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When an n-partite physical system is measured by n observers, the joint probabilities of
outcomes conditioned on the observables chosen by the n parties form a nonnegative
tensor, called an n-partite correlation tensor (CT). In this paper, we aim to establish some
characterizations of nonsignaling and Bell locality of an n-partite CT, respectively. By
placing CTs within the linear space of correlation-type tensors (CTTs), we prove that every
n-partite nonsignaling CTT can be decomposed as a linear combination of all local
deterministic CTs using single-value decomposition of matrices and mathematical
induction. As a consequence, we prove that an n-partite CT is nonsignaling (resp. Bell
local) if and only if it can be written as a quasi-convex (resp. convex) combination of the
outer products of deterministic CTs, implying that an n-partite CT is nonsignaling if and only
if it has a local hidden variable model governed by a quasi-probability distribution. As an
application of these results, we prove that a CT is nonsignaling if and only if it can be written
as a quasi-convex of two Bell local ones, revealing a close relationship between
nonsignaling CTs and Bell local ones.
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1 INTRODUCTION

Quantum nonlocality was first discovered by Einstein, Podolsky, and Rosen (EPR) in 1935 [1],
including quantum entanglement, quantum steering, and Bell nonlocality. They formulated an
apparent paradox of quantum theory (EPR paradox) and gave a “thought” experiment that argues
the wave function description in quantum mechanics is incomplete.

Bell nonlocality originated from the Bell’s 1964 paper [2]. He found that when some entangled
state is suitably measured, the probabilities for the outcomes violate an inequality, named the Bell
inequality. This property of quantum states is the so-called Bell nonlocality and was reviewed by
Brunner et al. [3] for the “behaviors” P(ab|xy) (correlations), a terminology introduced by Tsirelson
(1993) [4], but not for quantum states.

The result obtained by Bell [2] was named Bell’s theorem, which states that quantum predictions
are incompatible with a local hidden variable description and are a cornerstone of quantum theory
and at the center of many quantum information processing protocols. Over the years, different
perspectives on non-locality have been put forward, including different ways to detect non-locality
and quantify it.

Usually, Bell nonlocality for quantum states is detected by violation of some of Bell’s
inequalities, such as Clause-Horne-Shimony-Holt (CHSH) inequality for two qubits. A proof
of nonlocality without inequalities for two particles had been given earlier by Heywood and
Redhead [5], which was much simplified by Brown and Svetlichny [6]. Greenberger, Horne,
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and Zeilinger (GHZ) [7] gave a proof of nonlocality but
without using inequalities, in which a minimum of three
particles was required in their proof. Mermin [8] provided a
simple unified form for the major no-hidden-variables theorems
by two examples. Hardy in [9, 10] proposed the two-particle
2-dimensional 2-setting Hardy paradox and gave the maximum
probability of Bell’s nonlocality. Hardy et al. [11] discovered the two-
particle 2-dimensional k-setting Hardy paradox. Aravind [12]
established a Bell’s theorem without inequalities and only two
distant observers. Dong et al. obtained in [13] some methods for
detecting Bell nonlocality based on the Hardy Paradox. Chen et al.
[14] proved that Bell nonlocal states can be constructed from some
steerable states. They also established in [15] a mapping criteria
between nonlocality and steerability. Jiang et al. [16] proposed a
generalized Hardy’s paradox, and Yang et al. [17] presented a
stronger Hardy-type paradox based on the Bell inequality and its
experimental test. Cao and Guo [18] introduced mathematically the
Bell locality and the unsteerability of a bipartite state for a given
measurement setting and established their characterizations.

Viewed as joint outcome probabilities (correlations) for a specific
experimental configuration as a vector of a Euclidean space Rt,
Pironio [19] proved that a Bell inequality defining a facet of the
polytope B of Bell local correlations can be lifted to one that also
defines a facet of the more complex polytope, and established a
formula for finding the affine dimension dim(B) of B.

By placing quantum possibilities within a wider context,
Barrett et al. [20] investigated the polytope L of no-signaling
correlations, which contains the quantum correlations as a
proper subset, determined the vertices of L in the some
special cases, and discussed how interconversions between
different sorts of correlations may be achieved. They also
considered some multipartite examples. Barrett et al. [21]
introduced a version of the chained Bell inequality for
an arbitrary number of measurement outcomes and use it
to give a simple proof that the maximally entangled state of
two d-dimensional quantum systems has no local component.
Masanes et al. [22] considered nonlocality of n-partite
correlations and identified a series of properties common
to all theories that do not allow for superluminal signaling
and predict the violation of Bell inequalities. They observed
that intrinsic randomness, uncertainty due to the
incompatibility of two observables, monogamy of
correlations, impossibility of perfect cloning, privacy of
correlations, and bounds in the shareability of some states
are solely a consequence of the no-signaling principle and
nonlocality. Loubenets [25] proved that the probabilistic
description of an arbitrary multipartite correlation
scenario admits a local quasi hidden variable (LqHV)
simulation if and only if all joint probability distributions
of this scenario satisfy the general nonsignaling condition
formulated in [23, 24] using the notions of an LqHV model
and a deterministic LqHV given by integrals rather than
sums. Loubenets [26] also proved that the probabilistic
description of any quantum multipartite correlation
scenario with an arbitrary number of settings and
outcomes at each site does admit an LqHV model. In an
LqHV model given in [23, 24, 26], locality inherent to an

LHV model is preserved but the basic concept of
Kolmogorov’s probability model [27], a probability space, is
replaced by a measure space with a normalized bounded real-
valued measure not necessarily positive. M�endez, J. Urías [28]
formulated the set of half-spaces describing the polytope of no-
signaling probability states that are admitted by the most general
class of Bell scenarios, presented a computational tool to solve
the no-signaling description for the elements, which are the
pure no-signaling boxes and the facets of Bell polytopes.
Chaves and Budroni [29] introduced the concept of
entropic nonsignaling correlations, and characterized and
showed the relevance of these entropic correlations in a
variety of different scenarios, ranging from typical Bell
experiments to more refined descriptions such as bilocality
and information causality. They applied the framework to
derive the first entropic inequality testing genuine tripartite
nonlocality in quantum systems of arbitrary dimension and
also proved the first known monogamy relation for entropic
Bell inequalities. Cope and Colbeck [30] found a series of Bell
inequalities from no-signaling distributions by exploiting
knowledge of the set of extremal no-signaling distributions.
Eli et al. [31] characterized Bell nonlocality of bipartite
correlations using tensor networks [32] and sparse recovery
and proved that nonsignaling bipartite correlations can be
described by local hidden variable models (LHVMs) governed
by a quasi-probability distribution.

