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We discuss non-Lorentzian Lagrangian field theories in 2n − 1 dimensions that admit an
SU(1, n) spacetime symmetry which includes a scaling transformation. These can be
obtained by a conformal compactification of a 2n-dimensional Minkowskian conformal
field theory. We discuss the symmetry algebra, its representations including primary fields
and unitarity bounds. We also give various examples of free theories in a variety of
dimensions and a discussion of how to reconstruct the parent 2n-dimensional theory.
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1 INTRODUCTION

Lorentz symmetry plays a crucial role in many applications of Quantum Field Theory but it is not
necessary. Indeed the condensed matter community more often than not looks at theories without it.
This opens the door to additional spacetime symmetries such as the Bargmann, Carroll and
Schrödinger groups. In particular non-Lorentzian conformal field theories have now received
considerable attention and reveal many interesting features, for example see [1–5].

It is well-known that one way to construct non-Lorentzian theories with Schrödinger symmetry is
to reduce a Lorentzian theory of one higher dimension on a null direction. From the higher
dimensional perspective such null reductions are somewhat unphysical but that need not concern us
if we are only interested in the features of the reduced theory. Indeed the (null) Kaluza-Klein
momentum is often associated with particle number and, in contrast to traditional Kaluza-Klein
theories, one need not truncate the action to the zero-modes but rather any given Fourier mode. The
resulting theories are interesting in themselves and have applications in Condensed Matter Systems
and DLCQ constructions (where one does have to try to make sense of a null reduction).

Here we will explore theories with novel spacetime SU(1, n) symmetry. These can be obtained by
reducing a Lorentzian conformal field theory (CFT) along a null direction in conformally
compactified Minkowski space. A key novelty here is that the conformal null reduction can be
inverted so that the non-compact higher dimensional theory can in principle be reconstructed from
the reduced theory provided all Kaluza-Klein modes are retained. The effect of such a reduction is to
induce an Ω-deformation into the reduced theory. Since the SU(1, n) symmetry acts separately on
each Fourier mode we can truncate our actions to any given Fourier mode number. Or we can keep
them all and reconstruct the original theory.

We also comment that our interest in these models has arisen through an explicit class of
supersymmetric non-Abelian gauge theories in five-dimensions with su(1, 3) symmetry [6–8]. In
particular, in these models the role of the Kaluza-Klein momentum P+ is played by the instanton
number leading to an additional u(1) symmetry. The realisation of the full non-Abelian six-
dimensional (2, 0) theory is proposed to arise through the inclusion of instanton operators [9–11].

In this paper we wish to illustrate some of general aspects of such theories. In Section 2 we will
outline a construction by dimensional reduction of a CFT on conformally compactified Minkowski
space and give the corresponding AdS interpretation. In Section 3 we discuss various properties of
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the SU(1, n) symmetry algebra such as primary fields, unitarity
bounds and its relation to conventional non-relativistic
conformal symmetry. In Section 4 we discuss a
superconformal extension that is possible in the case of five-
dimensions and construct some BPS bounds. In section 5 we will
give explicit examples of theories with SU(1, n) symmetry. In the
interest of simplicity we will only consider free theories here,
although, as mentioned above, interacting theories can be
constructed. In section 6 we will outline how, by retaining the
entire Kaluza-Klein tower of fields, one can reconstruct the 2-
point functions of the parent 2n-dimensional theory. Finally in
section 7 we give our conclusions and comments.

2 CONSTRUCTION VIA CONFORMAL
COMPACTIFICATION

We start with 2n-dimensional Minkowski spacetime in lightcone
coordinates with metric/

ds2M � ημ]dx̂
μdx̂] � −2dx̂+dx̂− + dx̂idx̂i, (2.1)

where μ ∈ { +, −,i}, i = 1, 2, . . . , 2n − 2, and perform the coordinate
transformation1

x̂+ � 2R tan x+/2R( ),
x̂− � x− + 1

4R
xixi tan x+/2R( ),

x̂i � cos x+/2R( )xi − sin x+/2R( )RΩijx
j

cos x+/2R( ) .

(2.2)

Here Ωij is a constant anti-symmetric matrix that satisfies

ΩijΩjk � −R−2δik. (2.3)
Note, we can always perform a rotation in the xi directions so as to
bring Ωij to a canonical form; in particular, one can always find
orthogonal matrix M such that

Ω → MΩM−1 � MΩMT � 1
R

0 1n−1
−1n−1 0

( ). (2.4)

This coordinate transformation leads to the metric

ds2M � ĝμ]dx
μdx] � −2dx+ dx− + 1

2Ωijxjdxi( ) + dxidxi

cos2 x+/2R( ) . (2.5)

Following this we perform a Weyl transformation ds2Ω �
cos2(x+/2R)ds2M to find

ds2Ω � gμ]x
μx] � −2dx+ dx− + 1

2
Ωijx

j dxi( ) + dxidxi . (2.6)

Under such a conformal transformation a scalar operator Ô(x̂) of
dimension Δ̂ is mapped to the operator O(x) by

Ô x̂( ) � cosΔ̂ x+/2R( )O x( ). (2.7)

Note the range of x+ ∈ (−πR, πR) is finite. Thus we can
conformally compactify the x+ direction of 2n-dimensional
Minkowski space by x+ ∈ [−πR, πR]. In which case we can
write O(x) in a Fourier expansion:

O x( ) � ∑
k

eikx
+/RO k( ) x( ), (2.8)

where for now we keep the range of k general, e.g. integer or half-
integer. Lastly is helpful to note that the metric and inverse
metric are

gμ] �
0 −1 −1

2
Ωikx

k

−1 0 0

−1
2
Ωikx

k 0 δij

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

gμ] �

0 −1 0

−1 |x2|/4R2 −1
2
Ωjkx

k

0 −1
2
Ωikx

k δij

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(2.9)

2.1 Dual AdS Slicing
As we have seen, the metric ds2Ω in (2.6) is conformal to 2n-
dimensional Minkowski space, and hence can be realised as the
conformal boundary of Lorentzian AdS2n+1. Indeed, a particular
slicing of AdS2n+1 that makes this form for the conformal
boundary manifest has long been known in the literature [12].
Let us review this construction now, with a focus using this
holographic perspective to probe the form of the conformal
algebra on the boundary.

Let Za, a = 0, 1, . . . , n be a set of (n + 1) complex coordinates,
and ηab = diag (−1, 1, . . . , 1). Then, when constrained to

ηabZ
a �Z

b � −1 , (2.10)
the Za provide coordinates on Lorentzian AdS2n+1, with metric
given by

ds2 � ηabdZ
a d �Z

b
, (2.11)

suitably pulled back to solutions of (2.10).
Next, we can parameterise solutions to the constraint (2.10)

with 2n + 1 real coordinates (y, x+, x−, xi). We have2

Z0 � eix
+/2R cosh

y

2
( ) + 1

2
ey/2 iRx− + 1

4
| �x|2( )( )

Zn � eix
+/2R sinh

y

2
( ) − 1

2
ey/2 iRx− + 1

4
| �x|2( )( )

ZA � 1
2
eix

+/2Rey/2 M �x + iRΩ �x( )( )A, A � 1, . . . , n − 1,

(2.12)

where here M is the orthogonal matrix appearing in (2.4).

1It is curious to note that this transformation is similar to the transformation used
in [3] to convert to the so-called oscillator frame, along with an x+-dependent
rotation by Ωij.

2As our focus is on continuous conformal symmetries on the boundary, it is
sufficient for our purposes to consider this a local parameterisation of AdS2n+2, and
thus neglect global features of this real coordinate choice.
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These coordinates provide a description for AdS2n+1 as a one-
dimensional fibration over a non-compact form of n-dimensional
complex projective space, sometimes denoted C̃P

n
. In this

construction, x+ is the coordinate along the fibre. The metric
(2.11) now takes the form

ds2 � − 1
4R2

dx+ + R2ey dx− + 1
2
Ωijx

jdxi( )( )2

+ ds
C̃P

n , (2.13)
where

ds
C̃P

n � 1
4
dy2 + 1

4
eydxidxi + R2

4
e2y dx− + 1

2
Ωijx

jdxi( )2

, (2.14)

can be identified as themetric on C̃P
n
, with isometry group SU(1, n).

Then, projecting orthogonally to the orbits of z/zx+, we land
precisely on C̃P

n
with metric ds

C̃P
n , as claimed.

