regarding related topics can be found in other
review articles, including topological photonics [27–29],
singular optics [2, 6, 7], non-Hermitian topology [30–36],
BICs [37–39], and orbital angular momentum of light (OAM)
[40–42].

2.1 Theory of Polarization Topological
Charges
Polarization topological charge was firstly proposed to depict the
topological nature of BICs. In 2014, Zhen et al. [25] pointed out
that the BICs areV-points in the far-field polarization vector field,
carrying integer topological charges in momentum space. At the
vortex center, the radiation is eliminated since the far-field
polarization cannot be defined. Figure 1A illustrates the basic
concepts of BICs. A resonance turns into a BIC if and only if cx =
cy = 0, where (cx, cy) is the projection on the x-y plane of electric
field < uk > of the radiative wave. The polarization field winds
according to the topological charge, and Q diverges at BICs. An

FIGURE 1 | Definitions and properties of different types of polarization singularities, (A) BICs [25] copyright American Physical Society; (B) a CP with charge +1/2
[43] copyright Springer Nature Ltd., and (C) a bulk Fermi arc connecting paried EPs [26] Copyright AAAS.
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explicit definition of the polarization topological charge is
given by:

q � 1
2π

∮
C
dk · ∇kϕ k( ) (1)

in which ϕ(k) is the angle of the polarization vector arg [cx(k) +
icy(k)] describing the orientation of polarization major axis, k is the
in-plane wavevector, and C is a closed simple path in momentum
space that goes around a specific point along the counterclockwise
direction. Eq. 1 describes the number of times that the polarization
vector winds around the specific point in momentum space.
Encircling the BICs, namely the vortex centers, the polarization
vector has to come back to itself after travelling through a closed
loop, upon which the topological charge q must be an integer.
Besides, according to the definition, we readily check that the CPs
carry half-integer charges as q = ±1/2 from a topological view.
Figure 1B gives a possible configuration of the polarization field near
a CP, giving rise to a topological charge q = +1/2. Both the BICs and
CPs are types of topological polarization singularities.

Note that the polarization topological charge is defined upon
the far-field polarization in momentum space, which may
connect, or say project the intrinsic band topology to the
radiation field. For example, half-integer charges was observed
around the bulk Fermi arc (Figure 1C), as a direct consequence of
paired EPs [26] revealing the non-Hermitian topology of the bulk
bands. However, the connection between band topology and
radiation topology may not be obvious. For instance, the BICs
and CPs are polarization singularities in radiation field, but they
are topologically trivial upon the energy band. Further
explorations are for sure interesting topics.

As a topological invariant, topological charges are conserved
quantities: they continuously evolve in the momentum space and
cannot suddenly disappear unless one charge drops out of the
light cone or annihilates with another charge with the opposite
sign. Besides, a pair of half charges canmerge to an integer charge,
or annihilate to nothing according to their signs. Consequently,
the topological charge evolution offers an abstract but essential
view to understand the radiation characteristics, as well as new
methods to manipulate it. Examples and consequences of charge
evolution will be presented in the following section.

Topological charge is actually a quite general concept that can
quantitatively depict the winding of any arbitrary attributes.
Although sharing the same terminology, the term “topological
charge” are not only defined on the polarization, but also on
phase, or other attributes of wave, in the real space, momentum
space or parameter space. It is worthy to pay extra attention to
distinguish the definitions. For instance, the term has been
applied to phase singularities [44–51] that are related to vortex
beam generations, and singularities on transmissions or
reflections [52–55]. Other definitions utilizing the concept of
winding are also reported in electromagnetic [19, 56–58],
phononic [59] and mechanical systems [60].

2.2 Origins of Integer Topological Charge
The BICs, which are polarization singularities carrying integer
charges, have been an attractive topic for several decades. The
history, origins and results of BICs have been comprehensively

reviewed by Hsu et al. [37] in 2016. In this section, we will
summarize the new advances and understandings developed in
recent years. Given that the investigations upon the BICs are
diverse and extensive, we organize our review from different
aspects.

From the aspect of physics origins, Friedrich and Wintgen
presented a fundamental picture of interfering resonances to
create the BICs [61]. Their original work pointed out that, the
coupling between any two or more leaky resonances could
eliminate the radiation of particular hybridized resonances, if
the coupling strengths were well chosen. Although the term “FW
BIC” is currently usually specialized to a BIC raised from
interband coupling, other types of BICs can also be
interpreted from Friedrich and Wintger’s picture, if one
appropriately defines the “resonances”. For instance, for a
photonic crystal (PhC) slab or gratings system, such
resonances are guided-mode resonances [62–67]; for
nanoparticles, dielectric spheres or tight-binding metasurfaces,
the resonances are Mie resonances or other localized states
[68–70]; for metallic systems, they are plasmonics resonances
[20, 71]. Accordingly, BICs can be explained as the hybridization
of different bases (i.e. unperturbed resonances) equivalently from
amathematical point of view. Examples include the coupled-wave
theory that uses quasi-plane waves as the bases in periodic
structures [17, 23, 24], and the multipole-expansion theory for
Mie resonances in which the shape of a single resonator matters
[72–74].