In the present paper, we continue to discuss nonsignaling and
Bell nonlocality of n-partite correlations in order to generalize the
Eli’s result to a multipartite case. Such correlations define the
entries of a nonnegative tensor P of order 2n, which we call an n-
partite correlation tensor (CT). In Section 2, we review some
concepts and notations about tensors used later. In Section 3, n-
partite nonsignaling correlation tensors are recalled and some
observations are obtained. Also, correlation-type tensors are
introduced as an extension of correlation tensors. In Section 4,
a tensor-network decomposition of an n-partite nonsignaling CT is
deduced using the singular-value-decomposition theorem of
matrices and a decomposition lemma of row-stochastic matrices
(RSMs) into a convex combination of {0, 1}-RSMs. In Section 5, we
discuss Bell locality of an n-partite CT P and establish a
relationship between Bell local CTs and nonsignaling ones.

2 TENSORS AND THEIR OPERATIONS

In what follows, we use the notation [m] = {1, 2, . . ., m} for every
positive integer m.

Let eA � {|ei〉}mi�1 and fB � {|fj〉}nj�1 be orthonormal bases for
HA and HB, respectively. Then eA ⊗ fB ≔ {|ei〉⊗|fj〉}(i,j)∈[m]×[n]
forms an orthonormal basis forHAB. Thus, every state ρ

AB of the
system AB can be represented as

ρAB � ∑
i,j,k,ℓ

ρijkℓ|ei〉|fj〉〈ek|〈fℓ|. (2.1)

This implies that every state ρAB is determined by a set of complex
coefficients ρijkℓ labeled by four indices i, j, k and ℓ, which defines
a complex tensor Tρ = [[ρijkℓ]] of order 4.
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Generally, a complex tensor is a multi-dimensional array of
complex numbers and the order (rank) of a tensor is the
number of indices [34]. Equivalently, we refer to a complex
(or real) tensor of order k as a function T from an index set DT

= [d1] × [d2] ×/ × [dk] intoC (orR), denoted by T � [[Ti1i2...ik]],
where Ti1i2...ik � T(i1, i2, . . . , ik), the value of the function T at
(i1, i2, . . ., ik), called the (i1, i2, . . ., ik)-entry of T. We also call
such a T a (d1, d2, . . ., dk)-dimensional tensor of order k, or a
rank-k tensor over DT. Thus, a rank-0 tensor is a scalar x, a d-
dimensional tensor of order 1 is a d-dimensional vector (v1, v2,
. . ., vd), and an (m, n)-dimensional tensor of order 2 is just an
m × n matrix [Aij].

Two tensors A and B are said to be equal, denoted by A = B,
if they are equal as functions, having the same domain of
definition D and taking the same values at each index (i1, i2,
. . ., ik) in D. A and B are said to contractive if they share at
least one index. The contraction of A and B is the tensor A◇B
whose entries are the sum over all the possible values of the
repeated indices of A and B. For instance, when A = [[Aij]] and
B = [[Bik]] are tensors over [m] × [n] and [m] × [p],
respectively, they are contractive with the contraction C =
[[Cjk]] where

Cjk � ∑m
i�1

AijBik.

That is,A◇B = C, which is just the matrix product of matricesAT

and B. In this case, B and A are also contractive with the
contraction D = [[Dkj]] where

Dkj � ∑m
i�1

BikAij,

which is just the matrix product of matrices BT and A. Generally,
A◇B ≠ B◇A.

Furthermore, the outer product (also called the tensor product)
A ⊗B of two tensors A and B is the tensor whose entries are the
products of entries of A and B. Say, when A = [[Aijk]] and B =
[[Bxyzuv]] are tensors over DA and DB, respectively, the outer
product of A and B is the tensor

A ⊗ B � [[AijkBxyzuv]] � [[AijkBxyzuv]]ijkxyzuv,
which is a rank-8 tensor over DA × DB. And that of A and B reads

B ⊗ A � [[BxyzuvAijk]] � [[BxyzuvAijk]]xyzuvijk,
which is a rank-8 tensor over DB × DA. Generally, A ⊗B ≠ B ⊗A.

3 CORRELATION AND
CORRELATION-TYPE TENSORS

3.1 Correlation Tensors
Let us consider n parties A1, A2, . . ., An, each Ai possessing a
physical system Si, which can be measured with different
observables. Denote by xk the observable chosen (the label of

observables or measurements) by party k, and by ak the
corresponding measurement outcome. Let xk and ak take mk

and ok values, respectively, and denote by

P a1a2 · · · an|x1x2 · · · xn( )
The joint probability for the outcomes a1, a2,/, an, conditioned
on the observables x1, x2, /, xn chosen by the n parties. Then it
holds that

∑
a1 ,a2 ,/,an

P a1a2 · · · an|x1x2 · · · xn( )

� 1, ∀xk ∈ mk[ ] k � 1, 2,/, n( ).
This gives a function P: Πn

i�1[oi] × Πn
j�1[mi] → [0, 1], called a

correlation function of the n-partite physical system S1S2/ Sn.
A tensor of order 2n

P � [[Px1a1x2a2/xnan]] (3.1)
over

Δ2n � m1[ ] × o1[ ] × m2[ ] × o2[ ] ×/× mn[ ] × on[ ] (3.2)
is said to be an n-partite correlation tensor (CT) over Δ2n if its
entries are of the forms

Px1a1x2a2/xnan � P a1a2 · · · an|x1x2 · · · xn( ) (3.3)
for some correlation function P of an n-partite physical system
S1S2/Sn. Especially, when P(a1a2/an|x1x2/xn) ∈ {0, 1} for all xk
and ak, equivalently, there exists a function
J: Πn

k�1[mk] → Πn
k�1[ok] such that

P a1a2 · · · an|x1x2 · · · xn( ) � δ a1 ,/,an( ),J x1 ,/,xn( ) (3.4)
For all xk and ak, P is said to be an n-partite deterministic
correlation tensor (DCT) induced by J and is written as P = PJ.

