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Topological photonics is an emergent field at the cross of photonics and topological
physics which opens our eyes to novel topological phenomena and versatile photonic
effects. Photonic crystals (PhCs) are the optical analogs of conventional crystals that have
proven to be an excellent photonic platform to explore topological physics. Here, we
present a brief review of the all-dielectric topological PhCs by focusing on several
prominent milestones of topological phases, such as the Su-Schrieffer–Heeger model,
topological insulators, topological semimetals, and higher order topological phases. For
each topological phase, the topological invariants and the intriguing topological properties
as well as the potential applications are discussed. We conclude with the current challenge
and the prospect of all-dielectric topological PhCs.
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INTRODUCTION

Photonic crystals (PhCs), originally proposed by Yablonovitch [1] and John [2], are periodic
structures of electromagnetic materials in which the electromagnetic wave propagates in a similar
way as electrons move inside the conventional crystals (Figures 1A–C). Actually, many natural
structures, such as the colorful wings of butterflies (Figures 1D, E) [3, 4] and the skin of chameleons
(Figures 1F,G) [5], have PhC origins. PhCs not only decorate nature brilliantly but also provide a
powerful means to manipulate and control the propagation of light. For example, PhCs with
complete band gaps, which serve as light semiconductors, are highly desirable in controlling and
manipulating light [6–8]. Thanks to the Bloch band theory for the periodic systems, the photonic
band structure can be designed and tuned conveniently, making PhCs a key platform for studying a
broad spectrum of energy band-related physics [9].

The past decades also witnessed the birth of various topological phases of electrons in condensed
matter systems, such as topological insulators, superconductors, and semimetals [10–12]. One of the
well-known topological phases is the integer quantum Hall effect (IQHE), which is a quantized
version of the Hall effect discovered by Klitzing [13]. He found that two-dimensional (2D) electron
gas in a strong magnetic field with low temperatures has a quantized Hall conductance. The most
significant feature of IQHE is that electrons are localized in the bulk but unidirectionally propagate
along the boundaries without any backscattering, even in the presence of large defects. An invariant
called Chern number (or TKNN number) is employed to characterize the topological property of
IQHE [14, 15]. Haldane [16] later on proposed a toy model based on the honeycomb lattice for
supporting IQHE and demonstrated that the essential element to obtain IQHE is not a net magnetic
field but the breaking of time-reversal symmetry (T), which paves a way to realize IQHE in the
periodic lattice systems. Moreover, because the nontrivial topological phases can survive in the non-
interacting systems, the topology studies later on transferred to the photonics and directly led to the
birth of topological photonics [17–23]. Generally, topological photonics aims to explore the physics
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of topological phases of matter, which was originally discovered
in condensed matter physics, in a novel optical context. The first
case of topological photonics is proposed by Haldane and Raghu
[24, 25], who transferred IQHE to the realm of photonics in PhCs
made with nonreciprocal media. Subsequently, Haldane and
Raghu’s idea was experimentally demonstrated by Wang et al.
[26, 27] in the gyromagnetic PhCs in the microwave regime. In
the literature, the photonic analogs of IQHE with nonzero Chern
number and unidirectional and backscattering immunity edge
states (also known as chiral edge states) are generically termed
photonic Chern insulators (PCIs).

Although chiral edge states featured with unidirectional and
backscattering immunity are highly desirable in light guiding,
the use of PCIs in optical devices remains a challenge mainly
because magneto-optical responsive materials hardly exist in the
optical frequency. It is natural to explore the photonic analog of
the quantum spin Hall insulator (QSHI) [also known as a
photonic topological insulator (PTI)] with T, which makes it
more suitable for practical applications. In the context of
condensed matter physics, the QSHI can be regarded as two
copies of Chern insulators with opposite spin, where the spin-up
and spin-down electrons propagate in opposite directions

[28–31]. Therefore, a topological invariant named spin Chern
number can be employed to characterize the QSHI in some
situations. The sign of the group velocity of the edge states is
locked by the spin. The edge states featured with
spin–momentum locking are termed helical edge states.
Thanks to the Kramers theorem, the edge states of spin-up
and spin-down cross each other at k = 0 without opening a gap,
making it a pair of topologically protected edge states. However,
the Kramers theorem is no longer valid in photonics due to the
distinct nature between electrons and photons. Therefore, to
realize the photonic Kramers degeneracy is at the heart of the
design of PTIs. At the early stage of the development of
topological photonics, the optical polarization such as TE/
TM [32, 33], TE + TM/TE-TM [34], and LCP/RCP [35] are
utilized to act as the spin degree of freedom (DoF) in realizing
PTIs. Nevertheless, these schemes extremely rely on the
metamaterial with special electromagnetic properties, such as
the electromagnetic duality, which hardly exist in the optical
frequency. It was not until 2015 that Wu et al. [36] proposed a
scheme of PTI via crystalline symmetry, which goes beyond the
material limitation and largely promotes the development of the
all-dielectric topological photonics.