To go to the conformal boundary, we now restrict to a surface
of constant y, and take y large. It is then clear that as we do so, the
metric approaches the form

ds2 → 1
4
ey −2dx+ dx− + 1

2
Ωijx

jdxi( ) + dxidxi( ), (2.15)

thus recovering the form of the metric ds2Ω.
Finally, let us discuss symmetries. Each isometry in the bulk,

described by some Killing vector field, corresponds to a
conformal symmetry on the boundary. The full set of such
symmetries form the algebra so(2, 2n). It will be useful for what
follows, however, to identify the subalgebra of boundary
conformal symmetries that commute with translations along
the x+ direction. We see that this subalgebra can be identified
with the subalgebra of bulk isometries that commute with
translations along the fibre. It is hence given by
u(1) ⊕ su(1, n), where u(1) describes translation along the
fibre, while su(1, n) forms the algebra of isometries of the
C̃P

n
transverse to the fibres.

2.2 Symmetries Under Dimensional
Reduction
Each continuous spacetime symmetry of a conformal field theory
onMinkowski space is generated by an operator G, with the set of
all such operators forming the algebra so(2, 2n) under
commutation. We take the conventional basis, made up of
translations P̂μ, Lorentz transformations M̂μ], dilatation D̂ and
special conformal transformations K̂μ.

Each operator G in turn correspond to a conformal Killing
vector Gz of the metric ds2M. Explicitly, these are

i P̂μ( )
z
� ẑμ ω̂ � 0

i M̂μ]( )
z
� x̂μẑ] − x̂]ẑμ ω̂ � 0

i D̂( )
z
� x̂μẑμ ω̂ � 1

i K̂μ( )
z
� x̂]x̂

]ẑμ − 2x̂μx̂
]ẑ] ω̂ � −2x̂μ,

(2.16)

with indices raised and lowered with the Minkowski metric ημ].
Each of these vector fields Gz then satisfies LiGz

η � 2ω̂η, where
LiGz

is the Lie derivative along iGz, and the Weyl factors ω̂ are
as given.

Their non-vanishing commutators are

i M̂μ], P̂ρ[ ] � η]ρP̂μ − ημρP̂] i P̂μ, D̂[ ] � P̂μ

i M̂μ], K̂ρ[ ] � η]ρK̂μ − ημρK̂] i K̂μ, D̂[ ] � −K̂μ

i M̂μ], M̂ρσ[ ] � η]ρM̂μσ + ημσM̂]ρ − ημρM̂]σ − η]σM̂μρ

i P̂μ, K̂][ ] � 2 M̂μ] − ημ]D̂( ).
(2.17)

We can then perform the coordinate transformation (2.2) followed
by the Weyl rescaling to arrive at the metric g as in (2.6). The
operators {P̂μ, M̂μ], D̂, K̂μ} still generate the theory’s spacetime
symmetries, and the corresponding vector fields are also conformal
Killing vectors of the metric g, albeit with shifted Weyl factors
given by ω � ω̂ − 1

2R tan(x
+

2R)iG+
z . Then, for each vector field,

LiGz
g � 2ωg.
It is now straightforward to see that translations along x+ are

an isometry3 of the metric g. In terms of the original Minkowski
symmetry generators, this is realised by the combination

P+ ≔ P̂+ + 1
4
ΩijM̂ij + 1

8R2
K̂− → i P+( )z � z+. (2.18)

Then, given some conformal field theory on 2n-dimensional
Minkowski space, we can perform a Kaluza-Klein on the x+

interval. At the level of the symmetry algebra, this amounts to
choosing a basis for the space of local operators which
diagonalises P+. The resulting operators are Fourier modes on
the x+ interval. They fall into representations of the centraliser of
P+ within so(2, 2n), which we call h.

A basis for the subalgebra h in terms of the generators (2.16) is
given by

P+� P̂+ + 1
4
ΩijM̂ij + 1

8R2 K̂− → i P+( )z � z+

H� P̂− → i H( )z � z−

Pi� P̂i + 1
2
ΩijM̂j− → i Pi( )z � 1

2
Ωijx

jz− + zi

B � 1
2
RΩijM̂ij → i B( )z � RΩijx

izj

Jα� 1
2
Lα
ijM̂ij → i Jα( )z� Lα

ijx
izj

T� D̂ − M̂+− → i T( )z � 2x−z− + xizi

Gi � M̂i+ − 1
4
ΩijK̂j → i Gi( )z � xiz+ + 1

2
Ωijx

−xj − 1
8
R−2xjxjxi( )z− + x−zi

+ 1
4

2Ωikx
kxj + 2Ωjkx

kxi −Ωijx
kxk( )zj

K� 1
2
K̂+ → i K( )z � xixiz+ + 2 x−( )2 − 1

8
R−2 xixi( )2( )z−

+ 1
2
Ωijx

jxkxk + 2x−xi( )zi ,
(2.19)

where the Jα are absent for n = 1, 2, and otherwise α = 1, . . . ,
n2−2n. Here, the Lαij are constantmatrices that are explained below.

Then, these vector fields are indeed conformal
Killing vector fields of g, as LiGz

g � 2ωg with Weyl factor
given by

3Translations in x+ are a conformal symmetry of the original metric ĝ, with non-
trivial Weyl factor, which is cancelled when we perform the Weyl rescaling to
arrive at g.
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T: ω � 1

Gi: ω � 1
2
Ωijx

j

K: ω � x−,
(2.20)

and vanishing for the other generators.
Let us identify the subalgebra of pure rotations within h, and in

particular identify the matrices Lα. First, the case of n = 1 is
somewhat trivial, as we have no spatial directions, and so no
rotations to start with. Similarly straightforward is n = 2, whereby
we can simply take B � 1

2RΩijM̂ij as the single generator of the
rotation subalgebra so(2), which is easily seen the commute with
P+ and hence survive the reduction.

So let us take n ≥ 3. We may, a priori, consider a general spatial
rotation of the form AijM̂ij for any (2n − 2) × (2n − 2) matrix A
with Aij = −Aji, forming so(2n − 2) ⊂ so(2, 2n). Then, it is clear
from the form of P+ that this rotation commutes with P+ and thus
lies within h precisely if [A,Ω]ij = AikΩkj−ΩikAkj = 0. It then follows
from the relation (2.4) that A must be similar to an element of
so(2n − 2)∩ sp(2n − 2) � u(1) ⊕ su(n − 1). Hence, the set of
matrices A form a (2n − 2)-dimensional representation of
u(1) ⊕ su(n − 1). In particular, we can take Ω itself to span
the u(1) factor, while we write Lα, α = 1, . . . , n2−2n form the
generators of su(n − 1). We have [Lα, Lβ]ij � fαβ

γL
γ
ij for f

αβ
γ the

structure constants of su(n − 1). Note, by construction, the
matrices (ΩLα)ij � ΩikLαkj are symmetric and traceless for each α.

Thus, for n ≥ 3 the total rotation subalgebra is
u(1) ⊕ su(n − 1) ⊂ h, spanned by {B, Jα}. For example, for the
first non-trivial case n = 3, one can show from the relation (2.4)
that all choices of the 4 × 4 matrices Ωij fall into two classes: those
that are anti-self-dual, and those that are self-dual. These two cases
correspond to det(M) = +1 and det(M) = −1, respectively. Then, for
anti-self-dual (self-dual) Ωij, one can choose for their Lαij the self-
dual (anti-self-dual) ’t Hooft matrices.

Finally, let us state the commutation relations for the algebra h. The
commutators of the rotation subalgebra span{B, Jα} both amongst
themselves and with the other generators can be summarised as
follows. As we have seen, {B, Jα} form a basis for u(1) ⊕ su(n − 1).
The commutation relations descend from those of the Lα, so that

i B, Jα[ ] � 0 i Jα, Jβ[ ] � fαβ
γJ

γ. (2.21)
The remaining generators are sorted into “scalar” generators S �
{P+, H, T,K} which are inert under rotations,
i[B,S] � 0, i[Jα,S] � 0, and otherwise “vector” generators V i �
{Pi, Gi} which transform as

i B,V i[ ] � −RΩijVj, i Jα,V i[ ] � −Lα
ijVj, (2.22)

All remaining commutators are found to be

i Gi, Pj[ ] � −δijP+ − 1
2
ΩijT + 1

2R
n + 1
n − 1

δijB + βαijJ
α , i T,H[ ] � −2H,

i T,K[ ] � 2K, i H, Pi[ ]� 0,

i K,H[ ] � −T, i H, Gi[ ] � Pi,

i Gi, Gj[ ] � −ΩijK, i K, Pi[ ] � −Gi,

i T, Pi[ ] � −Pi, i K, Gi[ ]� 0,

i T, Gi[ ] � Gi, i Pi, Pj[ ] � −ΩijH.

(2.23)

where the coefficient in front ofB in the commutator i [Gi, Pj] holds
down to n = 2. Further, we denote by βαij the constants such that

1
2

δjkΩil + δikΩjl − δjlΩik − δilΩjk − 2
n − 1

δijΩkl( ) � βαijL
α
kl.