According to the special relativity, an n-partite CT P of order
2n given by (3.3) is said to be nonsignaling, or no-signaling [22,
31] if for each nonempty proper subset Δ = {k1, k2,/,kd}(k1 < k2
</< kd) of [n] with the complement Δ′ = [n] \Δ, the sum

∑
aj j∈Δ′( )

P a1a2 · · · an|x1x2 · · · xn( ) (3.5)

depends only on xj(j ∈ Δ) and aj(j ∈ Δ), being independent of
xj(j ∈ Δ′). We call this condition the nonsignaling condition
(NSC). Physically, the NSC says that the marginal distribution
for each subset {Ak1, Ak2,/, Akd} of parties {A1, A2,/, An} only
depends on its corresponding inputs, i.e., for each nonempty
proper subset Δ = {k1, k2,/,kd} of [n] with k1 < k2 </< kd, it
holds that

P ak1ak2 · · · akd|x1x2 · · · xn( ) � P ak1ak2 · · · akd|xk1xk2 · · · xkd( )
(3.6)

for all xj(j ∈ Δ′), where

P ak1ak2 · · · akd|x1x2 · · ·xn( ) � ∑
j∈Δ′

∑oj
aj�1

P a1a2 · · · an|x1x2 · · ·xn( ).
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For example, a 2-partite CT P = [[P(ab|xy)]] over Δ4 = [mA] ×
[oA] × [mB] × [oB] is nonsignaling if

∑oA
a�1

P ab|xy( ) � ∑oA
a�1

P ab|x′y( ), ∀x, x′, y, b; (3.7)

∑oB
b�1

P ab|xy( ) � ∑oB
b�1

P ab|xy′( ), ∀x, y, y′, a. (3.8)

That is, the marginal probability distribution of Alice (Bob) does
not depend on the input used by Bob (Alice).

A 3-partite CT P = [[P(abc|xyz)]] over Δ6 = [m1] × [o1] × [m2] ×
[o2] × [m3] × [o3] is nonsignaling if and only if the following six
equations are satisfied:

Δ � a{ }: ∑
b,c

P abc|xyz( ) � ∑
b,c

P abc|xy′z′( ), ∀x, a, y, y′, z, z′;

(3.9)
Δ � b{ }: ∑

a,c

P abc|xyz( ) � ∑
a,c

P abc|x′yz′( ), ∀x, x′, b, y, z, z′;

(3.10)
Δ � c{ }: ∑

a,b

P abc|xyz( ) � ∑
a,b

P abc|x′y′z( ), ∀x, x′, y, y′, z, c;

(3.11)
Δ � b, c{ }: ∑

a

P abc|xyz( ) � ∑
a

P abc|x′yz( ), ∀x, x′, y, b, z, c;

(3.12)
Δ � a, c{ }: ∑

b

P abc|xyz( ) � ∑
b

P abc|xy′z( ), ∀x, a, y, y′, z, c;

(3.13)
Δ � a, b{ }: ∑

c

P abc|xyz( ) � ∑
c

P abc|xyz′( ), ∀x, a, y, b, z, z′.

(3.14)
Indeed, the conditions (3.12–3.14) imply the conditions

(3.9–3.11). For example, if (3.12 and 3.13) are satisfied, then
we have ∀x, x′, y, y′, z, c,

∑
a,b

P abc|xyz( ) � ∑
a

∑
b

P abc|xyz( )
� ∑

a

∑
b

P abc|xy′z( )
� ∑

b

∑
a

P abc|xy′z( )
� ∑

b

∑
a

P abc|x′y′z( )
� ∑

a,b

P abc|x′y′z( ).
This implies (3.11).

Generally, we have the following characterization of
nonsignaling [22].

Proposition 3.1. An n-partite CT P over Δ2n given by (3.3) is
nonsignaling if and only if for each k ∈ [n], the marginal
distribution obtained when tracing out ak is independent of xk:

∑ok
ak�1

P a1 · · · ak · · · an|x1 · · · xk · · · xn( )

� ∑ok
ak�1

P a1 · · · ak · · · an|x1 · · · xk′ · · · xn( ) (3.15)

For all xj ∈ [mj](j ≠ k), xk, xk′ ∈ [mk] and all aj ∈ [mj](j ≠ k).
The following proposition characterizes nonsignaling

property of a deterministic CT (DCT) PJ induced by a map
J: Πn

k�1[mk] → Πn
k�1[ok], in such a way that

PJ � [[PJ a1a2 · · · an|x1x2 · · · xn( )]] � [[δ a1 ,/,an( ),J x1 ,/,xn( )]].
Proposition 3.2. A DCT PJ is nonsignaling if and only if there

exist maps Jk : [mk] → [ok](∀k ∈ [n]) such that

J x1,/, xn( ) � J1 x1( ),/, Jn xn( )( ) (3.16)
for all (x1,/, xn) ∈ Πn

k�1[mk]. In that case,

PJ a1a2 · · · an|x1x2 · · · xn( ) � δa1 ,J1 x1( ) · · · δan,Jn xn( ) (3.17)
for all xk ∈ [mk], ak ∈ [ok](k = 1, 2,/, n).