FIGURE 1 | All-dielectric PhCs in nature [3–5, 9]. Schematic model of (A) one-dimensional (1D), (B) two-dimensional (2D), and (C) three-dimensional (3D) PhCs
Reproduced permission from Ref. [9]. (D) Image of butterfly. (E) Electron micrographs of the scale on the wings of the butterfly, which exhibit long-range order.
Reproduced Permission from Ref. 3. (F) Reversible color change in chameleons. (G) Transmission electron microscopy images of guanine nanocrystals and the 3D PhC
model. Reproduced permission from Ref. 5.
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In addition, it is also deserved to mention the photonic analog
of valley Hall insulator that preserve T but lacks the parity
inversion symmetry (P). In the context of electronics, the
valley labels the degenerate energy extrema of bands in the
momentum space, which can be employed to process
information in modern electronic devices. By employing the
valley DoF, a number of intriguing phenomena such as valley
filters [37] and valley-selective Hall transport [38, 39] have been
achieved due to the valley-contrasting physics. Taking the
honeycomb lattice as an example, gapping the Dirac point via
staggering the sublattice potential results in the K and K′ valleys.
Electrons at different valleys (K and K′) propagate along the
boundaries in the opposite directions. Similar to the helical edge
states in QSHI, the edge states dispersion of a valley Hall insulator
exhibits opposite signs of the group velocity. In the view of
topological physics, the Berry curvature around K(K′) is
nonzero, giving rise to the valley-dependent edge state as local
topological effects. However, the Berry curvature at K and K′ is of
opposite value, which leads to a total Chern number of zero.
Inspired by the valley Hall effect in the valleytronics, Ma et al. [40]
first bring the valley DoF into photonic realms, leading to the
studies of photonic valley Hall insulators (PVHIs).

Very recently, a new class of topological insulators, called the
higher-order topological insulators (HOTIs) that are characterized
by higher-order bulk-boundary correspondence, were discovered
[41–44]. The higher-order topology manifests itself with nontrivial
boundary states that are more than one dimension lower than bulk
states. For example, a 2D HOTI hosts one-dimensional (1D) edge
states at the edge boundaries as well as zero-dimensional (0D)
corner states at the corner boundaries. Prototype HOTIs include
quadrupole and octupole topological insulators [41, 45, 46], three-
dimensional (3D) HOTIs in electronic systems with topological
hinge states [42, 47–49], and HOTIs with quantized Wannier
centers [43]. Although the concept of HOTI was first proposed in
electronics, the experimental confirmations of most HOTIs are still
absent. By contrast, HOTIs and the emergent higher-order
topological states have been realized in acoustic and photonic
systems, thanks to their versatile performance. To the best of our
knowledge, Li et al. [50] first reported the photonic HOTI in the
kagome lattice that exhibits topological bulk polarization.

In addition to the aforementioned 2D topological systems, it is
also deserved to pay attention to other topological systems
associated with their photonic counterparts. For example, the
1D Su-Schrieffer–Heeger (SSH) model, originally proposed for
polyacetylene [51], describes spinless fermions hopping on a
diatomic chain with staggered hopping amplitude.
Remarkably, exchanging the hopping amplitudes within a unit
cell yields two topologically distinct phases. A topological
invariant named Zak phase [62] for the SSH model can be
defined, which is an integer related to the ratio of the two
hopping amplitudes. The study of the 1D SSH model also
attracts much attention since it provides a concise physical
picture to understand the topological phenomena [52–54]. To
the best of our knowledge, Xiao et al. [55] first studied the
photonic analog of the SSH model based on 1D all-dielectric
PhCs. For 3D topological systems, both topological gapless and
topological gapped systems should be highlighted, where the