(2.24)
One can show that this equation can always be uniquely solved
for the βαij, for any choice of the basis Lαij for su(n − 1), and
further that βαij � βαji and βαii � 0.

Following the discussion in Section 2.1, we identify
h � u(1) ⊕ su(1, n). This splitting is made explicit by adjusting
the rotation B to twist along the x+ interval. In detail, we define

~B ≔ B − 2R
n − 1
n + 1

( )P+. (2.25)

Then, {H,Pi, ~B, Jα, T, Gi, K} form a basis for su(1, n), while P+
generates the u(1) factor.

3 PRIMARY OPERATORS AND THEIR
PROPERTIES

So let us now consider a (2n − 1)-dimensional theory with SU(1, n)
symmetry. Given some operator Φ(0) at the origin (x−, xi) = (0, 0),
we say it has scaling dimension Δ if it satisfies [T, Φ(0)] = iΔΦ(0).
Then, in direct analogy with the Schrödinger algebra of conventional
non-relativistic conformal field theory, we can straightforwardly
construct further states also with definite charge under T.

We find that {H, K} raise and lower scaling dimension by two
units, respectively, so that if Φ(0) has scaling dimension Δ, then
[H, Φ(0)] has scaling dimension (Δ + 2), while [K, Φ(0)] has
(Δ−2). We have then also the pair {Pi, Gi}, which raise and lower
scalig dimension by one unit, respectively.

Going further, we can generalise results from the n = 3 case [9],
and define a primary operator at the origin (x−, xi) = (0, 0) by its
transformation under the stabiliser of the origin within
u(1) ⊕ su(1, n), generated by {P+, B, J

α, T, Gi, K}. We have,

P+,O 0( )[ ] � p+O 0( )
B,O 0( )[ ] � −rO B[ ]O 0( )
Jα,O 0( )[ ] � −rO Jα[ ]O 0( )
T,O 0( )[ ] � iΔO 0( )
Gi,O 0( )[ ] � 0
K,O 0( )[ ] � 0.

(3.1)

Here, rO[B] ∈ 1
2Z denotes the charge of O(0) under the rotation

generated by B, while rO[Jα] is a constant matrix acting on some
unwritten discrete indices of O(0), and forming an irreducible
representation of the su(n − 1) spanned by the Jα, so that
[rO[Jα], rO[Jβ]] � rO[[Jα, Jβ]]. Finally, p+ is the charge of
O(0) under P+. It is clear that in any (2n − 1)-dimensional
theory found from a 2n-dimensional CFT, we must have
p+ ∈ 1

RZ, however one may in principle consider a broader
class of theories not admitting a 2n-dimensional
interpretation, and thus without such a discreteness condition.

The key property of such a primary is that it is annihilated by
the lowering operators {K, Gi}, and thus sits at the bottom of a
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tower of states generated by the raising operators {H, Pi}, known
as usual as descendants.

Given any operator Φ(0) at the origin, an operator at some
point (x−, xi) is defined by

Φ x( ) � exp −i x−H + xiPi( )( )Φ 0( )exp i x−H + xiPi( )( ). (3.2)
Then, requiring that at any point we have Φ(x + ϵ) − Φ(x) =
ϵ−z−Φ(x) + ϵiziΦ(x) fixes the action of H, Pi on Φ(x) [9]. Note,
this is a somewhat more subtle computation than is encountered
in relativistic conformal field theory, since the translation
subalgebra span{H, Pi} is non-Abelian.

One can in particular apply the transformation rules (3.1)
along with the algebra (2.23) to determine the transformation
properties of a primary O(x) at a generic point. This
generalisation of the known form for n = 3 is left as an
exercise for the reader.

3.1 Recovering Conventional
Non-relativistic Conformal Field Theory
At the level of symmetries, the presence of conformal symmetry
in the relativistic theory manifests itself as an enhancement of the
Poincaré algebra to the conformal algebra. The analogous
statement in non-relativistic theories is an enhancement of the
inhomogeneous Galilean algebra—or rather, its central extension,
the Bargmann algebra—to the Schrödinger algebra. Let us denote
by Schr(d) the Schrödinger algebra governing the non-relativsitic
conformal dynamics of a particle in d spatial dimensions.

Then, Schr(d) is realised precisely as the centraliser of a null
translation within the conformal algebra so(2, d + 2) of R1,d+1.
The single central element of Schr(d), often interpreted as particle
number, is realised by this null translation.

Recall, we defined the subalgebra h �
u(1) ⊕ su(1, n) ⊂ so(2, 2n) as the centraliser of the generator
P+. It is clear that in the limit that R → ∞, the coordinate
transformation (2.2) and subsequent Weyl rescaling become
trivial, and as such P+ degenerates to become simply a null
translation. Indeed, this is also evident from the form of P+ in
terms of the conventional conformal generators, as in (2.19),
where we see that as R → ∞, we have P+ → P̂+.

Hence, in the limit R → ∞, the subalgebra h must become
some subalgebra of Schr(2n − 2) ⊂ so(2, 2n). Note that h needn’t
give us the whole Schrödinger algebra, since there may be
elements within so(2, 2n) that only commute with P+ strictly
in the R → ∞ limit. Indeed, this is precisely what happens. It is
evident that strictly in the R → ∞ limit, the spatial 2-form Ωij

drops out entirely, and thus the breaking of the rotation
subalgebra so(2n − 2) → u(1) ⊕ su(n − 1) does not occur.
One can indeed show that in taking the limit R → ∞ and
adding back in by hand the rotations broken by Ωij at finite R,
we do indeed recover the Schrödinger algebra Schr (2n − 2).

Things therefore work smoothly at the level of the algebra.
However, given a theory admitting the Ω-deformed non-
relativistic conformal symmetry u(1) ⊕ su(1, n), there is an
additional step we should take in order to recover the correct
global Schrödinger group. In particular, a particle interpretation

requires that the particle number N has discrete eigenvalues,
corresponding in turn to a compactification of the null direction
as x+ ~ x+ + 2πR+ for some R+, which by a Lorentz boost is seen to
be unphysical.

A convenient way to arrive at this setup—which from the 2n-
dimensional perspective coincides with that of DLCQ—is to first
introduce an orbifold. In particular at finite R the orbifold
restricts to operators that are periodic but with period 2πR/K
along the x+ direction for some K ∈ N. Equivalently, we project
onto the Hilbert subspace of states with P+ eigenvalue in K

R Z.
Now, taking K, R→∞while holding their ratio R+≔R/K fixed, we
do indeed arrive at null-compactified Minkowski space but in
such a way as to keep the Kaluza-Klein tower fixed. As required,
we arrive at Schr (2n − 2), with particle number N identified by4

P+ � −k
RN → − R+N, which does indeed have integer

eigenvalues.
Indeed, this precise DLCQ limit of a u(1) ⊕ su(1, n) theory

has been performed explicitly in the case n = 3, both at the level of
actions [13] as well as correlators [9].

3.2 State-Operator Map
A deep and powerful result tool in the study of relativistic
conformal field theory is the operator-state map, relating on
one hand conformal primary operators, and on the other,
eigenstates of the Hamiltonian of the theory on a sphere. An
analogous map exists in conventional non-relativistic conformal
field theories [1], which relates primary operators—defined in a
way entirely analogous to the above—to eigenstates of the
Hamiltonian augmented by a harmonic potential.

We will now show that construction applies in an almost
identical way to the u(1) ⊕ su(1, n) theories of this work. Said
another way, we verify that this operator-state map is not spoilt by
the Ω-deformation that parameterises our departure form the
Schrödinger algebra of conventional non-relativistic CFT. Indeed,
onemay recover from our construction the familiar map of Nishida-
Son in the Schrödinger limit as outlined in Section 3.1.

We approach the construction of our operator-state map from
the perspective of automorphisms of the symmetry algebra, a
well-established point of view in relativistic CFTs which has also
recently been formulated for non-relativistic CFTs governed by
the Schrödinger group [4].

Given some operator Φ(0) at the origin, we may define a state

|Φ〉 � Φ 0( )| 0〉. (3.3)
Next, let us perform aWick rotation in the symmetry algebra, defining
D = −iT. Then, if Φ(0) has scaling dimension Δ under T, then

D|Φ〉 � DΦ 0( )|0〉 � D,Φ 0( )[ ]|0〉 � −i T,Φ 0( )[ ]|0〉
� ΔΦ 0( )|0〉 � Δ|Φ〉, (3.4)

and thus |Φ〉 has eigenvalue Δ under D. Then, just as with
operators, we can use the ladder operators {H, K} and {Pi, Gi} to

4We choose this sign for N, in line with the general NRCFT literature, since
unitarity then requires N ≥ 0, as discussed in Section 3.3.
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raise and lower the D eigenvalue of |Φ〉. For instance, DH |Φ〉 =
(Δ + 2)H |Φ〉, while DGi |Φ〉 = (Δ−1)Gi |Φ〉.