Proof. The sufficiency is clear. Next, we show the necessity.
To do this, we assume that PJ is nonsignaling. We can write
J as

J x1,/, xn( ) � f1 x1,/, xn( ),/, fn x1,/, xn( )( ) (3.18)
for all (x1,/, xn) ∈ Πn

k�1[mk] and for some maps
fk: Πn

k�1[mk] → [ok] where k = 1, 2,/, n. Then

P a1a2 · · · an|x1x2 · · · xn( ) � δa1 ,f1 x1 ,/,xn( )/δan,fn x1 ,/,xn( )

for all xk, ak and so

∑
a2 ,a3 ,/,an

P a1a2 · · · an|x1x2 · · · xn( ) � δa1 ,f1 x1 ,x2 ,/,xn( ),

∑
a2 ,a3 ,/,an

P a1a2 · · · an|x1x2′ · · · xn′( ) � δa1 ,f1 x1 ,x2′,/,xn′( ).

Since PJ is nonsignaling, we have δa1 ,f1(x1 ,x2 ,/,xn) �
δa1 ,f1(x1 ,x2′ ,/,xn′ ) for all a1 ∈ [o1], xk ∈ [mk](k ∈ [n]), xj′ ∈ [mj]
(j � 2, 3,/, n). This implies that f1(x1, x2,/,xn) is
independent of the choice of x2,/, xn and depends only on
x1. Similarly, one can see that fk(x1, x2,/,xn) is independent of
the choice of xj(j ≠ k) and depends only on xk for each k = 2,
3,/,n. This enables us to define a map Jk : [mk]→ [ok] for each
k ∈ [n] by

Jk xk( ) � fk x1, x2,/, xn( ) xj � 1,∀j ≠ k( ).
Now, Eq. (3.18) implies Eq. (3.16). Obviously, Eq. (3.17) yields
Eq. (3.16). The proof is completed.

Here is an illustration of Proposition 3.2 for the case where n =
2. If we identify the fk used in Eq. (3.18) with the m1 ×m2 matrix
[fk(x1, x2)], whose (x1, x2)-entries are fk(x1, x2) ∈ [ok], i.e., fk ≡
[fk(x1, x2)], then the condition (3.16) is equivalent to J(x1, x2) =
(f1(x1, x2), f2(x1, x2)) where
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f1 �
J1 1( ) J1 1( ) / J1 1( )
J1 2( ) J1 2( ) / J1 2( )
..
. ..

.
1 ..

.

J1 m1( ) J1 m1( ) / J1 m1( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ J1 x( ) ∈ o1[ ]( ) (3.19)

and

f2 �
J2 1( ) J2 2( ) / J2 m2( )
J2 1( ) J2 2( ) / J2 m2( )
..
. ..

.
1 ..

.

J2 1( ) J2 2( ) / J2 m2( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ J2 y( ) ∈ o2[ ]( ). (3.20)

That is, f1 is row-constant and f2 is column-constant.
For example, when m1 = m2 = o1 = o2 = 2 and

f1 � 1 2
2 1

( ), f2 � 1 2
1 2

( ),
that is,

J: 1, 1( ) ↦ 1, 1( ), 1, 2( ) ↦ 2, 2( ), 2, 1( ) ↦ 2, 1( ), 2, 2( ) ↦ 1, 2( ),

the DCT PJ induced by J with J(x1, x2) = (f1(x1, x2), f2(x1, x2)) is
not nonsignaling. When

f1 � 1 1
2 2

( ), f2 � 1 2
1 2

( ),
that is,

J: 1, 1( ) ↦ 1, 1( ), 1, 2( ) ↦ 1, 2( ), 2, 1( ) ↦ 2, 1( ), 2, 2( ) ↦ 2, 2( ),

the DCT PJ induced by J with J(x1, x2) = (f1(x1, x2), f2(x1, x2)) is
nonsignaling.

3.2 Correlation-Type Tensors
Generalizing the concept of correlation tensors, let us introduce
the concepts of correlation-type tensors.

Let T = [[T(a1a2/an|x1x2/xn)]] be a real tensor of order
2n, where ai ∈ [oi], xi ∈ [mi] for all i ∈ [n]. We call such a
tensor T an n-partite correlation-type tensor (n-partite CTT).
It is said to be nonsignaling (or, an NSCTT) if for each k ∈ [n],
the sum

∑
ak∈ ok[ ]

T a1a2 · · · an|x1x2 · · · xn( )

is independent of xk, i.e., for all xk, xk′ ∈ [mk], it holds that
∑

ak∈ ok[ ]
T a1 · · · ak−1akak+1 · · · an|x1 · · · xk−1xkxk+1 · · · xn( )

� ∑
ak∈ ok[ ]

T a1 · · · ak−1akak+1 · · · an|x1 · · · xk−1xk′xk+1 · · · xn( )
(3.21)

for all xj ∈ [mj], aj ∈ [oj](j ≠ k).
Similar to the characterization of an NSCT (Proposition 3.1),

one can show that T is an NSCTT if and only if for each
nonempty proper subset Δ of [n] with the complement Δ′ =
[n] \Δ, the sum

∑
aj j∈Δ′( )

T a1a2 · · · an|x1x2 · · · xn( ) (3.22)

depends only on xj(j ∈ Δ) and aj(j ∈ Δ), being independent of
xj(j ∈ Δ′).

Obviously, NSCTs are special NSCTTs.

4 DECOMPOSITION OF N-PARTITE
NSCTTS

A tensor-network decomposition of a bipartite nonsignaling
correlation was given in [31]. The following technical Lemma
4.2 was proved and used there. We rewrite it and give an
alternative proof. To do so, let us recall a result proved by Li
et al. [33], which implies that the set of all extreme points of the
set CSM(m,n) of all nonnegative column-stochastic
matrices (CSMs) of order m × n are exactly mn {0, 1}-CSMs
of order m × n. Since an m × n nonnegative matrix A = [aij] is
column-stochastic, i.e., ∑iaij = 1 for all j, if and only if its
transpose AT = [aji] is row-stochastic, we get immediately the
following result.

Lemma 4.1. The set of all extreme points of the set RSM(m,n) of
all nonnegative row-stochastic matrices (RSMs) of order m × n are
exactly nm {0, 1}-RSMs of order m × n:

Rk � rkij[ ] ≔ δj,Jk i( )[ ] k � 1, 2,/, nm( ),
where {J1, J2,/, Jnm } are the set of all maps from [m] into [n].