former includes the Dirac semimetal, Weyl semimetal, nodal
line semimetal, and so on, while the latter includes 3D topological
insulators and 3D HOTIs. It is natural to extend QSHI to 3D
version, which led to the study of 3D topological insulators.
However, the 3D topological gapless phase has no 2D
counterpart. A typical 3D topological gapless phase is the
Weyl semimetal, of which the band structure contains Weyl
points that corresponding to the solution of the massless Dirac
equations. The topological invariant of a Weyl point is called
topological charge (or chirality), which can be obtained by
integrating the Berry curvature over a small sphere enclosing
the Weyl point. When two Weyl points with opposite signs of
chirality merge, a 3D Dirac point featured with Z2 topological
charge appeared [12]. As a manifestation of topology, the surface
dispersion of Weyl (Dirac) semimetal map to helicoid (double-
helicoid) structure, of which the isoenergy contours are Fermi
arcs [56, 57]. To the best of our knowledge, the 3D all-dielectric
topological insulator are initially proposed by Lu et al. [58] and
Slobozhanyuk et al. [59], respectively, while the first report of
topological semimetal is implemented by Lu et al. [60, 61] in the
all-dielectric gyroid PhCs.

In this review, we focus on the topological photonics that is
made of all-dielectric PhCs. We first review various topological
phases and point out the initial proposals of the all-dielectric
topological photonics. Then, we introduce several milestones of
topological phases based on all-dielectric topological photonics,
from 1D to 3D, by discussing topological invariants, intriguing
properties, and potential applications. Finally, we conclude by
providing the outlooks for the future development direction of
the all-dielectric topological photonics.

1D ALL-DIELECTRIC TOPOLOGICAL
PHOTONIC CRYSTALS AND THEIR
INTERFACE STATES
We start from the 1D all-dielectric topological photonics based on
the SSHmodel. The topological invariant for the SSHmodel is the
Zak phase [62], which is defined as follows:

θ � ∫
π

−π
dkΛn,k, (1)

where Λn,k = i〈ψn,k(r)|∇kψn,k(r)〉 is the Berry connection for the
nth band and ψn,k(r) is the periodic part of the k-dependent Bloch
wavefunction. Note that we set the lattice constant to be unity
in Eq. 1.

In systems with P, the Zak phase can only be 0 (trivial) or π
(nontrivial). The integral of the Berry connection can be obtained
by dividing the Brillouin zone (BZ) into many small segments and
approximating the integral as the summation of the contribution
from each small segment. For example, if the BZ is divided into N
segments, then the Zak phase is given by [63].

θ � i ln∏N
i�1

〈ψn,ki

∣∣∣∣∣ψn,ki+1〉. (2)
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The aforementioned method to calculate the Zak phase is
termed the Wilson loop approach, which is a gauge invariant and
compatible with numerical implementations [63, 64]. In addition,
in the systems with P, the bulk states at the high symmetry points
are either even or odd. Therefore, the Zak phase can also be
determined via the parity inversion picture, which is given by

θ

π
� 1
2
[ξ(k � 0) − ξ(k � π)]: mod 2, (3)

where ξ(k = 0) and ξ(k = π) are the parity at k = 0 and π, respectively.
The nontrivial Zak phase manifested itself in the topological edge
mode as the most significant feature of the SSH model. Therefore, it
is expected that the interface states exist when the Zak phase of the
occupied band on the one side of 1D PhCs is different from that on
the other side. In 2014, Xiao et al. [55] theoretically demonstrated a
rigorous relation between the surface impedance of a 1D PhC and
the Zak phases of the bulk bands, which is given by

exp(iθn) � −sgn(ϕn)/sgn(ϕn−1). (4)
Here, θn is the Zak phase of the nth bulk band, and φn and φn−1

are the reflection phase of the nth gap and (n−1)th gap,
respectively. Soon after this work, Wang et al. [65]
experimentally demonstrated Eq. 4 by implementing a
reflection measurement. Figure 2A presents the structure of
the measurement setups, which are composed of a silver film
and a binary PhC. The values of the Zak phases can be acquired
via either numerical calculation or the parity inversion picture,
which are labeled in Figure 2B. In particular, the numerically
calculated reflection phase in Figure 2C shows that the Zak phase
of a specific band depends on the ratio of the reflection phase of
its upper and lower band gaps, which is in good agreement with
Eq. 4. Moreover, in Figure 2D, the experimental reflection
spectra of the PhCs (black lines) and silver/PhCs (red) reveal
that interface state only exists in the band gap with the nontrivial
Zak phase, which matches well with the numerical simulation in
Figure 2E. Remarkably, Eq. 4 unveils an inner connection
between the topology and optical property of a 1D PhC,
which provides an effective method to calculate the Zak phase
in order to avoid the cumbersome calculation [66], as well as to

generate PhC interface states for various applications [67]. Note
that Eq. 4 is even applicable to explain the origin of some
geometric-induced interface states, such as 2D PhC possessing
Dirac-like cone at k = 0 [68], mutually inverted PhCs [69], and
self-complementary checkerboard PhCs [70].