From the aspect of system symmetry, the BICs are classified
into “symmetry-protected BICs”, and “symmetry-incompatible
BICs” [17, 37]. Since the radiation elimination originates from the
high symmetry, the symmetry-protected BICs usually reside at
the symmetry center in momentum space (for instance the Γ
point). It is noteworthy that the symmetry-protected BICs have
been independently developed in different photonic fields in
history and described by different terminologies, such as band-
edge modes in distributed-feedback lasers (DFB) [75–79], and
photonic-crystal surface emitting lasers (PCSELs) [78, 80–83].
On the other hand, the symmetry-incompatible BICs also have
many alias names, such as tunable BICs [24], off-Γ BICs [23],
resonance trapping BICs [84], and topology-protected BICs [25,
85]. Since the creation of symmetry-incompatible BICs doesn’t
rely on the in-plane symmetry, they can move off the symmetry
center in momentum space, which is distinguishable from the
symmetry-protected ones.

From the aspect of platforms, the BICs are realized in both
periodic and non-periodic structures. PhC is an easy-to-fabricate,
optical-friendly platform to investigate BICs and other
polarization singularities, in which the lattice periodicity offers
naturally well-defined Bloch bases to depict the wave interactions
[20, 86, 87]. Compared with PhCs, metasurfaces [68–70], coupled
arrays of rods [19, 88, 89] and spheres [85, 90] share some
similarities in their geometries: both of them are periodic and
planar. The major difference might be—while the PhC supports
long-range interactions, the wave interactions in metasurfaces are
likely short-ranged and dominated by a few of adjacent unit cells.
Alternatively, another type of systems is single resonators [18, 91,
92]. Although in principle a perfect BIC cannot be realized in a
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three-dimensional compact volume [37, 93], the single resonators
can support quasi-BICs with considerably high-Q and extremely
small modal volume V, thus they are promising for nonlinear
optic application and sensing.

It is noteworthy that, the BICs with high-order topological
charges |q| > 1 are also reported. The vortices with q = −2 were
found in a triangular latticed PhC slab [20] owing to the high in-
plane symmetry of the lattice at the high-order Γ point although
not been explicitly mentioned. In 2020, Yoda et al. [94] reported a
symmetry-protected BIC with charge q = −2 in a C6 symmetric
lattice. It was found that two BICs each with q = −1 spawned from
the q = −2 charge when the in-plane symmetries were broken
from C6 to C2.

Another interesting fact is, although the BICs are usually
isolated points, they can appear as a line in momentum space
when involving extra dimensions. In 2019, Cerjan et al. [95]
proposed a method called the environmental design for this
purpose, in which the environment worked as new degree of
freedom. Recently, this line of BICs was observed in a slab by
altering the surrounding radiative environment with a 3D
PhC [96].

Moreover, the topological polarization singularities are found
in other systems such as disordered or quasi-crystal systems, and
parity-time-symmetric (PT-symmetric) systems. In 2019, De
Angelis et al. [97] reported the random vortices in a chaotic
cavity composed of 2D PhCs. In 2021, Che et al. [98]
experimentally observed the quasi-BICs in 2D photonic quasi-
crystals. In 2020, Song et al. [99] reported the emergence of two
types of modes with divergence of Q in a PT-symmetric system,
named as a “PT-BIC” and a “lasing threshold mode”.

2.3 Emergence of Half-Integer Topological
Charge
Another type of polarization singularities, namely CPs, can also
emerge in momentum space by tuning material or structural
parameters. According to the definition of topological charges,
the CPs carry half-integer charges that obey the conservation law
of topological charge together with the integer charges. Several
methods are reported to create these half charges.

One method is to split integer charges to paired half charges
following the conservation law, for instance q = 1 → 1/2 + 1/2,
by breaking the in-plane symmetry. As reported by Liu et al.
[100], it was observed that a symmetry-protected BIC split into
a pair of CPs with opposite helicity but carrying topological
charges of the same sign. Similar phenomenon was observed by
Chen et al. [71]. The CPs can also originate from symmetry-
incompatible BICs. For instance, Ye et al. [101] reported two
CPs with identical topological charges of q = −1/2 but different
handedness originating from a BIC with charge q = −1 at the K
point in a honeycomb-lattice PhC. As mentioned above, Yoda
et al. [94] showed that the BIC with high order charge q = −2
split to integer charges following q = −2 → (−1) + (−1) by
breaking the symmetry from C6 to C2. By further breaking the
C2 symmetry, the integer charge split to paired half charges as
q = −1→ (−1/2) + (−1/2). It is noteworthy that all the evolution
followed the conservation law.

An alternative method for creating half charges is to spawn the
CPs from trivial polarization field, namely q = 0. Recently, Zeng
et al. [102] built a two-layered 1D PhC with an offset between the
layers. Two CPs emerged from a given k point where the far-field
polarization is trivial, carrying opposite signed half charges as q =
0 → 1/2 + (−1/2). Apparently, the conservation law still held.

Besides, polarization half charges are related to another
important type of singularities in non-Hermitian system,
namely EPs. In 2018, Zhou et al. [26] reported a pair of EPs
connected by so-called bulk Fermi arc. A flip of the
polarization major axis was observed in experiment along
one closed loop around the EP pair connected by bulk
Fermi arc, showing a clear signature of polarization half
charge. It is noteworthy that the EPs belonged to the
singularities upon the non-Hermitian band, while the
polarization half charges represented the singularities upon
the radiation. It is still vague that how the band topology
connects to the radiation topology. Nevertheless, as reported
by Chen et al. [103], a conservation law of global charge was
still valid.

2.4 Consequences of Topological Charge
Evolution
The conservation law of topological charges allows the
continuous evolution of charges in momentum space, namely
moving, merging, splitting and annihilating with the summation
of all charge numbers remaining constant. Since the topological
charges are related to the far-field radiation characteristics, it was
found that interesting and useful consequences could be obtained
from the topological charge evolution.