We can consider |O〉 specifically for a primary operator O.
This state then sits at the bottom of a semi-infinite tower of
operators, since K|O〉 � 0 and Gi|O〉 � 0.

Thus, we have on one hand primary operators and their
descendants, all with definite scaling dimension, and on the
other hand, eigenstates of the operator D = −iT. Let us now
however explore an alternative frame, related by a similarity
transform on the Hilbert space and space of operators. As we
shall see, this transformation, which can be seen as a non-
relativstic analogue of the operator-state map of relativistic
CFT, relates the spectra of D with that of a combination of
the form ~ (H +K). In many physical examples, one can thus
study the spectrum of D by instead studying the dynamics of
particles trapped in a confining potential provided byK [1, 2]. We
now show that this operator-state map present in Schrödinger
invariant theories generalises to the theories studied here.

So let us consider transformed states and operators given by

|�Φ〉 � e−μHe
1
2μK|Φ〉, �Φ � e−μHe

1
2μKΦe− 1

2μKeμH, (3.5)
for some constant μ. Note, this transformation is clearly
consistent with the identification (3.3). In particular, for a
primary operator O we have

| �O〉 � e−μHe
1
2μKO 0( )|0〉 � e−μHO 0( )|0〉, (3.6)

as is familiar from the usual non-relativistic operator-state map
[1]. Then, this defines an alternative map between on one hand
the primary operatorsO and their descendants, and on the other,
towers of eigenstates of �D generated by acting with the ladder
pairs { �H, �K} and {�Pi, �Gi}.

Explicitly, the transformed operators under (3.5) are

�D � μH + 1
μ
K

�H � 1
4μ

μH − 1
μ
K + iT( )

�K � −μ μH − 1
μ
K − iT( )

�Pi � 1
2

Pi + 1
μ
iGi( )

�Gi � iμ Pi − 1
μ
iGi( ),

(3.7)

while the remaining generators, the rotations and central charge,
transform trivially as �B � B, �Jα � Jα and �P+ � P+. A primary state
| �O〉 then satisfies

�D| �O〉 � Δ| �O〉
�P+| �O〉 � p+| �O〉
�B| �O〉 � −rO B[ ]| �O〉
�J
α| �O〉 � −rO Jα[ ]| �O〉
�Gi| �O〉 � 0
�K| �O〉 � 0,

(3.8)

while acting with �H and �Pi generates towers of descendents.

Up to normalisation these operators (3.7) take the same form
as in conventional non-relativistic CFT [1, 5], and thus
automatically satisfy the same algebra in the R → ∞ limit.

3.3 Implications of Unitarity
If we assume unitarity in the original Minkowskian theory, then all
states will have non-negative norm. Just as is the case of Lorentzian
CFTs, we can use this assumption to place constraints on the
eigenvalues of certain operators. The original Minkowskian
symmetry generators were all Hermitian operators, but since we
are interested in states quantised in the analogue of radial
quantisation, we should instead consider the barred generators
of (3.7). Simple Hermiticity of the original generators implies for
the barred generators the following reality conditions

�D
† � �D

�H
† � − 1

4μ2
�K

�K
† � −4 μ2 �H

�P
†
i �

1
2μ

i �Gi

�G
†

i � 2 μi�Pi.

(3.9)

So let us now consider the primary state | �O〉 with data
{Δ, p+, rO[B], rO[Jα]}. Then, we have

| �H| �O〉|2 � 〈 �O| �H† �H| �O〉 � − 1
4 μ2

〈 �O | �K, �H[ ]| �O〉 � 1
4μ2

〈 �O| �D| �O〉

� Δ
4 μ2

〈 �O| �O〉.

(3.10)
If the theory is unitary, all states have non-negative norm,
implying that for primary states

Δ≥ 0. (3.11)
Since �H and �Pi raise Δ, this bound clearly holds for all
descendants as well. Let us similarly consider

|�Pi| �O〉|2 � i

2 μ
〈 �O | �Gi, �Pi[ ]| �O〉

� 1
2 μ

〈 �O| −�P+ + 1
2R

n + 1
n − 1

�B + βαii�J
α( )| �O〉, (3.12)

where i is not summed over. But let us now sum over i, so as to
exploit the tracelessness of βαij. Then, we arrive at

∑
i

|�Pi| �O〉|2 � n − 1
μ

−p+ − 1
2R

n + 1
n − 1

rO B[ ]( )〈 �O| �O〉, (3.13)

where recall that rO[B] ∈ 1
2Z is the charge ofO under a particular

U (1) rotation subgroup, while p+ is its central charge, taking
values in 1

RZ in theories descended from 2n-dimensional CFTs.
Again imposing non-negative norms, we require

M

R
≔ − p+ − 1

2R
n + 1
n − 1

rO B[ ]≥ 0. (3.14)

In particular, if p+ ∈ 1
RZ then M is rational. We can think of M as

playing a role analogous to particle number in conventional NRCFTs.
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Note, we see that a scalar primary must have p+ ≤ 0. It is
interesting to note that this condition appears to be manifestly
realised in known supersymmetric interacting gauge theory
examples of su(1, 3) theories [9], in a rather novel way. In
particular, in such theories, P+ is identified as instanton
charge, and the dynamics are constrained such that only anti-
instantons, corresponding to p+ ≤ 0, are allowed to
propagate [10].

We can use the positivity of Δ andM to improve our bound for
Δ. In particular, for any primary with M > 0, consider the
norm [2].

�H − R

2M
∑
i

�Pi
�Pi

⎛⎝ ⎞⎠| �O〉
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
2

≥ 0. (3.15)

This leads to the inequality

n − 1( )Δ Δ − n − 1( )( )≥ 4 n − 1( ) M2 +∑
α

rO Jα[ ]2⎛⎝ ⎞⎠, (3.16)

the right hand side is manifestly semi-positive, and we have
already shown Δ is too, so one arrives at

Δ≥ n − 1. (3.17)
for any primary with M > 0. Since we have 2n − 2 spacial
dimensions we see that, despite the Ω deformation, this bound
agrees with the usual bound for theories with a Schrödinger
symmetry algebra [2].

4 SUPERCONFORMAL EXTENSION IN SIX
DIMENSIONS

We have thus far explored the reduction of symmetries of an
even-dimensional conformal field theory when dimensionally
reduced along a particular conformally-compactified direction.
In six or fewer dimensions the conformal algebra admits
extensions to various Lie superalgebras and thus it is natural
to extend our analysis to determine the fate of supersymmetry
under such dimensional reductions. In particular, any surviving
supersymmetry constitutes a Lie superalgebra extension of
su(1, n).

The dimensional reduction we have constructed is novel only
for n ≥ 2, while the starting 2n-dimensional CFT can have
supersymmetry only for n = 1, 2, 3. Motivated by a well-
studied class of supersymmetric Lagrangian models with
su(1, 3) symmetry [7–11], we focus in this work on the case
of n = 3. It would be interesting however to explore the n = 2 case
in future work, where one would expect to recover an Ω-
deformed version of existing results on null reductions of
four-dimensional superconformal algebras [14].

4.1 osp(8*|4) → u(1)�osp(6|4)
In six-dimensions the only choices for relativistic superconformal
algebras are D (4, 1) and D (4, 2) corresponding to osp(8*|2) and
osp(8*|4) respectively. In the following we cover the latter, the
Bosonic part of which is so(6, 2) ⊕ so(5)R, which we

demonstrate is broken to u(1) ⊕ osp(6|4) by the conformal
compactification. It is straightforward to extend our discussion
to osp(8*|2) → u(1) ⊕ osp(6|2).

In Minkowski signature we choose conventions where all
Bosonic generators are Hermitian, as before. Their
commutation relations are the same as in Section 2.2. The
R-symmetry generators have the standard form

i R̂IJ, R̂KL[ ] � δJKR̂IL + δILR̂JK − δIKR̂JL − δJLR̂IK. (4.1)
with I ∈ {1, . . . , 5}. The Fermionic generators are six-dimensional
symplectic-Majorana-Weyl Fermions. The reality condition as
applied above is

Q̂αA � iΩAB Γ0( ) β
α Cβγ Q̂γB( )†, (4.2)

and similar for Ŝ, again this is in Minkowski signature, and the
dagger here is not transposing spin indices (spinors see it as just
complex conjugation). ΩAB and Cαβ are the five and six-
dimensional charge conjugation matrices, with A ∈ {1, . . . , 4}
and α ∈ {1, . . . , 8}.5 The Q̂ and Ŝ have opposite chirality under Γ*
= Γ012345.