2D TOPOLOGICAL GAPPED PHASES
BASED ON ALL-DIELECTRIC PHOTONIC
CRYSTALS
Photonic Analog of Chern Insulator
As a landmark of topological photonics, Wang et al. [27] first
experimentally demonstrated unidirectional electromagnetic
wave featured with backscattering immunity in the 2D
magneto-optical square-lattice PhCs that made of yttrium iron
garnet (YIG). When an external DC magnetic field is applied, the
YIG produces strong magnetic anisotropy, making the PhC a
magnetic insulator. The breaking of T via an external applied
magnetic field is essential to realize the PCI. Figure 3A presents
the band structure of PhCs with T breaking adopted fromWang’s
scheme. The primitive unit cell is shown in the inset. The
nontrivial band topology can be demonstrated via the first-
principle calculation of band Chern number, which can be
implemented through the integral of Berry curvature in the
discretized Brillouin zone [71] or the Wilson loop approach
[63]. Here, we introduce the main idea of the Wilson loop
approach to calculate the band Chern number. Note that the
Chern number that is related to the Berry phase can be calculated
using the following relations [72]:

2πCn � −∫
π

−π
∫
π

−π
dkxdky(zkxΛ(y)n,k − zkyΛ

(x)
n,k)

� ∫
π

−π
dky zky

⎡⎢⎢⎢⎢⎢⎣∫
π

−π
dkxΛ

(x)
n,k
⎤⎥⎥⎥⎥⎥⎦

≡ ∫
π

−π
dθn,ky,

(5)

FIGURE 2 | One-dimensional all-dielectric topological PhCs [65]. (A) Schematic structure of the silver films/PhC systems. (B, C) Inner connection between Zak
phase and the sign of reflection phase, where (B) gives the photonic band structure with Zak phase and (C) displays the reflection phases of the 1D PhCs. (D)
Experimental and (E) numerical reflection spectra of the PhC (black line) and the silver film/PhC (red line). Reproduced permission with Ref. 65.
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where

θn,ky ≡ ∫
π

−π
dkxΛ

(x)
n,k (6)

is the Berry phase for the nth band along the loop kx ∈ [−π,π] for a
fixed ky which is obtained by the integration over the Berry
connection through Eq. 2 for the Wilson loop along kx. Note that
the 2D BZ is equivalent to a torus under the periodic boundary
condition for the Bloch states. Therefore, in numerical
calculations, the Chern number Cn is obtained by counting the
winding phase of when ky goes from −π to π. The Chern numbers
of the first three bands are determined by plotting the Berry phase
θn,kx (n = 1, 2, and 3) as functions of kx. For the first photonic
band, the Berry phase remains zero for all kx, leading to a zero
Chern number, while for the second (third) photonic band, the
Berry phase has a winding number of 1 (-2), corresponding to a
Chern number C2 = 1(C3 = −2), as shown in Figures 3B–D. The
Chern numbers calculated here from the Wilson loop approach
agree with the Chern numbers inferred from the chiral edge states
in using the bulk-edge correspondence [73]. As shown in
Figure 3E, the projected band structure (light blue areas) with
a chiral edge state (red line) is calculated in finite systems. A
typical field distribution of the chiral edge state is also displayed in
Figure 3F. To characterize the chiral edge states, the transmission
measurement is implemented. From Figure 3G, it is shown that a
strong forward transmission with the second band gap
approximately 50 dB greater than the backward transmission
at frequencies was observed at mid-gap frequencies. After this
milestone of work, a series of work related to the PCIs made of
gyromagnetic PhCs are implemented, such as cladding-free
guiding of topologically protected edge states [74, 75], steering
of multiple edge states along domain walls with large Chern
numbers [76, 77], designing of one-way slow-light PhC
waveguide [78–81], and antichiral edge states [82, 83]. It is
evident that the unidirectional backscattering immunity edge

states are expected to have a deep impact on the designing of
new optical devices. However, owing to the weak magnetic
response in optical materials and the difficulty in device
integration, the use of PCIs in optical devices remains a
challenge. To date, there is an urgent need to achieve one-way
waveguides at optical wavelength.