One of the example is the merging of multiple integer
topological charges, i.e. the BICs, which strongly suppresses
the out-of-plane scattering and leads to a class of robust ultra-
high-Q resonances. Although the BICs completely forbid the
radiation and own infinite photon lifetime in theory, their
experimental realizations had suffered from a limited Q in a
level of 104 [17], due to the energy leakage from the inevitable
out-of-plane scattering originated from fabrication
imperfections. To address this problem, Jin et al. [104]
reported a method of merging BICs in a C4 symmetric PhC
slab where existed eight off-Γ BICs with q = ±1 charges around
one symmetry-protected BIC at the Γ point. By continuously
tuning the lattice periodicity a, the eight BICs kept moving until
merging at Γ, and further annihilated into one isolated BIC with
charge q = +1. (Figure 2A).

Asmentioned, the configuration of topological charges implies
the radiation capabilities of nearby resonances, and further
determines the observable Qs in samples by taking into
account the scattering losses. Near an isolated BIC with charge
q = ±1, the Q scales quadratically (1/k2) as the distance k away
from the BIC. However, the scaling law dramatically changes to 1/
k6 when nine BICs just merge, as shown in Jin’s work. As a result,
the scattering loss was significantly suppressed, and a record-high
Q of 4.9 × 105 was experimentally observed.

Recently, Kang et al. [105] took a further step and realized a
merging BIC at off-high symmetry points, namely the merging

Frontiers in Physics | www.frontiersin.org March 2022 | Volume 10 | Article 8629624

Wang et al. Review on Topological Polarization Singularities

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


behavior of integer charges were not restricted to the Brillouin
zone (BZ) center. The in-plane C4 and mirror symmetries were
broken, resulting in the merging of an FW-BIC and a tunable-BIC
at a nearly arbitrary point in momentum space.

Another example of topological charge evolution is related to
an interplay with half charges and integer charges, leading to the
realization of unidirectional guided resonances (UGRs)
(Figure 2B), reported by Yin et al. [43]. The evolution started
from an off-Γ BIC in a 1D silicon PhC slab, carrying a topological
charge of q = +1 upon both up- and downwards radiation. By
tilting the sidewall that broke the in-plane C2 symmetry and up-
down mirror symmetry simultaneously, the BIC split into a pair
of CPs carrying q = +1/2 upon both the top and bottom sides of
the slab. Further, paired CPs evolved following different
trajectories in the upward and downward radiation fields due
to the breaking of up-down mirror symmetry. At a specific angle,
the paired CPs in downward radiation merged into an integer
charge while upward CPs remained departing. Therefore, the
downward radiation was totally eliminated while the upward
radiation channel was still open, thus generating a resonance with
directional emission named UGR. The experimental results
demonstrated 99.8% of the energy radiated through the
upward channel at UGR.

Recently, Zeng et al. [102] reported a similar phenomenon
from theory in a two-layered 1D PhC with an offset between
the two layers which broke the up-down-mirror symmetry.
Two pairs of CPs with q = ±1/2: one left-handed pair and
another right-handed pair, emerged at a specific value of the
offset. By continuously varying the offset, the CPs evolved in
momentum space, and merged to integer charges at different k
points upon up- and downward radiation, which created
two UGRs.

3 APPLICATIONS

Topological charge provides not only a convenient mathematical
tool in theory, but also flexible and richmethods for manipulating
lights, thus paving the way to a variety of applications. In
particular, topological charges can be tuned to selectively
eliminate or suppress the radiation, which leads to the
realization of optical modes with ultra-long lifetime and
desired radiation patterns in intensity, phase and polarization.
Consequently, topological charges have been applied in many
scenarios, boosting the development of light trapping, lasing,
light-matter interaction enhancement, nonlinear optics, wave-
front control, polarization conversion, photonic integration and
others. In this section, we review the recent progresses of
applications related to the topological charges.

3.1 Trapping of Light and Optical High-Q
Cavities
From a scientific or technological point of view, the importance of
light-trapping is self-evident. The BICs are interpreted as vortices
in far-field polarization, thus providing novel methods for light-
trapping other than conventional optical cavities such as bound
states under light-cone [108–110].

Early efforts was paid to inhibit out-of-plane radiations in
large-area 2D systems. In 2012, Lee et al. [106] reported
observation of a unique high-Q resonance near zero
wavevector in large-area 2D PhC slab by using angular
resolved analysis. Q of 1 × 104 was found near the symmetry-
protected BIC at Γ point (Figure 3A). In 2013, Hsu et al. [17]
reported the off-Γ BICs for the first time, in which the Qs of
resonances diverge to infinity at seemly insignificant wavevectors

FIGURE 2 | Consequences of topological charge evolution. (A) A high-Q cavity robust of out-of-plane scatterings constructed by the merging of multiple integer
charges [104]. (B) The merged half-charges in downward radiation leading to a unidirectional radiation [43]. Copyright Springer Nature Ltd.
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on certain bands. The structure is shown in Figure 3B. A radiative
quality factorQr of 1 × 106 wasmeasured at a direction angle ~ 35°

of the reflection. Such BICs can stably exist in a general class of
geometries and can move to a different k point by continuously
tuning the system parameters.

Subsequently, Zhen et al. [25] proposed the topological
interpretation of the BICs in 2014 as elaborated in previous
sections. The BICs’ capability of trapping light are further
promoted. In 2019, Jin et al. [104] proposed and realized a
class of ultra-high-Q resonances by merging multiple off-Γ
BICs carrying topological charges towards the center of
Brillouin zone (BZ). As a direct consequence of topological
charge manipulation, Qs as high as 4.9 × 105 were observed in
an SOI PhC slab, as mentioned in Section 2.4. The merging-BIC
designs strongly suppressed out-of-plane-scattering losses caused
by fabrication imperfections, thus paved the way to realistic
applications of BICs.