Γ*Q̂ � −Q̂, Γ*Ŝ � Ŝ. (4.3)
Again we wish to find the maximal subalgebra of all elements that
commute with the element P+, defined in terms of the six-
dimensional (hatted) operators as

P+ � P̂+ + 1
4
ΩijM̂ij + 1

8R2
K̂−. (4.4)

We find that 3/4 of the supercharges commute with P+. Precisely
which set of supercharges this is depends on whether Ωij is self-
dual or anti-self-dual; without loss of generality, let us choose the
latter case. Then, letting a ± subscript denote chirality under Γ05,
the commuting supercharges are

Q−A ≔ Γ−Q̂−A
S+A ≔ Γ+Ŝ+A
Θ−A ≔

1
4

RΩijΓijQ̂A + 1
R
Γ−ŜA( ). (4.5)

The alternative case, where Ωij is self-dual, is found simply by
swapping all Γ05 chiralities. Then, their commutation relations
with the bosonic generators are

i Q−, H[ ] � 0 i S+ , H[ ] � −Γ+Q− i Θ− , H[ ]� 0

i Q− , Pi[ ] � 0 i S+, Pi[ ] � RΩijΓ+jΘ− i Θ−, Pi[ ] � 1
2R

ΓiQ−

i Q−, B[ ] � 0 i S+ , B[ ] � 0 i Θ− , B[ ] � 1
4
RΩijΓijΘ−

i Q− , Jα[ ] � 1
4
Lα
ijΓijQ− i S+ , Jα[ ]� 1

4
Lα
ijΓijS+ i Θ− , Lα[ ] � 0

i Q− , T[ ] � Q− i S+, T[ ] � −S+ i Θ−, T[ ] � 0

i Q− , Gi[ ] � −RΩijΓjΘ− i S+, Gi[ ]� 0 i Θ−, Gi[ ] � 1
4R

Γ−iS+

i Q− , K[ ] � −1
2
Γ−S+ i S+, K[ ] � 0 i Θ−, K[ ] � 0

5Note that ΩAB should not be confused with Ωij which we used in the coordinate
transformation. To ameliorate this problem we will always explicitly write the
indices.
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i Q−A, RIJ[ ] � 1
2
~ΓIJ( )B

A
Q−B i S+A, RIJ[ ] � 1

2
~ΓIJ( )B

A
S+B i Θ−A, RIJ[ ] � 1

2
~ΓIJ( )B

A
Θ−B,

(4.6)
while we have anti-commutators

i Q−αA, Q−βB{ } � −4 Γ−Π−C−1( )αβΩABH

i S+αA, S+βB{ } � −8 Γ+Π+C−1( )αβΩABK

i Θ−αA,Θ−βB{ } � −2 Γ−Π+C−1( )αβΩAB P+ − B/R( ) − 1/4Ωij Γ−ΓijΠ+C−1( )
αβ

~ΓIJΩ−1( )
AB
RIJ

i Q−αA, S+βB{ } � −2 Γ−Γ+Π+C−1( )αβ ΩABT + ~ΓIJΩ−1( )
AB
RIJ( ) − 1/2 ΓijΓ−Γ+Π+C−1( )

αβ
ΩABL

α
ijJ

α

i Q−αA,Θ−βB{ } � −2RΩij Γ−ΓjΠ+C−1( )
αβ
ΩABPi

i S+αA,Θ−βB{ } � −2RΩij Γ+Γ−ΓjΠ+C−1( )
αβ
ΩABGi,

(4.7)

where we have defined the projectors Π± = 1/2 (1 ±Γ*).
Thus there are 50 = 1 + 15 + 10 + 24 Bosonic generators

corresponding to the central extension, su(1, 3) and so(5), as
well as 3 × 8 = 24 Fermionic generators. The superalgebra is a
realisation of u(1) ⊕ osp(6|4).

The Fermionic generators can also be transformed by (3.6),
which yields

�Q−A � −1
2
iQ−A − 1

4μ
Γ−S+A

�S+A � −iS+A + μΓ+Q−A
�Θ−A � −iΘ−A.

(4.8)

Taking a symplectic-Majorana-Weyl reality condition for the six-
dimensional spinors we find the following Hermiticity properties
for the barred generators

�Q
†

−A � 1
4μ
ΩABCΓ0Γ− �S+B

�S
†

+A � −2 μΩABCΓ0Γ+ �Q−B
�Θ†

−A � ΩABCΓ0 �Θ−B.

(4.9)

Rather unusually for such algebras, along with a pair of
Fermionic generators that raise and lower the eigenvalue of T,
namely theQ− and S+, we also have generators that do not change
this eigenvalue; Θ−. We can see that while Q2

− ~ H and S2+ ~ K,
Θ2

− ~ M + (R − sym). This has an interesting effect on the usual
process of defining super-conformal primaries. Let a
superconformal primary be any state satisfying (3.8) and that
is further annihilated by �S+. Then, given such a state with scaling
dimension Δ, one can form a family of primary states all of
dimension Δ, by acting repeatedly with different �Θ− operators.
These states can be seen to be primary as acting again with �K, �Gi

or �S+ still annihilates the state

�K�Θ−αA| �O〉 � �K,Θ−αA[ ]| �O]〉 � 0
�Gi
�Θ−αA| �O〉 � �Gi,Θ−αA[ ]| �O]〉~ �S+| �O〉 � 0

�S+βB �Θ−αA| �O〉 � �S+βB, �Θ−αA{ } ~ �Gi| �O〉 � 0.
(4.10)

It follows inductively that any number of �Θ− times a primary is
still primary. One cannot form infinitely many of these states as
each Θ− is nilpotent, so each super conformal primary belongs to
a family of such states, an original bosonic state, plus those that
follow from the action of �Θ−. Unitarity bounds for
superconformal primary states can also be calculated using
(4.9). We consider first the norm

|�Θ−αA| �O〉|2 ≥ 0, (4.11)
which leads to the inequality

〈 �O|�Θ†
−αA �Θ−αA| �O〉 � ∑

β,B

ΩAB CΓ0( )αβ〈 �O|�Θ−βB �Θ−αA| �O〉≥ 0.

(4.12)
Summing again on α and A symmetrises on simultaneous
exchange of α, β and A, B, allowing us to replace the product
with the anticommutator. This then simply reproduces the earlier
bound M ≥ 0.

A more interesting bound is found from the norm

|Q−αA| �O〉|2 ≥ 0 (4.13)
which leads to

〈 �O| �Q†
−αA �Q−αA| �O〉 � 1

4 μ
∑
βB

ΩAB CΓ0Γ−( )αβ〈 �O| �S+βB �Q−αA{ }| �O〉≥ 0,

(4.14)
and implies

1
4 μ

∑
βB

ΩAB CΓ0Γ−( )αβ〈 �O| − 2 Γ−Γ+Π+C−1( )αβ ΩAB
�T + ~ΓIJΩ−1( )

AB
�R
IJ( )

− 1/2 ΓijΓ−Γ+Π+C−1( )
αβ
ΩABL

α
ij
�J
α| �O〉≥ 0.

(4.15)
Since �S+ annihilates primaries, we do not need to symmetrise to
replace the product with the anti-commutator. For example when
we pick α = 5 and A = 1 we find

Δ≥ rO J1[ ] + rO R12[ ] + rO R34[ ], (4.16)
where we defined �RIJ| �O〉 � −rO[RIJ]| �O〉.

It is interesting to note that, up to a choice of real form for the
respective algebras, the reduction of symmetry from the six-
dimensional (2, 0) superalgebra down to centraliser of P+ is
identical to the symmetry breaking pattern of the classical
ABJM theory, which realises manifestly only a particular
subalgebra of the full three-dimensional N � 8
superconformal algebras. A detailed discussion of this
correspondence, including its holographic origin, can be found
in [13].

5 FREE FIELDS IN VARIOUS DIMENSIONS

In this section we want to discuss examples of field theories in
(2n − 1)-dimensions with SU(1, n) symmetry. Our examples will
be obtained by the conformal compactification of a 2n-
dimensional free conformal theory. We will include the entire
Kaluza-Klein tower in our discussion but as the SU(1, n)
symmetry acts on each level independently one is also free to
truncate the actions to only include fields of particular levels.
Interacting versions of these theories can also be constructed by
starting with an interacting conformal field theory, for example
by considering the reduction of non-Abelian theories. In the
interests of clarity we will not consider these here.
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5.1 Scalars in 2n − 1 Dimesions
To begin we consider a free real scalar in (1 + 1)-dimensions, i.e.
n = 1. As we will see this case is special, yet familiar. In particular
we start with the action for a real scalar field:

S2D � 1
g2

∫ dx̂+dx̂−ẑ+ϕ̂ẑ−ϕ̂, (5.1)
where in this simple case

x̂+ � 2R tan x+/2R( ),
x̂− � x−.