The following lemma was given in [31]. Here, we give a
detailed proof based on Lemma 4.1.

Lemma 4.2. [31] Anm × omatrixM = [Mij] has constant row
sums ∑o

j�1Mij � C (independent of i) if and only if it can be
decomposed as

M � ∑om
k�1

ck δj,Jk i( )[ ], i.e.,Mij � ∑om
k�1

ckδj,Jk i( ) ∀i, j( ), (4.1)

with ∑om

k�1ck � C, where {Jk : k ∈ [om]} denotes the set of all maps
from [m] into [o]. If all Mij ≥ 0, then we can choose all ck ≥ 0.

Proof. The sufficiency is clear. To prove the necessity, we
assume thatM = [Mij] has the desired property. Put a = min{Mij :
i ∈ [m], j ∈ [o]} and use 1m×o to denote the m × o matrix whose
entries are all 1. Then M − a1m×o becomes a nonnegative matrix
with constant row sums C − oa ≥ 0.

Case 1. C − oa = 0. In this case, M � a1m×o. Since o−11m×o is a
row stochastic matrix, Lemma 3.1 implies that it can be written as
a convex combination of (0, 1)-RSMs:

o−11m×o � ∑om
k�1

bk δj,Jk i( )[ ], (4.2)

where ∑om

k�1bk � 1 and all bk ≥ 0. Thus,

M � ao × o−11m×o � ∑om
k�1

aobk δj,Jk i( )[ ]
with ∑om

k�1aobk � C. Clearly, all aobk ≥ 0 if all Mij ≥ 0.
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Case 2. C − oa > 0. In this case, (C − oa)−1(M − a1m×o) is a
row stochastic matrix and so it can be written as a convex
combination of (0, 1)-RSMs (Lemma 3.1):

C − oa( )−1 M − a1m×o( ) � ∑om
k�1

dk δj,Jk i( )[ ], (4.3)

where ∑om

k�1dk � 1 and all dk ≥ 0. It follows from Eq. 4.3 that

M � a1m×o + C − ao( )∑om
k�1

dk δj,Jk i( )[ ]
� a1m×o +∑om

k�1
C − oa( )dk δj,Jk i( )[ ]

� ∑om
k�1

ck δj,Jk i( )[ ],
where ck = oabk + (C − oa)dk being of sum C. Clearly, when allMij

≥ 0, we have a ≥ 0 and so all ck ≥ 0. The proof is completed.
Theorem 4.1. For any n ∈ N+, an NSCTT T = [[T(a1/an|

x1/xn)]] of order 2n can be decomposed as

T a1 · · · an|x1 · · · xn( ) � ∑N1

k1�1
/ ∑Nn

kn�1
qk1k2/knδa1 ,J 1( )

k1
x1( ) · · · δan,J n( )

kn
xn( )

(4.4)
for all xi ∈ [mi], ai ∈ [oi](i = 1, 2,/n), where qk1k2/kn ∈ R, and
J(i)ki
{ }Ni

ki�1 denotes the set of all maps from [mi] into [oi](Ni �
omi
i , i � 1, 2,/, n).
Proof.When n = 1, to get the decomposition of an NSCTT T,

let us consider T = [[T(a1|x1)]] as a matrix with (x1, a1)-entry T(a1|
x1). Using Lemma 4.2 yields that

T a1|x1( ) � ∑N1

k1�1
qk1δa1 ,J 1( )

k1
x1( ), ∀x1, a1, (4.5)

whereN1 � om1
1 and {J(1)k1

: k1 ∈ [N1]} denotes the set of all maps
from [m1] into [o1].

Suppose that for some n ≥ 1, a decomposition (4.4) exists for
any n-partite NSCTT T.

Let T = [[T(a1/an+1|x1/xn+1)]] be an (n + 1)-partite NSCTT. To
considerT as amatrix, we choose bijectionsα1 : [m1] × [o1]→ [m1o1],

α2: m2[ ] ×/× mn+1[ ] × o2[ ] ×/× on+1[ ] → m2o2 · · ·mn+1on+1[ ]

and then define an (m1o1) × (m2o2/mn+1on+1) matrix �T � [�Ti1i2]
with (i1, i2)-entry �Ti1i2 � T(a1 · · · an+1|x1 · · · xn+1) if

i1 � α1 x1, a1( ), i2 � α2 x2, · · ·, xn+1, a2, · · ·, an+1( ).
Let �T � USV be a singular value decomposition (SVD) of �Twhere
U = [Uiλ] and V = [Vλj] are some real orthogonal matrices of
ordersm1o1 andm2o2/mn+1on+1, respectively, and S is one of the
following matrices:

Σ 0[ ] m1o1 <m2o2 · · ·mn+1on+1( );
Σ
0

[ ] m1o1 >m2o2 · · ·mn+1on+1( );
Σ m1o1 � m2o2 · · ·mn+1on+1( ),

where Σ is a nonnegative diagonal matrix. Without loss of
generality, we assume that S is the first case. Thus,

Σ � diag d1, d2,/, dm1o1( ),
dλ > 0 1≤ λ≤ r( ), dλ � 0 r< λ≤m1o1( )

where r � rank(�T). Put A(λ)
x1a1

� Uiλ if i = α1(x1, a1), 1 ≤ λ ≤
m1o1; and B(λ)

x2/xn+1a2/an+1 � Vλj if j = α2(x2,/,xn+1, a2,/,an+1),
1 ≤ λ ≤ m2o2/mn+1on+1. Then the SVD �T � USV of �T yields
that