Strictly speaking, all the above examples belong to high-Q
resonances but not high-Q cavities. According to the
continuity of electromagnetic field, it was proved that fully
3D compact BIC does not exist in theory [37, 93]. In addition,
the periodic conditions of PhC imply that the structure extends
infinitely in the lateral direction, which is not practically
feasible. The high-Q resonances in PhC slabs only localize
in the vertical direction but remain de-localized in transverse
direction across the slab.

The most straightforward method for achieving 3D light-
trapping is to simply truncate the PhC slab laterally. Such
method reduces modal volume V but also drastically degrades
the quality factor Q because it introduces leakage in both lateral
and vertical directions. A common relationship between Q and V

for truncated BICs was derived [111] and verified experimentally
[112]. In 2019, Liu et al. [69] observed a truncated BIC with Q of
18,511 and footprint of 19 × 19 μm2. In 2021, a long-lifetime
mode with Q of 7,300 was reported in InGaAsP PhC slab for low-
threshold lasing in a footprint of 22.4 × 22.4 μm2 [113]. In
addition to simply truncating the PhC, the light can be
confined transversely by applying lateral hetero-structures as
reflective perimeters. For example, a mode with Q of 2 × 104

has beenmeasured in footprint of 215 μm2 [114]. In these designs,
although the hetero-structure suppress the lateral energy leakage
effectively, the leakage toward out-of-plane direction raised by
truncation remains unresolved.

Recently, Chen et al. [107] reported a new method of light
trapping combining lateral mirrors and BIC in a cooperative way
(Figure 3C). Light was confined in the vertical direction by
manipulating the constellation of topology charges, matching
them with the finite-size radiation channel. In the transverse
direction, the light was trapped by the near-perfectly reflective
photonic bandgap of the lateral hetero-structure, with the
radiative and scattering losses of the boundary region being
greatly suppressed, at the same time, the radiation in cavity
region becomes highly directional. The coworking of the
topological-charges covered a larger area in momentum space
that protects the scattered waves from radiation. Since the
boundary region shared similar geometries with the cavity
region, they also benefit from the protection of topological
constellation for a smaller radiation loss. As a result, light-
trapping in all three dimensions was achieved. Miniaturized
BICs with Qs of 1.09 × 106 was measured experimentally with
a footprint of ~ 20 μm × 20 μm. Benefiting from the protection of
topological constellations that are composed by topological

FIGURE 3 | (A) Macroscopic photonic crystal [106] for observing symmetry-protected BICs, copyright American Physical Society. (B) The observation of
symmetry-incompatible off-Γ BICs [17], copyright Springer Nature Ltd. (C) Miniaturized BICs [107], copyright Science China Press.
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charges, the microcavity exhibited excellent robustness to
fabrication imperfections.

3.2 Lasing and Vortex Beam Generation
Since the integer topological charges carried by BICs are good
candidates for realizing high-Q resonances, their most direct
application is for lasing. Historically, the band-edge modes
were widely adopted for semiconductor lasers such as DFB
lasers [75–79] and distributed Bragg reflector (DBR) lasers
[115–117]. Although it is not explicitly mentioned, the grating
modes that operate at the band-edge of second-order Γ point are
actually the symmetry-protected BICs. Later, the periodicity of
one-dimensional gratings was extended to two-dimensional PhC
slabs, leading to the invention of photonic-crystal surface-
emitting lasers (PCSELs) [80]. The PCSELs also operate near
the band edge residing in the continuum, supporting coherent
oscillations in large areas. In the case that the periodic lattice and
unit cells of PCSELs respect C2 or higher in-plane symmetry, the
lasing band-edge modes are found to be symmetry-protected
BICs, too [118, 119].

In the past two decades, PCSELs have experienced
dramatically developments and become a promising laser
architecture as the successor of DFB lasers which had
already made tremendous successes in industry. With a
comprehensive review of PCSELs presented elsewhere [120],
here we just list several major milestones: the first lasing action
of PCSELs was observed in 1999 [80], as illustrated in
Figure 4A; room-temperature, continuous-wave operation,
current-injected lasing was achieved in 2004 [81]. Later, the

abilities of tailoring beam patterns were reported in 2006
[121]; the lasing wavelength was extended to blue-violet
region in 2008 [78]; a beam-steering functionality was
demonstrated in 2010 [118]. What’s more, much efforts
have been paid to promote the lasing power, and watt-class
lasing was achieved (shown in Figure 4B) in 2014 [82] and 10-
W-class lasing in 2019 [83]. Recently, PCSELs with a peak
power of 20W and pulse width of 35 ps were realized [122] and
on-chip beam scanning lasers were first achieved [123] as
illustrated in Figure 4C. It is noteworthy that, in the early
age of PCSELs, circular shaped holes were adopted to pattern
the PhC, so that the lasing modes were the BICs with infinite
Qs in theory. Although the high Q factor lowered the lasing
threshold, it was not good for high-efficient power extraction
which was critical for high-power lasers. Therefore, the in-
plane C2 symmetries were broken on purpose, which turned
the BICs with infinite Qs to quasi-BICs with high but finite Q
values in carefully controlled manners [82, 83].