(5.2)

Since ϕ̂ has scaling dimension zero we simply find ϕ̂ � ϕ. Thus we
expand

ϕ̂ � ∑
k∈Z

eikx
+/Rϕ k( ) x−( ). (5.3)

Note that ϕ(−k) � ϕ(k)†. In a more standard treatment of the two-
dimensional scalar one would solve the equations of motion which
sets ϕ(k), for k ≠ 0, to constant left-moving oscillators whereas
ϕ(0)(x−) is expanded in terms of right moving oscillators. One might
also consider including winding modes but we will not do so here as
the spatial direction is not compact.

Substituting into the action we find

S2D � 2π

g2 ∑
k∈Z

∫ dx− ikz−ϕ k( )ϕ −k( )

� 2πik

g2 ∑
k>0

∫ dx− z−ϕ k( )ϕ k( )† − ϕ k( )z−ϕ k( )†( ). (5.4)

By construction the SU(1, 1) symmetry separately on each of
the fields ϕ(k) at fixed k ∈ Z. Translations act as

ϕ k( ) → ϕ k( ) + ϵz−ϕ k( ). (5.5)
The Liftshitz scaling T is simply

ϕ k( ) → ϕ k( ) + λx−z−ϕ k( ). (5.6)
Finally the special conformal transformation K+ acts as:

ϕ k( ) → ϕ k( ) + 2κ x−( )2z−ϕ k( ). (5.7)
One can readily check that these are indeed symmetries to
first order.

However we see that they can be extended to

ϕ k( ) → ϕ k( ) + f x−( )z−ϕ k( ), (5.8)
for any function f (x−). Taking κ constant, linear and quadratic
leads to the H, T and K generators, respectively. In fact this is
simply the action of one-dimensional diffeomorphisms and
therefore yields an infinite-dimensional symmetry group with
generators

Ln � x−( )n+1z−. (5.9)
These satisfy the Witt algebra

Lm, Ln[ ] � n −m( )Lm+n, (5.10)
where H = L−1, T = L0, K = L1 form a finite dimensional
subalgebra. However just as in the familiar case of the string

worldsheet in the quantum theory, where we must normal
order the operators ϕ(k), we will generate a central
charge c = 1.

Let us now consider a free real scalar obtained from reduction
from D = 2n:6

S � − 1
2g2

∫ d2n−2xdx+dx−
�������
−det ĝ( )√

ĝμ]zμϕ̂z]ϕ̂, (5.11)

where ĝμ] is themetric in (2.5). As before we perform a conformal
rescaling to the metric (2.6) to obtain

S � 1
2g2

∫ d2n−2xdx+dx−

2z+ϕz−ϕ − | �x|2
4R2

z−ϕz−ϕ + Ωijx
jz−ϕziϕ − ziϕziϕ[ ]. (5.12)

Next we expand

ϕ̂ � cos x+/2R( )( )n−1ϕ
� cos x+/2R( )( )n−1 ∑

k

eikx
+/Rϕ k( ) x−, xi( ). (5.13)

Note that we do not necessarily require that k ∈ Z. In fact if we
impose that ϕ̂ is periodic on x+ ∈ [−πR, πR] then we require k to be
integer for n odd but half integer for n is even. In this way we find

S � πR

g2 ∑
k

∫ d2n−2xdx− 2ik
R
ϕ k( )z−ϕ −k( ) − | �x|2

4R2z−ϕ
k( )z−ϕ −k( )[

+Ωijx
jziϕ

k( )z−ϕ −k( ) − ziϕ
k( )ziϕ −k( )⎤⎦.

(5.14)
As discussed this action admits an SU(1, n) spacetime symmetry
acting on each level k independently.

5.2 Fermions in 2n − 1 Dimensions
Let us consider the reduction of a Fermion. Starting in 2n
dimensions we have

S � i

2g2
∫ d2n−2xdx+dx−det ê( )ψ̂êμ] γ] ∇̂μψ̂. (5.15)

Here ê]μ is the vielbein of the metric (2.5) and γ] the n-
dimensional γ-matrices of the tangent space. To keep our
discussion general we do not impose any conditions on ψ̂
and treat it as a Dirac spinor. In particular we assume that ψ̂ �
ψ̂†γ0 .

We see that ψ̂ has conformal dimension n − 1/2. Thus we
expand

ψ̂ x+, x−, xi( ) � cosn−1/2 x+/2R( )∑
k

eikx
+/Rψ k( ) x−, xi( ). (5.16)

Note that we do not necessarily impose ψ(k)† � ψ(−k).
This leads to the reduced action

6There is also a coupling to the spacetime Ricci scalar but since we are working on a
conformally flat metric, this term vanishes.
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S � πR

g2 ∑
k

∫ d2n−2 xdx−( − i�ψ k( )γ+z−ψ
−k( ) + i�ψ k( )γiziψ

−k( )

+ i
2
Ωijx

j �ψ k( )γiz−ψ
−k( )+ k

R
�ψ k( )γ−ψ

−k( ) + i

8
Ωij �ψ

k( )γijγ−ψ
−k( )),
(5.17)

where now γ−, γ+, γi are simply the γ-matrices of flat spacetime
(i.e. the same as γ] ).

We it is helpful to split ψ(−k) � ψ(−k)
+ + ψ(−k)

− where
γ−+ψ

(−k)
± � ± ψ(−k)

± . To clean things up we let

λ k( ) � 1
2

1 + γ−+( )ψ k( ) χ k( ) � 1
2

1 − γ−+( )ψ k( ). (5.18)
The action is then

S �
�
2

√
πR

g2 ∑
k

∫ d2n−2xdx− −iλ k( )†z−λ
−k( ) + iλ k( )†γ0γiziχ

−k( ) + iχ k( )†γ0γiziλ
−k( )(

+ k

R
χ k( )†χ −k( ) + i

2
Ωijx

jλ k( )†γ0γiz−χ
−k( ) + i

2
Ωijx

jχ k( )†γ0γiz−λ
−k( )+ i

8
Ωijχ

k( )†γijχ
−k( )).
(5.19)

Note that the last term essentially leads to a shift in k
for some components of χ(k), depending on the eigenvalue
of iγijΩij. It can also vanish if ψ̂ satisfies an additional
chirality constraint. In addition we have not specified the
range of k. Indeed ψ̂ contains both Weyl chiralities and in
principle we could take different choices of k for the two
chiralities. This is analogous to the various spin structures of
the NS-R string.

Finally we observe that in one-dimension we simply find

S �
�
2

√
πR

g2
∑
k

∫ dx− −iλ k( )†z−λ
k( ) + k

R
χ k( )χ k( )( ). (5.20)

One again the action has an infinite dimensional symmetry
generated by Ln provided that the χ(k) are invariant.
Furthermore we will encounter a central charge c = 1/2 once
we normal order the fields in the quantum theory.

5.3 A 1-Form Gauge Field in 3-Dimensions
Let us start with a free four-dimensional Maxwell gauge field

S � − 1
4e2

∫ d4x̂
���
−ĝ

√
ĝμλĝ]ρF̂μ]F̂λρ, (5.21)

where ĝμ] � ημ] is flat Minkowski space. Our first step is to
change coordinates, conformally rescale the metric to gμ] and
Fourier expand

Âμ � cos x+/2R( )Aμ

� cos x+/2R( ) ∑
k∈Z+1

2

eikx
+/RA k( )

μ x−, xi( ). (5.22)

Performing the integral over x+ we obtain

S � 2πR

e2
∑
k

∫ dx−d2x
1
2

ik

R
A k( )

− − z−A k( )
+( ) −ik

R
A −k( )

− − z−A −k( )
+( ) − 1

4
F k( )

ij F −k( )
ij[

+ ik

R
A k( )

i − ziA
k( )

+ + 1
2
Ωilx

lz−A k( )
+( )F −k( )

−i ],
(5.23)

where

A k( )
i � A k( )

i − 1
2
Ωijx

jA k( )
−

F k( )
ij � F k( )

ij − 1
2
Ωimx

mF k( )
−j + 1

2
Ωjmx

mF k( )
−i ,

(5.24)

and we must identify A(−k)
μ � (A(k)

μ )†. One could also consider a
non-Abelian gauge field but we will not do this here.