T a1 · · · an+1|x1 · · · xn+1( ) � �Tij � ∑m1o1

λ�1
dλA

λ( )
x1a1

B λ( )
x2/xn+1a2/an+1 ,

(4.6)
The nonsignaling condition on T implies that

∑m1o1

λ�1
∑o1
a1�1

A λ( )
x1a1

⎛⎝ ⎞⎠dλB
λ( )

x2 ···xn+1a2 ···an+1 � ∑m1o1

λ�1
∑o1
a1�1

A λ( )
x1′a1

⎛⎝ ⎞⎠dλB
λ( )

x2 ···xn+1a2 ···an+1

(4.7)
for all x1, x1′, x2, a2,/, xn+1, an+1 and for each k = 2, 3,/, n + 1,

∑m1o1

λ�1
A λ( )

x1a1
dλ ∑ok

ak�1
B λ( )
x2 ···xk ···xn+1a2 ···an+1

⎛⎝ ⎞⎠
� ∑m1o1

λ�1
A λ( )

x1a1
dλ ∑ok

ak�1
B λ( )
x2 ···xk′ ···xn+1a2 ···an+1

⎛⎝ ⎞⎠ (4.8)

for all x1, x2,/, xk, xk′ ,/, xn+1, aj(j ≠ k). By writing

Bx2 ···xn+1a2 ···an+1 � B 1( )
x2 ···xn+1a2 ···an+1 ,/, B m2o2 ···mn+1on+1( )

x2 ···xn+1a2 ···an+1( )T,
which is a vector in Rm2o2···mn+1on+1 and letting

fx1 λ( ) � dλ ∑o1
a1�1

A λ( )
x1a1

, 1≤ λ≤m1o1;

0, m1o1 < λ≤m2o2 · · ·mn+1on+1,

⎧⎪⎪⎨⎪⎪⎩
fx1 � fx1 1( ), fx1 2( ),/, fx1 m2o2 · · ·mn+1on+1( )( )T,

which is a vector in Rm2o2···mn+1on+1 , we get from (4.7) that

〈fx1,Bx2 ···xn+1a2 ···an+1〉 � 〈fx1′ ,Bx2 ···xn+1a2 ···an+1〉

for all x2,/,xn+1, a2,/,an+1 and x1, x1′ . Since the column vectors
of the unitary matrix V form an orthonormal basis

Bx2 ···xn+1a2 ···an+1: xj ∈ mj[ ], aj ∈ oj[ ] 2≤ j≤ n + 1( ){ }
for Rm2o2 ···mn+1on+1 , we conclude that fx1 � fx1′ , i.e.,

dλ ∑o1
a1�1

A λ( )
x1a1

� dλ ∑o1
a1�1

A λ( )
x1′a1 , ∀x1, x1′ ∈ m1[ ], λ � 1, 2,/, m1o1.

Since dλ > 0 for each λ = 1, 2,/, r, we obtain

∑o1
a1�1

A λ( )
x1a1

� ∑o1
a1�1

A λ( )
x1′a1 , ∀x1, x1′ ∈ m1[ ], λ � 1, 2,/, r. (4.9)

Using Lemma 4.2 yields that for each λ = 1, 2,/, r,
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A λ( )
x1a1

� ∑N1

k1�1
c λ( )
k1
δa1 ,J 1( )

k1
x1( ), ∀a1 ∈ o1[ ], x1 ∈ m1[ ], (4.10)

where N1 � om1
1 , {J(1)1 , J(1)2 ,/, J(1)N1

} is the set of all maps from
[m1] into [o1]. Similarly, by writing

Ax1a1 � A 1( )
x1a1

, A 2( )
x1a1

,/, A m1o1( )
x1a1

( )T ≡ A λ( )
x1a1

( )m1o1

λ�1 ∈ Rm1o1 ,

and for fixed 2 ≤ k ≤ n + 1, xj ∈ [mj](j ≠ k), aj ∈ [oj](j ≠ k),
letting

gxk λ( ) � dλ ∑ok
ak�1

B λ( )
x2 ···xk ···xn+1a2 ···an+1 1≤ λ≤ o1m1( ),

gxk � gxk 1( ),/, gxk m1o1( )( )T ∈ Rm1o1 ,

we get from (4.8) that 〈gxk,Ax1a1〉 � 〈gxk′ ,Ax1a1〉 for all x1, a1 and
xk,xk′ . Since the row vectors Ax1a1’s of the unitary matrix U form an
orthonormal basis Ax1a1{ }x1∈[m1],a1∈[o1] for R

m1o1 , we conclude that
gxk � gxk′ , i.e.,

dλ ∑ok
ak�1

B λ( )
x2 ···xk ···xn+1a2 ···an+1 � dλ ∑ok

ak�1
B λ( )
x2 ···xk′ ···xn+1a2 ···an+1

for all xk, xk′ . Since dλ > 0 for each λ = 1, 2,/, r, we obtain

∑ok
ak�1

B λ( )
x2 ···xk ···xn+1a2 ···an+1 � ∑ok

ak�1
B λ( )
x2 ···xk′ ···xn+1a2 ···an+1 (4.11)

for all xk, xk′ , λ � 1, 2,/, r. This shows that

Q λ( ) ≔ [[Q λ( ) a2 · · · an+1|x2 · · · xn+1( )]] � [[B λ( )
x2 ···xn+1a2 ···an+1]]

defines an n-partite NSCTT. It follows from the assumption of
induction that

B λ( )
x2 ···xn+1a2 ···an+1 � ∑N2

k2�1
/ ∑Nn+1

kn+1�1
q λ( )
k2 ···kn+1δa2 ,J 2( )

k2
x2( )/δan+1 ,J n+1( )

kn+1 xn+1( )

(4.12)
for all xi ∈ [mi], ai ∈ [oi](i = 2,/, n + 1). Now, we obtain from
Eqs 4.6, 4.10, 4.12 that

T a1 · · ·an+1|x1 · · ·xn+1( ) � ∑N1

k1�1
· · · ∑Nn+1

kn+1�1
qk1 ···kn+1δa1 ,J 1( )

k1
x1( ) · · · δan+1 ,J n+1( )

kn+1 xn+1( )

for all xi ∈ [mi], ai ∈ [oi](i = 1, 2,/, n + 1), where

qk1 ···kn+1 � ∑r
λ�1

dλc
λ( )
k1
q λ( )
k2 ···kn+1 .

This shows that a decomposition (4.4) exists for an (n + 1)-partite
NSCTT T. The proof is completed.