Besides the PCSELs, the lasing action utilizing the BICs have
also been developed in a parallel lane motivated from physics
curiosity. In 2017, Kodigala et al. [84] demonstrated the optical-
pumped lasing in an array of suspended cylindrical
nanoresonators consisting of InxGa1−xAsyP1−y multiple
quantum wells, claimed as the first lasing action of the BICs.
In 2018, Ha et al. [125] reported directional lasing in resonant
semiconductor nanoantenna arrays, that is, arrays of GaAs
nanopillars. On the other hand, lasing action has been
reported in Mie-resonant BICs, too. For instance, combining
colloidal CdSe/CdZnS core-shell nanoplatelets with square-

FIGURE 4 | (A) Early PCSEL based on wafer fusion technique [80], copyright AIP publishing. (B) A W-class high-power PCSEL [82], copyright Springer Nature Ltd.
(C) The on-chip beam scanning laser [123], copyright Springer Nature Ltd. (D) All-optical switching from the vortex microlaser [124], copyright AAAS.
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latticed TiO2 nanocylinders, Wu et al. [126] reported the lasing
from in-phased out-of-plane magnetic dipoles in 2020.

It is worthy to mention that, the polarization singularities
accompanied with the BICs can be adopted to generate rich and
exotic beam patterns. Some early experiments of PCSELs showed
such possibility of creating tailored vectorial beams [121].
Recently, vortex beam generation has attracted huge attention,
particularly owing to its great potentials in escalating the optical
communication systems to higher level of multiplexing. In 2020,
Wang et al. [12] reported optical vortex generation in a PhC slab
with i-fold (i > 2) rotational symmetry related to the BICs, in
which spin-to-orbit angular momentum conversion was realized
and the vortex beam was proved to be a diffraction resistant high-
order quasi-Bessel beam. Also in 2020, Huang et al. [124]
reported that the BICs enabled ultra-fast control of vortex
micro-lasers based on a perovskite metasurface, as shown in
Figure 4D. Through modifying the two-beam-pumping
configuration, ultra-fast switching between a vortex beam and
regular linearly polarized beam was demonstrated with a
transition time of only 1.5 ps.

3.3 Light-Matter Interaction Enhancement
and Nonlinear Optics
As elaborated in Section 3.1, ultra-high Qs and small modal
volume Vs can be achieved by arranging the topological charges,

leading to dramatic enhancement of Purcell effect that favors the
light-matter interactions and nonlinear optics. In 2019, Xu et al.
[127] experimentally demonstrated third-harmonic generation
(THG) in silicon metasurfaces and observed a conversion
efficiency of 5 × 106 at 100mW. Later, Liu et al. [69]
promoted the Q to a record-high value of 18,511 in the
metasurface, and reported that the THG conversion efficiency
was five orders of magnitude higher than the former silicon
metasurfaces. Even the second-harmonic generation (SHG) was
also observed in silicon in their work. Moreover, Kang et al. [128]
observed the high-order vortices, namely, high-order topological
charges upon the harmonic waves generated from optical
nonlinearity.

To enhance the efficiency of the nonlinear processes, several
considerations were taken into account. Firstly, the excitation and
emission of the resonances under critical-coupling condition
would maximize the field strength in the cavity. As reported,
by slightly breaking the in-plane symmetry that shifted the
resonance away from the complete dark BIC, the energy
exchange between the external excitation and the resonance
became more efficient, thus promoting the conversion
efficiency [127, 130]. Besides, the process benefited a lot from
a doubly-resonant design, namely both the excitation and its
harmonics were resonances supported by the same cavity. For
example, Wang et al. [114] realized a GaN photonic cavity from
this concept, in which the fundamental frequency matched with a

FIGURE 5 | Light-matter interaction enhancement and nonlinear optics. (A) SHG in an isolated antenna, the SH intensity vs nano-resonator diameter was
measured at different pump polarizations [18], copyright AAAS. (B) Routing of valley photons with different chiralities by coupling to CPs, measured valley polarization in
momentum space at 615 nm (left) and 628 nm (right) [129], copyright Springer Nature Ltd.
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defect mode and its second-harmonics operated upon a quasi-
BIC. As a result, the intrinsic conversion efficiency was 10 times
larger than singly resonant cavities with similar materials.

Besides the periodic structures including PhCs and
metasurfaces, single Mie resonators provide another promising
platform for nonlinear optics. Although the Qs of single
resonators are lower than that of periodic structures, single
resonators have particular advantages in small modal volume
V to promote the strength of light-matter interaction. In 2018,
Carletti et al. [91] predicted that the conversion efficiency of SHG
in an isolated AlGaAs nano-antenna could be two orders of
magnitude stronger than that in conventional designs. In 2020,
Koshelev et al. [18] experimentally implemented such design, as
illustrated in Figure 5A. They found a quasi-BIC in a particle with
a diameter of 930 nm and height of 635 nm. Owing to the mutual
interference of several Mie modes, Q of 188 was realized.
Combining with doubly-resonant strategy, two orders of
magnitude higher conversion efficiency was achieved as expected.

In addition to those dielectric nonlinear materials, thin-film
materials such as 2D transitional metal dichalcogenides
(TMDCs) were specifically cooperated with the BICs to
investigate the light-matter interaction. In 2018, Koshelev et al.
[131] achieved a strongly-coupled exciton-photon system in
which PhC was covered by a WSe2 monolayer. Two years
later, Kravtsov et al. [132] demonstrated a BIC-based
polaritonic excitation with MoSe2 upon PhCs, in which strong
exciton-fraction-dependent optical nonlinearities were exhibited.
Besides, as reported by Yu et al. [133], the decoupling from the
continuum could confine light in a low-dielectric waveguide upon
high-dielectric substrate, which contributed to new graphene
device designs.