5.4 A 2-Form Gauge Field in 5-Dimensions
Finally we consider a free tensor in six-dimensions:

S � − 1
2 · 3!g2

∫ d6x̂
���
−ĝ

√
ĝμρĝ]σ ĝλτĤμ]λĤρ̂στ , (5.25)

where Ĥμ]λ � 3z[μB̂]λ]. We then conformally rescale the metric to
gμ] and Fourier expand

B̂μ] � cos2 x+/2R( )Bμ]

� cos2 x+/2R( )∑
k∈Z

eikx
+/RB k( )

μ] x−, xi( ), (5.26)

with (B(k)
μ] )† � B(−k)

μ] and reduce to 4 + 1 dimensions. In particular
if we let C(k) with components

C k( )
− � B k( )

+− C k( )
i � B k( )

+i , (5.27)
be a five-dimensional one-form with 2-form field-strength
(G(k)

−i , G
(k)
ij ) then we find

S � −2πR
g2 ∑

k

∫d4 xdx− 1
2

ik

R
B k( )
−i − G k( )

−i( ) ik

R
B −k( )
−i + G −k( )

−i + 1
2
Ωklx

lH −k( )
−ki( )(

+ 1
2

G k( )
ij − ik

R
B k( )

ij( )H −k( )
−ij + 1

2 · 3!H
k( )
ijkH −k( )

ijk ).
(5.28)

Here (H(k)
−ij , H

(k)
ijk ) are the 3-form field-strength components of

the five-dimensional 2-form (B(k)
−i , B

(k)
ij ) and

Bij � Bij − 1
4
Ωilx

lB−j − 1
4
Ωjlx

lBi−

Gij � Gij − 1
4
Ωilx

lG−j − 1
4
Ωjlx

lGi−

Hijk � Hijk − 1
2
Ωilx

lH−jk − 1
2
Ωjlx

lHi−j − 1
2
Ωklx

lHij−.

(5.29)

6 RECOVERING 2N-DIMENSIONAL
PHYSICS

In this section we would like to see how, by considering the entire
Kaluza-Klein tower, we can reconstruct the correlation functions
of the 2n-dimensional theory that we started with. Since there are
additional complications that enter when the field has a non-
trivial Lorentz transformation we will restrict our attention here
to scalar fields.

6.1 From One to Two Dimensions
Let us start with a tower of scalar fields in one-dimension that are
obtained from a two-dimensional scalar as given in (5.4). We can
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read off from the action (5.4) that the correlation functions are of
the form (k > 0)

〈0|ϕ k( ) x−
2( )ϕ l( ) x−

1( )|0〉 � g2

4πk
Θ x−

2 − x−
1( )δk,−l. (6.1)

Let us try to compute a two-point function of the original
two-dimensional theory. If we try to compute
〈0|ϕ(x̂2)ϕ(x̂1)|0〉 we do not find a translationally invariant
answer as ϕ is not a conformal primary. Thus instead we
consider the correlator

〈0|z+ϕ x2( )z+ϕ x1( )|0〉
� −∑

k

∑
l

eikx
+
2/Reikx+1/R kl

R2〈0|ϕ k( ) x−
2( )ϕ l( ) x−

1( )|0〉
� g2

4πR2 ∑
k

keik x+2−x+1( )/RΘ x−
2 − x−

1( ).
(6.2)

We note that the sum over the Fourier modes is ill-defined. We
can consider an iε prescription x+

2 − x+
1 → x+

2 − x+1 + iε but this
will only work for the k > 0 contributions (or similarly x+

2 −
x+
1 → x+

2 − x+
1 − iε will only work for k < 0). To obtain a finite

answer we therefore impose the additional condition

ϕ k( ) x−( )|0〉 � 0 k> 0. (6.3)
This condition is of course familiar from the usual Hamiltonian
treatment where ϕ(k) are the left moving oscillators. Thus we are
left with

〈0|z+ϕ x2( )z+ϕ x1( )|0〉 � g2

2πR2
∑∞
k�0

keik x+2−x+1+iε( )/RΘ x−
2 − x−

1( ). (6.4)

To evaluate this we note that

∑∞
k�0

eik x+iε( )/R � 1
1 − ei x+iε( )/R, (6.5)

and differentiating gives

∑∞
k�0

keik x+iε( )/R � ei x+iε( )/R

1 − ei x+iε( )/R( )2
� − 1

4 sin2 x + iε( )/2R( ).
(6.6)

Continuing we find (setting ε = 0)

〈0|z+ϕ x2( )z+ϕ x1( )|0〉 �
− g2

4π
1
4R2

1
sin2 x+

2 − x+
1( )/2R( )[ ]Θ x−

2 − x−
1( ). (6.7)

On the other hand we have

x̂+
2 − x̂+

1 � 2R tan x+
2/2R( ) − 2R tan x+

1/2R( )
� 2R tan x+

2 − x+
1( )/2R( ) 1 + tan x+

2/2R( )tan x+
1/2R( )[ ]

� 2R sin x+
2 − x+

1( )/2R( )
cos x+

2/2R( )cos x+
1/2R( ),

(6.8)
and hence

〈0|z+ϕ x2( )z+ϕ x1( )|0〉 �
− g2

4π
1

cos2 x+
2/2R( )cos2 x+

1/2R( ) 1

x̂+
2 − x̂+

1( )2[ ]Θ x−
2 − x−

1( ),
(6.9)

which in terms of the original coordinates is

〈0|ẑ+ϕ̂ x̂2( )ẑ+ϕ̂ x̂1( )|0〉 � −g
2

4π
1

x̂+
2 − x̂+

1( )2 Θ x̂−
2 − x̂−

1( ), (6.10)

which is the correct propagator for the two-dimensional
theory.

It is clear that from this treatment we will never be able to
reconstruct the right-moving sector as only Θ(x−

2 − x−
1 ) appears.

This is in part due to our choice of quantisation. By choosing x− as
“time” the right moving modes are forever stuck in one moment of
time. Curiously what we have obtained here can be viewed as an
action for a chiral Boson, constructed from an infinite number of
fields. Note that in this case there is no Ω-deformation. In higher
dimensions this is not the case and, as we will now show, it will
allow us to reconstruct the full higher dimensional theory.

6.2 From 2n − 1 to 2n Dimensions
Now we want to repeat our analysis of 2-point functions but now
in higher dimensions. For simplicity we use translational
invariance to put one operator at the origin:

Gn,k x−, xi( ) � 〈0̂|ϕ k( ) x−, xi( )ϕ −k( ) 0, 0( )|0̂〉, (6.11)
where |0̂〉 is a state in the (2n − 1)-dimensional theory that we
identify with the 2n-dimensional vacuum. This need not
correspond to the conventional choice of the (2n − 1)-
dimensional vacuum but we take it to be invariant under the
SU(1, n) symmetry. Assuming spherical symmetry about the
origin, we see from the action (5.14) that

−2ik
R
z− + | �x|2

4R2
z2− + zizi[ ]Gn,k x−, xi( ) � ig2

πR
δ x−( )δ2n−2 xi( ).

(6.12)
To this end, for spherically symmetric solutions, it is helpful to
introduce

z � x− + i

4R
xixi, (6.13)

so that the equation reduces to

z − �z( )z�z + k − n − 1
2

( )z + k + n − 1
2

( )�z[ ]Gn,k z, �z( )

� −g
2

2π
i/R

Vol S2n−3( ) i/2R
z − �z

( )n−2
δ z + �z( )δ z − �z( ). (6.14)

Ignoring the singularities at z � �z � 0 we find that the
solutions are

Gn,k z, �z( ) � dn,k
1
z�z

( )n−1
2 �z

z
( )k

Θ x−( ), (6.15)

for some constants dn,k. For n = 3 this agrees with the general
form for a 2-point function in a five-dimensional theory with
SU(1, 3) symmetry as constructed in [9].
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We can now reconstruct the 2n-dimensional two-point function:

〈0̂|ϕ̂ x̂( )ϕ̂ 0̂( )|0̂〉 � ∑
k

eikx
+/R cosn−1 x+/2R( )〈0|ϕ k( ) x−, xi( )ϕ −k( ) 0, 0( )|0〉

� cosn−1 x+/2R( ) 1
z�z

( )n−1
2 ∑

k

dn,kq
k Θ x−( ),

(6.16)
where

q � �z

z
eix

+/R. (6.17)

Here we again encounter the problem that the sum over all k
will not be well-defined as |q| = 1 and introducing an iε
prescription can only cure the convergence for large k or
large − k but not both. To continue we require that positive
modes Fourier modes of ϕ̂ annihilate the 2n-dimensional
vacuum |0̂〉:

ϕ̂
k( )

0, 0( )|0̂〉 � 0 k> 0, (6.18)
which ensures that 〈0̂|ϕ̂|0̂〉 is invariant under translation in x+. In
terms of ϕ this corresponds to

ϕ k( ) 0, 0( )|0̂〉 � 0 k> − n − 1
2

. (6.19)

Note that we encounter a problem if we quantize the theory
using the action (5.14) with x− as “time” since we obtain the
conjugate momentum

Π k( ) x−, xi( ) � −2ik
R
ϕ −k( ) x−, xi( ) − |x|2

2R2
z−ϕ −k( ). (6.20)

Thus [ϕ(k)(x−, xi),Π(k)(x−, 0)] = −2ikR−1 [ϕ(k)(x−, xi), ϕ(−k)(x−, 0)] is
non-zero for k ≠ 0 and therefore we can’t simultaneously impose

ϕ k( ) 0, 0( )|0̂〉 � 0 and ϕ −k( ) 0, 0( )|0̂〉 � 0, (6.21)
which is potentially in contradiction with (6.19).