Theorem 4.2. For a CTT T = [[T(a1a2/an|x1x2/xn)]], the
following statements are equivalent.

(1) T is nonsignaling.
(2) T has a decomposition (4.4).
(3) T has the following generalized LHV model:

T a1 · · · an|x1 · · · xn( ) � ∑d
λ�1

πλP1 a1|x1, λ( ) · · · Pn an|xn, λ( )

(4.13)
for all xi ∈ [mi], ai ∈ [oi], where πλ ∈ R, {Pi(ai|xi, λ)}oiai�1(i ∈ [n])
are PDs for all xi, λ.

(4) T has the form of

T � ∑N1

k1�1
∑N2

k2�1
/ ∑Nn

kn�1
qk1k2 ···knD1 k1( ) ⊗ D2 k2( ) ⊗ · · · ⊗ Dn kn( ),

(4.14)
where Di(ki) � [[δai,J(i)ki

(xi)]].
(5) The following tensor-network decomposition holds:

T � D1 ⊗ D2 ⊗ · · · ⊗ Dn( )◇q, (4.15)
where q � [[qk1k2 ···kn]] is a real tensor of order n andDi � [[δai,J(i)ki

(xi)]]
is the tensor of order 3 with (ki, xi, ai)-entries δai,J(i)ki

(xi) for all i =
1, 2,/ n.

Proof. Theorem 4.1 says that (1) and (2) are equivalent. (2) yields
(3) clearly. Lemma 4.2 implies that (3) yields (2). The proof is
completed.

Loubenets [25] proved that a CT admits a local quasi hidden
variable (LqHV) simulation if and only if all joint probability
distributions of this scenario satisfy the general nonsignaling
condition formulated in [23, 24, 26] using the notions of an LqHV
model and a deterministic LqHV given by integrals rather than sums.
As a consequence of Theorem 4.2, we obtain the following corollary,
which means that a CT is nonsignaling if and only if it has a
generalized LHV model given by a “discrete” sum instead of a
“continuous” integral.

Corollary 4.1. For an n-partite CT P = [[P(a1a2/an|
x1x2/xn)]], the following statements are equivalent.

(1) P is nonsignaling.
(2) P has a decomposition (4.4) in which∑N1

k1�1/∑Nn
kn�1qk1k2/kn � 1.

(3) P has a generalized LHVmodel (4.13) in which∑d
λ�1πλ � 1.

(4) P has the form of (4.14) in which∑N1
k1�1/∑Nn

kn�1qk1k2/kn � 1.
(5) P has a tensor-network decomposition (4.15) with∑N1

k1�1/∑Nn
kn�1qk1k2/kn � 1.

5 CHARACTERIZATION OF A BELL
LOCAL CT

An n-partite CT

P � [[Px1a1x2a2 ···xnan]] (5.1)
over

Δ2n � m1[ ] × o1[ ] × m2[ ] × o2[ ] ×/× mn[ ] × on[ ] (5.2)
is said to be Bell local if there exists a PD {πλ}dλ�1 such that
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P a1a2 · · · an|x1x2 · · · xn( )
� ∑d

λ�1
πλP1 a1|x1, λ( )P2 a2|x2, λ( ) · · · Pn an|xn, λ( ) (5.3)

for all xi ∈ [mi], ai ∈ [oi](i = 1, 2,/,n), where {Pi(ai|xi, λ)}oiai�1 is a
PD for each i ∈ [n], each xi ∈ [mi], and each λ ∈ [d]. P is said to be
Bell nonlocal if it not Bell local.

From Proposition 3.2, we see that an n-partite DCT PJ is
nonsignaling if and only if it is Bell local. Generally, using Lemma
4.1 for mi × oi RSMs Pi≔[Pi(ai|xi, λ)] with (xi, ai)-entries Pi(ai|xi,
λ) implies that local probabilities in (5.3) can written as

Pi ai|xi, λ( ) � ∑ni
ki�1

c i( )
k1
δai,J i( )

ki
xi( )

for all λ ∈ [d], xi ∈ [mi], ai ∈ [oi](i = 1, 2,/, n). This yields the
following conclusion, which gives a characterization of Bell
locality of an n-partite CT.

Theorem 5.1. An n-partite CT P = [[P(a1a2/an|x1x2/xn)]]
over Δ2n is Bell local if and only if it has the form of

P a1 · · · an|x1 · · · xn( ) � ∑N1

k1�1
/ ∑Nn

kn�1
qk1 ···knδa1 ,J 1( )

k1
x1( )/δan,J n( )

kn
xn( )

(5.4)
For all xi ∈ [mi], ai ∈ [oi](∀i ∈ [n]), equivalently, the following
tensor-network decomposition holds:

P � D1 ⊗ D2 ⊗ · · · ⊗ Dn( )◇q, (5.5)
where q � [[qk1k2 ···kn]] is a nonnegative real tensor of order n such
that

∑N1

k1�1
· · · ∑Nn

kn�1
qk1/kn � 1, (5.6)

andDi � [[δai,J(i)ki
(xi)]] is the tensor of order 3 with (ki, xi, ai)-entries

δai,J(i)ki
(xi) for all i = 1, 2,/, n.