Besides the V-points (BICs), the C points (CPs) can also be
involved in the light-matter interactions since they provide extra
selectivity in chirality. In 2020, Wang et al. [129] generated paired
CPs with different chirality. Owing to the valley-dependent
selection rules in WSe2, the photons radiated from
inequivalent valleys could couple to the two CPs, as illustrated
in Figure 5B. Accordingly, a maximum degree of valley
polarization over 80% was observed.

3.4 Intensity and Phase Modulation
Amplitudes and phases are fundamental attributes depicting the
characteristics of light. By cooperating with the resonances
associated with topological charges, these attributes can be
manipulated thus leading to a series of applications.

As a directly-observable attribute, the intensity of light can be
controlled for a variety of purposes. Specifically, in 2019, Yu et al.
[133] realized a BIC-waveguide-integrated modulator in which
the electro-absorption effect of graphene was adopted and a
bandwidth of 5 GHz was achieved. In 2020, Tian et al. [134]
theoretically proposed that a near-unity absorption could happen
on an all-dielectric metasurface with quasi-BICs, when the
material absorption rate matched with the radiative decay rate
(Figure 6A). Dai et al. [53] proposed a mechanism for perfect
reflection called coherent perfect reflection (CPR), which was
raised from interband coupling between two propagating modes
so the forward transmission of light could be eliminated under
appropriate complex coupling coefficients. Besides, Wong et al.
[55] conceived an idea for perfect isolation of light from
topological theory, upon a nonreciprocal metasurface
composed of dimer unit cells interacting with a static
magnetic field.

FIGURE 6 | Light manipulation in intensity and phase. (A) High-Q silicon metasurface and its absorption spectra [134], copyright American Chemical Society. (B)
Intensity flatten phase shifting based on the unidirectional radiation resonance [135], copyright De Gruyter.
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Besides, phase is also a key attribute of light that plays
important roles in many scenarios. The modulation of phase
is as straightforward as intensity, since both of them are related to
the tuning of the resonances themselves. As an example, a
thermo-optic phase-shifter utilizing the high-Q quasi-BICs was
reported [136]. However, phase-only modulation, namely the
phase modulation without the change of intensity, is even more
important for applications ranging from three-dimensional video
projection, flat metalens optics, to optical phased arrays and light
detection and ranging.

Although perfect phase-only modulation is difficult, much
effort was devoted for intensity-flatten phase modulation, with
the key concept of making the resonance operating under over-
coupled status. For instance, Kwon et al. [137] experimentally
demonstrated nano-electromechanical tuning of gratings
associated with quasi-BICs in the telecom wavelength. They
realized a spectral shift over 5 nm, with absolute intensity
modulation over 40%, modulation speed exceeding 10 kHz,
and a phase shift of 144° with a bias of 4 V. Salary et al. [138]
proposed an electro-optically tunable all-dielectric metasurface
composed of elliptical silicon nanodisks for the same purpose. By
applying bias voltage, the electro-optical driven Huygens mode
produced a dynamic phase span of 240° while maintaining an
average transmission amplitude of 0.77, giving rise to a
unevenness of about 25%.

Recently, it was reported by Zhang et al. [135] that perfect
phase-only modulation was possible in theory with the assistance
of the UGRs (Figure 6B). As mentioned, UGRs are connected to
single-sided topological polarization singularities. A UGR

mandates the light transmitting to only one out-going port
without other choices, which creates perfect phase-shifting
upon the transmission if nonradiative loss is negligible. The
unevenness of transmission intensity could be lower than 10%
with nonradiative Q > 8,000 which was feasible in state-of-art
fabrication process.

3.5 Polarization Conversion
Polarization is a critical and fundamental attribute of
electromagnetic waves and the polarization control has been
widely used in optical communications [139], nonlinear optics
[140], imaging [141], etc. Besides cascading polarizers and
waveplates to regulate the polarization, periodic structures
including the metasurfaces and PhC slabs are promising
platforms to achieve the polarization conversion [52, 139,
142–146], by manipulating the polarization singularities in
radiation.

To be specific, Khan et al. [142] reported a single-layer,
mirror-symmetric anisotropic metasurface constructed of fish-
like unit cells to demonstrate both the linear cross-polarization
conversion and linear-to-circular polarization conversion in X-
band, as illustrated by Figure 7A. Besides, broadband linear-to-
circular polarization conversion in the terahertz region with
almost unity conversion efficiency was demonstrated by Chang
et al. [144] based on the birefringent metasurface. In 2021, Wang
et al. [145] proposed a monolayer all-dielectric metasurface
composed of dimerized nanopillars shown in Figure 7B,
which generated arbitrary polarization on the Poincaré sphere
from the unpolarized input light. This effect was equivalent to an

FIGURE 7 | (A) fish-like metasurface converting linear polarization to orthogonal-linear and circular polarization [142], copyright Springer Nature Ltd. (B) Dimerized
nanopillars generating linear, elliptical and circular polarization regardless of input polarization [145], copyright Springer Nature Ltd. (C)Maps of reflection coefficient and
vector field of reflection in momentum space in the polarization conversion [52], copyright American Physical Society. (D) PhC slab manipulating incident polarization to
arbitrary polarization in reflection [146], copyright Wiley-VCH GmbH, Weinheim.
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“all-in-one” full Poincaré sphere polarizer. In addition, Yu et al.
[143] reported a dynamic control of polarization conversion
depending on the metasurfaces with electrically tunable
refractive indices for the metasurface antennas.