Let us look at this more closely on a case-by-case basis. For
n = 1 there is no problem as only positive values of k appear in
(6.19). For n = 2 we must take k to be half-integer so the
smallest positive oscillator is ϕ(1/2) and the bound in (6.19)
becomes k >−1/2 which also does not include any ϕ(k) with k <
0. At n = 3 we see that we require ϕ(k)|0̂〉 � 0 for k >−1 which
includes k = 0 along with all positive k′s. Thus there is no
contradiction to imposing ϕ(0)|0̂〉 � 0 for n < 4. However for
n ≥ 4 do we run into a potential problem with (6.19). We will
not worry about this issue here as n > 3 corresponds to CFTs in
eight-dimensions or above and it is generally believed that
there are no non-trivial examples. Thus we restrict to n ≤ 3 and
are free to take |0〉 � |0̂〉 with the proviso that ϕ(0)|0〉 = 0 for
n = 3. Note that for n > 1, where ϕ(0) has a non-zero Lifshitz
scaling dimension, ϕ(0)|0〉 = 0 is also required for the vacuum
to preserve SU(1, n) symmetry.

To obtain the 2n-dimensional 2-point function we need

∑
k≥ n−1( )/2

dn,kq
k � C

i

2R
( )n−1

q
n−1
2

1
1 − q

( )n−1
. (6.22)

for some constant C ~ g2/πVol (S2n−3). In particular for the two
cases at hand this means that must have

dn,k � C
i

2R
( )n−1 k + n − 1

2
− 1

k − n − 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (6.23)

In the following subsection we provide a derivation of this
normalisation by requiring that we get the correct coefficient
of the delta-function in (6.14).

We also see from (6.22) that indeed we require k ∈ Z for odd n
and k ∈ Z + 1

2 for n even, corresponding to ensuring that ϕ̂ is
periodic on x+ ∈ [−πR, πR]. With these values for dn.k we find
(again assuming an iε prescription)

〈0̂|ϕ̂ x̂( )ϕ̂ 0̂( )|0̂〉 � C cosn−1 x+/2R( ) i

2R
( )n−1 1

z�z
( )n−1

2 q1/2

1 − q
( )n−1

Θ x−( )

� C cosn−1 x+/2R( ) i

2R
( )n−1 1

z�z
( )n−1

2 1
q−1/2 − q1/2

( )n−1
Θ x−( )

� C cosn−1 x+/2R( ) i

2R
( )n−1 1

ze−ix+/2R − �zeix+/2R
( )n−1

Θ x−( )

� C

−2x̂+x̂− + x̂ix̂i( )n−1 Θ x−( ).

(6.24)
Thus we recover the expected two-point function of the 2n-
dimensional theory.

6.2.1 Green’s Function Normalisation
In this appendix we want to present an argument that the
normalisation dn,k introduced in (6.15), which should be
chosen to ensure the correct delta-function coefficient in
(6.14), does indeed agree with the form (6.23). To do this we
consider an arbitrary smooth function f(x−, | �x|) � f(z, �z) and
look at the integral

I f[ ] � ∫
D
fDGn,k, (6.25)

with Gn,k given in (6.15). Here D is first quadrant of the z-plane
(corresponding to | �x|≥ 0 and x−≥ 0 due to the presence of
Θ(x−)) and

DGn,k � z − �z( )n−2 z − �z( )z�z + k − n − 1
2

( )z + k + n − 1
2

( )�z[ ]Gn,k.

(6.26)
We therefore need to show that we can find coefficients dn,k such
that

I f[ ] � −g
2

2π
i/R

Vol S2n−3( )
i

2R
( )n−2

f 0( ). (6.27)

To this end we observe that, away from z = 0, we can write

i

2
DGn,kdz ∧ d�z � dω, (6.28)

where ω � ω�zd�z + ωzdz with
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ω�z � idn,k

2
1 − γ( ) k + n − 1

2
( ) + γ k − n − 1

2
( ) z

�z
[ ] z − �z( )n−2 �z

z
( )k 1

z�z
( )n−1

2

ωz � −idn,k

2
γ k − n − 1

2
( ) + 1 − γ( ) k + n − 1

2
( ) �z

z
[ ] z − �z( )n−2 �z

z
( )k 1

z�z
( )n−1

2

.

(6.29)
Here γ is an arbitrary constant corresponding to the freedom to
add a total derivative ω → ω + dΓ with Γ � γ(z − �z)n−2Gn,k. Thus
we have

I f[ ] � ∫
D

fdω

� ∮
zD
fω − ∫

D

df ∧ ω.
(6.30)

Next we switch to polar coordinates z = reiθ and observe that

ω � ωθdθ

ωθ � −dn,k γ k − n − 1
2

( )eiθ + 1 − γ( ) k + n − 1
2

( )e−iθ[ ] eiθ − e−iθ( )n−2e−2ikθ .
(6.31)

Thus if we consider D as a wedge ranging between 0 and π/2 and
r ∈ [0,∞) then only the arc portions of the boundary contribute
to I[f] so we find

I f[ ] � f ∞( )∫ π/2

0
ωθdθ − ∫zrfωθdr ∧ dθ

� f ∞( )∫ π/2

0
ωθdθ − f ∞( ) − f 0( )( )∫ π/2

0
ωθdθ

� f 0( )∫ π/2

0
ωθdθ.

(6.32)

To compute this integral we observe that ωθ = zθφ with

φ� dn,k

2i
∑n−2
l�0

−1( )l n−2
l

( )
γ k− n−1

2
( )
k+ l− n−1

2

e−2i k+l−n−1
2( )θ +

1−γ( ) k+ n−1
2

( )
k+ l+1− n−1

2

e−2i k+l+1−n−1
2( )θ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(6.33)
and hence

∫ π/2

0
ωθdθ � φ π/2( ) − φ 0( ). (6.34)

Note that if k is in the range |k| > (n − 1)/2 then there is no value of
l such that the denominators in φ vanish. For |k| ≤ (n − 1)/2 we
must be more careful however, as discussed above, we are not
interested in this case here.

The integral (6.34) depends on γ and yet γ should
not affect the Green’s function Gk,n. In fact we find that
φ(0) does not depend on γ but φ(π/2) does. Thus we need to
impose a condition at θ = π/2 (corresponding to x− = 0 for
any �x) where the step-function Θ(x−) cuts off the integral. A
natural choice is φ(π/2) = 0. This in turn fixes γ (although its
actual value is inconsequential). Proceeding in this way
leads to

∫π/2
0

ωθdθ � −φ 0( ) � −dn,k

2i

k + n−1
2 − 1

k − n−1
2

⎛⎝ ⎞⎠−1

. (6.35)

Thus as a result we must take

dn,k � 2ig2

π
Vol S2n−3( ) i

2R
( )n−1 k + n − 1

2
− 1

k − n − 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (6.36)

which reproduces (6.23).

7 CONCLUSION AND COMMENTS

In this paper we have examined non-Lorentzian theories
with SU(1, n) spacetime symmetry in (2n − 1)-dimensions.
In particular we showed how one can construct such
theories by reduction of a conformally invariant
Lorentzian theory in 2n-dimensions. However other
constructions may well exist. We showed that the novel
operator-state map of the Schrödinger group extends
straightforwardly to SU(1, n) theories and demonstrated
how conventional non-relativistic conformal field theory
is recovered in a particular limit. We also explored some
unitarity bounds and a supersymmetric extension of the
spacetime symmetry algebra in five dimensions, which
has been explicitly realised in a class of gauge theory
examples [6–8].

We then presented examples of free theories in a variety of
dimensions with various field contents. Although we kept the
Kaluza-Klein tower of fields this is not necessary for SU(1, n)
symmetry and one can truncate the Lagrangians to a subset of
Fourier modes. One can also consider including interactions
(e.g. see [6–8]). We also discussed how to reconstruct the parent
2n-dimensional theory by keeping the entire Kaluza-Klein
tower of operators. For this the role of the Ω-deformation is
critical.

We note that in theories with SU(1, n) symmetry we have
constructed there are terms with the ‘wrong-sign’ kinetic term
induced by the Ω-deformation, when we view x− as time.
However at the spatial origin such “wrong-sign” terms
vanish. Given translational invariance this suggests that the
SU(1, n) symmetry can be used to regain control of the
theory. In particular, since there is a well-defined map to
the original, non-compact, Minkowskian theory we believe
that there should be a corresponding consistent treatment of
the lower-dimensional theory which alleviates any such
problems.
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