Combining Theorem 5.1 with Corollary 4.1 shows that every
Bell local CT must be nonsignaling, while a nonsignaling CT is
not necessarily Bell local (e.g., the PR box). Furthermore, for a
nonsignaling Bell nonlocal CT P = [[P(a1/an|x1/xn)]] over Δ2n,
we see from Corollary 4.1 that P has a decomposition

P a1 · · · an|x1 · · · xn( ) � ∑N1

k1�1
/ ∑Nn

kn�1
qk1 ···knδa1 ,J 1( )

k1
x1( ) · · · δan,J n( )

kn
xn( )

(5.7)
for all xi, ai where qk1k2 ···kn ∈ R,∑N1

k1�1 · · · ∑Nn
kn�1qk1/kn � 1. Put

q+k1 ···kn � max qk1 ···kn, 0{ }, q−k1 ···kn � max −qk1/kn, 0{ },
then q+k1 ···kn ≥ 0, q

−
k1 ···kn ≥ 0 with qk1 ···kn � q+k1 ···kn − q−k1/kn

for all
k1,/, kn. Letting

q+ � ∑
k1 ,k2 ,/,kn

q+k1k2 ···kn , q
− � ∑

k1 ,k2 ,···,kn
q−k1k2 ···kn

and using (5.7) yield that

P a1 · · · an|x1 · · · xn( ) � q+P+ a1 · · · an|x1 · · · xn( )
− q−P− a1 · · · an|x1 · · · xn( )

for all possible xi, ai, where q+ − q− = 1 and

P+ a1 · · · an|x1 · · · xn( ) � ∑
k1 ,/,kn

q+k1/kn

q+
δa1 ,J 1( )

k1
x1( )/δan,J n( )

kn
xn( ),

P− a1 · · · an|x1 · · · xn( ) � ∑
k1 ,/,kn

q−k1/kn

q−
δa1 ,J 1( )

k1
x1( )/δan,J n( )

kn
xn( ).

Using Theorem 5.1, we see that both

P+ ≔ [[P+ a1 · · · an|x1 · · · xn( )]] and
P− ≔ [[P− a1 · · · an|x1 · · · xn( )]]

are Bell local CTs, satisfying P = q+P+ − q−P−. When P is Bell
local, the last decomposition is also valid for P+ = P− = P and q+ =
1, q− = 0.

As a conclusion, we obtain the following theorem, which
reveals a relationship between nonsignaling CTs and Bell
local ones.

Corollary 5.1. A CT P over Δ2n is nonsignaling if and only if it
can be written as

P � q+P+ − q−P−, (5.8)
where both P+ and P− are Bell local CTs, q+, q−≥ 0 with q+ − q− = 1.

This implies the affine hull ah(BL(Δ2n)) of the convex compact
set contains the polytope NS(Δ2n) of NSCTs over Δ2n. That is,
NS(Δ2n) ⊂ ah(BL(Δ2n)).

6 SUMMARY AND CONCLUSION

Bell nonlocality is a cornerstone of quantum theory and at the
center of many quantum information processing protocols. As
the number of subsystems increases, deciding whether a given
state w.r.t. a measurement setting is local or nonlocal becomes
computationally intractable. To overcome this difficulty, Eli€ens
et al. have proposed a method for analyzing Bell nonlocality of a
nonsignaling correlation using tensor network and sparse
recovery. Motivated by this work, we have discussed
nonsignaling and Bell locality of n-partite correlations in
teams of tensor decompositions of the corresponding
correlation tensors.

Consider n parties A1,/, An, each Ak possessing a physical
system Sk, which can be measured with mk different observables
xk = 1, 2,/, mk and the corresponding outcomes ak = 1, 2,/, ok.
Conditioned on the observables chosen by the n parties, the joint
probability distribution (JPD) P(a1/an|x1/xn) for the outcomes
is obtained. Thus, such a JPD is just a function P from
Πn

i�1[oi] × Πn
i�1[mi] into [0, 1], which we called a correlation

function (CF). One way to represent a JPD is vector-
representation (VR) [19], i.e., a way to represent joint
probabilities P(a1/an|x1/xn) as a high dimensional vector in
Rt where t � Πn

i�1oimi, called a correlation vector (CV). With this
representation, the set of all Bell local CVs forms a polytope B in
Rt with the dimension Πn

i�1(mi(oi − 1) + 1) − 1 [19, Theorem 1].
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For a bipartite correlation P(ab|xy), a useful notation was
introduced and used by Tsirelson and Cope [4, 30], which
represents it as a matrix Π = [Pxy] with Pxy = [P(ab|xy)] as the
(x, y)-block with (a, b)-entries P(ab|xy). We call Π = [Pxy] a
correlation matrix (CM). In the present paper, we have
represented a JPD P(a1/an|x1/xn) as a nonnegative tensor P
of order 2n with (x1, a1,/,xn, an)-entries, which we named an n-
partite correlation tensor (CT).

Generally, nonnegativity and normalization condition makes
it that an n + 1-partite CT could not be written as a convex
combination of k-partite CTs some k ≤ n. Thus, it is almost
impossible to extend Eli’s decomposition [31] of a bipartite
nonsignaling CT (NSCT) to multi-partite case by means of
mathematical induction. To overcome this difficulty, we have
placed all n-partite CTs within the linear space of correlation-type
tensors (CTTs) of the form P = [[P(a1a2/an|x1x2/xn)]] with real
entries (not necessarily nonnegative and normalized) and
induced the nonsignaling property of them. This enables us to
prove that every nonsignaling n-partite CTT can be decomposed
as a linear combination of local deterministic CTs (LDCTs) using
single-value decomposition of matrices and mathematical
induction. This decomposition theorem is particularly valid for
any nonsignaling n-partite CT. As a consequence, we have proved
that a CT P is nonsignaling if and only if it can be written as a
quasi-convex combination of the outer products of deterministic
CTsD1(k1),/Dn(kn) of order 2 and that P is Bell local if and only
if the decomposition is valid for a probability tensor
q � [[qk1k2 ···kn]]. Also, such a decomposition suggests close
relationships between nonsignaling CTs P and quasi-probability
tensor q, as well as Bell local CTs P and probability tensor q.

As an application of these results, we have observed that a CT
P is nonsignaling if and only if it can be written as

P � 1 + ε( )P+ − εP−,

where P+ and P− are Bell local CTs, ε ≥ 0. This gives a close
relationship between nonsignaling CTs and Bell local CTs.
Moreover, the last decomposition shows that the set
NSCT (Δ2n) of all n-partite nonsignaling CTs is contained in
the affine hull [19] ah(BLCT (Δ2n)) of the compact convex set
BLCT (Δ2n) of all n-partite Bell local CTs. Clearly, NSCT (Δ2n)
and ah(BLCT (Δ2n)) are not the same since the former is a
compact convex set and the latter is unbounded.
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