Recently, 2D PhC slab structures were employed to
manipulate the polarization without tuning the structural
parameters [52, 146]. In particular, Guo et al. [52] achieved
complete polarization conversion between linear polarizations,
indicating the full energy exchange between p- and s-polarized
incident lights; in addition, they proved such polarization
conversion was topologically protected owing to the winding
vector of the complex reflection coefficient. Complete
polarization conversion happened at the vortex center, where a
nonzero winding number (+1 or −1) in momentum space gave
rise to a zero reflection coefficient, which is shown in Figure 7C.
More interestingly, they revealed the relationship between the
complete polarization conversion and the integer topological
charges, namely the BICs. Given that the BICs correspond to
the vanishing points of out-going coupling coefficients, they
always appeared on the curves that supported complete
polarization conversion in momentum space, thus bridging the
phenomena with topological singularities.

Furthermore, arbitrary polarization conversion was proposed
in a lossless 2D PhC slab [146]. Namely, by tuning the incident
light with any given polarization towards a given direction that
fell into a wide range of frequency, the polarization of the
reflected light could cover the whole Poincaré sphere.
Figure 7D shows the result of the reflected polarization under
s-polarized incidence for frequency 0.402 × 2πc/a and 0.405 ×
2πc/a, in which a is the lattice constant. Complete polarization
conversion occurred at W point where all the s-polarized
incidence converted to p-polarized, related with the topological

property of the scattering matrix [52]. Moreover, with losses, the
2D PhC slab system could still generate arbitrary output
polarization if the input was p- or s-polarized.

3.6 Spectral and Chiral Sensing
Given that topological polarization singularities possess exotic
characteristics upon the radiation fields, it is reasonable to utilize
them for sensing the surrounding environment. In particular, the
high-Q nature of integer charges (BICs), and the chiral responses
of half charges (CPs) are two promising features. In a perturbated
environment, the ideal BICs transform to quasi-BICs with shifted
resonance wavelengths while remaining considerably high Qs,
thus providing the capability of sensing small refractive-index
changes from spectral observation. High sensitivity refractive
index (RI) sensing in chemical and biological processes has
been realized in many high-Q resonators [147–157]. The RI
sensors based on BICs realized by dielectric metasurfaces and
PhC slabs have also shown promising performances in figure-of-
merit (FOM) and detection-limit (DL) [158, 159]. On the other
hand, since chiral responses observed from the reflected or
transmitted light can be used to distinguish the chirality of
targets, chiral sensing were realized accordingly [160]. In
addition, although not directly utilizing the polarization
singularities, it is noteworthy to mention a class of novel
methods that use the EPs to improve sensing performance
[161–170], given by the underlying connections to the
polarization singularities.

For instance, in 2017, Liu et al. [158] experimentally
demonstrated RI sensing in a wavelength range of 1,400, −,
1,600 nm by applying the BICs in PhCs, which showed great
potential for label-free optical biosensors. To further promote the
sensing performance, it was important to suppress the out-of-

FIGURE 8 | Refractive index and chiral sensing applications. (A) Topological charge evolution of merging BICs and the Qs with refractive index variation [159],
copyright IEEE. (B) Comparison of CD reflection spectrum of the BICs metasurface enhanced chiral layer and the bare chiral layer [160], copyright American Chemical
Society.
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plane scattering loss caused by fabrication imperfections to
improve the Qs. Following this strategic, Lv et al. [159]
adopted the merging BIC design to RI sensing, which
significantly promoted the DL performances in practice owing
to the higher Qs (Figure 8A). However, the sensitivity of RI
sensors are also related to the field overlap between the optical
resonances and the targets embedded in surrounding
environment. Methods such as breaking the in-plane
symmetry or using low-contrast materials have been developed
on PhC slabs [171] and metasurfaces [172] platforms for high-
sensitivity hyper-spectral bio-molecular detection.

On the other hand, chiral sensing is desired in medical and
biological applications. Since many biochemical compounds are
chiral in nature, circular dichroism (CD) spectroscopy is utilized
for the enantiomer-specific analysis of chiral samples. It is
noteworthy that certain resonant nanostructures can significantly
enhance the circular dichroism responses and improve the sensitivity
of spectroscopy as well as photochemical, and thus ehannce the
sensitivity of chiral sensing [173]. In 2019, Koshelev et al. [174]
investigated the effect of detuning between the electrical and
magnetic dipole resonances in silicon nano-cylinders in which
the optical chirality at the nanoscale could be greatly enhanced.
Later in 2020, Chen et al. [160] demonstrated the acquisition of CD
spectrum and molar concentration over an individual metasurface
with a high sensitivity (Figure 8B). Owing to the high-Q resonances,
a hyperchiral field enhancement of the CD signal by a factor of 59
was observed, together with a large FOM of 80.6 in the detection of
molar concentration, and thus it became a promising mythology in
food industry, medical diagnostics, and drug development.

The EPs belong to a type of topologically non-trivial diabolic
points. In 2017, for the first time, Chen et al. [170] proposed the
scheme of using the micro-cavities operated at non-Hermitian
spectral degeneracies for sensing. Owing to the complex-square-
root dependency near an EP, the frequency splitting scaled as the
square root of the perturbation strength, and hence, led to larger
responses from small perturbation than that from traditional

dispersion relations. This method paved the way for the sensors
with unprecedented sensitivity. It is noteworthy that asmentioned in
Section 2.1, the EPs are accompanied with polarization singularities,
namely half-charges. Although not reported yet, we are optimistic to
see the polarization singularity raised from EPs being utilized for
sensing in the future.

3.7 Photonic Integration
Topological polarization singularities provide a vivid picture for light
manipulation, which is useful in eliminating radiations, suppressing
scatterings, and creating directional emitting, and thus shed light on
the possibilities of photonic integration. Specifically, the superior
photon confinement ability of the BICs leads to the ultra-high Q,
ultra-narrow linewidth and low propagation loss, and themerging of
half charges upon a single-side may boost the applications requiring
unidirectional emission. Hereby we introduce some devices as
examples, including waveguides [175–178], filters [179], couplers
[43] and lasers [180].

By using BICs to confine light vertically, Zhang et al. [176] and
Lin et al. [177] demonstrated waveguiding in PhC slabs. These
works demonstrated the possibility to manipulate the radiation
lifetime and spatial dispersion of BIC in a cooperative way. The
BIC-based in-plane waveguiding was also utilized in the
topological edge state in Zhang et al.'s work [175].

Recently, a new photonic platform with a low-refractive index
material (Polymer) patterned on a high-refractive-index substrate
(LiNbO3) was demonstrated for integrated BIC-based devices
including waveguides, microcavities, directional couplers, and
modulators [178, 181]. This platform overcame the challenge of
fabricating nano-scale structures upon high-refractive-index
dielectric materials. The schematic of the platform in [178] is
shown in Figure 9A. Specifically, the waveguide width was
optimized and a BIC was observed by tuning the coupling
strength between the TM bound mode and TE continuous
mode. Benefiting from the BIC, the propagation loss of a
straight waveguide was reduced to almost zero. For bent

FIGURE 9 |BIC-based photonic integrated components, including (A) photonic circuit where low-refractive indexmaterial was patterned on a high-refractive-index
substrate. Adapted with permission from [178] copyright The Optical Society, (B) filter [179], copyright American Physical Society. (C) Grating coupler [43], copyright
Springer Nature Ltd. and (D) laser [180], copyright Springer Nature Ltd.
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waveguides, the bending loss was suppressed in a similar way by
changing the bend radius and waveguide width. Besides, the BICs
also provided an ultra-high Q, showing an intrinsic Q over 106 in
microdisk cavities.

Gong et al. [179] implemented a BIC filter based on silicon
photonic integrated circuits (PICs). The BIC filter was composed
of two cascaded ring resonators side-coupled to two bus
waveguides, as illuatrated in Figure 9B, with the two
resonance frequencies ω1and ω2 both tunable. By tuning the
phase delay between the two rings to a multiple of π, the working
state approached a near-FP-BIC [37] point, resulting in a filter
performance with a near-unity transmission at ω0 � ω1+ω2

2 and a
near-zero transmission at ω1 and ω2.

On the other hand, unidirectional guided resonances (UGRs)
proposed by Yin et al. [43] paves the way to energy-efficient
grating couplers. The UGRs only radiate toward one side of the
PhC slab with the radiation at the other side eliminated
(Figure 9C). The asymmetry ratio of the directional radiation
reached 27.7 dB which indicated 99.8% of the power radiated
toward the target direction. Moreover, the effect was maintained
within a reasonably broad bandwidth (over 90% within a 26 nm
bandwidth), and was proved to be effective for a coupling angle
ranging from 5 to 11°.

The ultra-narrow linewidth of the BICs also facilitates the on-
chip integrated lasers. Yu et al. experimentally an demonstrated a
Fano BIC laser with a 5.8MHz linewidth based on InP PhC slab
buried within Si wafer [180](Figure 9D). Fano interference
occurred between the discrete mode of a nanocavity and the
continuum modes of a waveguide. The propagating modes in the
waveguide destructively interfered with the nanocavity mode at
the BIC wavelength, thereby turning the ordinary leakymode into
a BIC. Assuming an ideal BIC, a Fano mirror with total reflection
would be formed in the waveguide region. Therefore, the light
would be confined in the nanocavity and the region within the
Fano mirror. The Q of the Fano BIC was significantly increased
because photons were generated in the active region but stored in
the passive region. Furthermore, the long lifetimes of the photons
in the passive area can offset part of the quantum fluctuations
caused by spontaneous radiation in the active area. The Fano BIC
laser showed good mode selectivity and its lasing linewidth met
the requirement of coherent optical communication.

4 DISCUSSION

In previous sections, we have reviewed the fundamentals and
applications of polarization singularities that are defined upon the

far-field radiations. As elaborated, the polarization singularities
are topological in nature, with their existence and continuous
evolution robust in the momentum space. From the view of
science, polarization singularities reflect the “inside information”
of a system which becomes observable since the escaping photons
carry it out. On the other hand, polarization singularities establish
abstract and primitive concepts for depicting, and further
manipulating lights, and then pave the way to many
applications as discussed.

For an outlook, several points might be noteworthy. From
theoretical point of view, it is essential to build up a
comprehensive connection between radiation topology, where
polarization singularities are defined, and non-Hermitian
topology, where generic topological band theory is developed
upon. Given that radiation raises non-Hermiticity, it is expected
that non-trivial intrinsic band topology might lead to observable
manifestation in radiation field, that bridges to polarization
singularities. Given that many exotic phenomena were
discovered in non-Hermitian systems, it is necessary to study
how the radiation raises and represents unique topology
landscapes for deeper understanding of the physics. For
instance, both the BICs and EPs carry topological charges in
their far-field radiation, but only the latter are associated with
nontrivial Chern numbers. Besides, from the view of technology,
there’s still much to explore about extending the idea of
polarization singularity manipulation to more materials,
devices, scenarios and applications. We are optimistic to
foresee that the utilization of polarization singularities will be
boosted by the methodology of topological photonics, thus bring
essential promotion to many key applications, including optical
communication, LIDAR, AR/VR, and bio-sensing.
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