Photonic Analog of Quantum Spin-Hall
Insulator
In 2015, Wu et al. [36] proposed a scheme for achieving PTI by
using the all-dielectric PhC, which paves a way for the practical
application of PTI. In their seminal work, they start with an
expanded cell of photonic honeycomb lattice. Based on the band
folding mechanism, the well-known Dirac cone at K and K′
points are folded at Γ point, giving rise to the deterministic double
Dirac cone. By either stretching or compressing the expanded
unit cell, the double Dirac cone lifted into a trivial or nontrivial
band gap. Such a scheme for realizing PTI was later demonstrated
by observing the momentum–pseudospin locking in the
microwave experiment [84]. Inspired by Wu’s work, a large
number of studies of all-dielectric PTI are implemented based
on the photonic honeycomb lattice [85–96] and other specific
PhC structures, such as core–shell PhCs [97], Stampfli-triangle
PhCs [98], and moon-shaped PhCs [99].

Actually, to construct all-dielectric PTI, two issues should be
highlighted: one is to create the fourfold-degeneracy double Dirac
cone, which is the mother state of PTI, the other one is to find out
the photonic analog spin–orbit coupling terms. Guided by these
two principles, Xu et al. [97] systematically studied accidental
band degeneracy in an all-dielectric core–shell PhC (Figure 4A),
where the Mie resonance can be regarded as atomic orbits for
photonic bands [100]. Those atomic orbits can be of s, p, d, and f
nature and have well-defined parities at Γ point [see a typical band
structure of the core–shell PhCs in Figure 4B]. Note that due to
the C6 crystalline symmetry, both the photonic p-orbit and

FIGURE 3 | Photonic analog of Chern insulators [27, 63]. (A) Photonic band structure with applied magnetic field. The Chern number of each band is labeled in red. (B–D) The
evolution of the Berry phase of (B) the first, (C) the second, and (D) the third photonic band as the functions of kx. The winding number of the Berry phase gives the Chern number.
Reproducedpermission fromRef. 27. (E)Calculatedprojectedphotonicbandstructurewith the chiral edgestate exits at the interfacebetween themetal claddingand thePhC. (F)Chiral
edge state field distribution,which radiates only to the right alongmetal cladding. (G)Measure transmission spectra of the chiral edge states. Reproducedpermission fromRef. 63.
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d-orbit are double degenerate. Figure 4C gives the electric field
patterns of the p doublets (px and py) and d doublets (dxy and
dx2−y2). In particular, these four states can be linearly combined
into p± = (px ± ipy)/√2 and d± = (dx2−y2 ±idxy)/√2, where
subscript + (−) refers to pseudospin-up (pseudospin-down).
Apparently, the spin DoF here is synthesized by the orbital
angular momentum [89]. By tuning the inner and outer radii
of the core–shell PhCs, the phase diagram with multiple
accidental degeneracies can be acquired (Figure 4D).

Importantly, the double Dirac cone formed by the p and d
doublets plays a vital role in the phase transition between PTI and a
normal insulator. When the p band is below the d band (Figure 4E),
the gap exhibits a trivial phase, while flipping the order of the p and d
photonic bands results in a nontrivial band gap (Figure 4F). Such a
parity inversion (also known as p-d inversion) picture is at the heart
of the quantum spin Hall effect in electronic systems [31]. The
topological invariant of PTI can be also acquired via theWilson loop
approach [63]. Considering the Berry phase calculation for multiple
bands, the inner product 〈ψki

|ψki+1〉 in Eq. 2 should be replaced by
matrix Mk̂i,ki+1 of which the matrix elements are given.

Mki,ki+1
nn′ � 〈ψn,ki

∣∣∣∣∣ψn′,ki+1〉, n, n′ ∈ 1 . . .N, (7)
where the band indices n and n′ go over all the bands below the
concerned band gaps. Then, the Berry phase for a loop in the BZ

can be obtained by the matrix product of the Berry connection
matrix through the following form,

Ŵ � ∏N
i�1

M̂
ki,ki+1 . (8)

To evaluate the topological invariant, one needs the
eigenvalues of the above Berry phase matrix, which can be
written as follows:

θn ≡ −I[log(wn)], n � 1, . . . , N, (9)
where wn is the nth eigenvalues of the matrix Ŵ.

Typical Berry phase calculations for a trivial insulator and PTI
via the Wilson loop approach are displayed in Figures 4G,H. For
the trivial case, the Wilson loop of the first band has a constant
value equal to 0 (see left panel in Figure 4G), while that of the set
of the second and third bands does not exhibit any winding
properties (see right panel in Figure 4G). For the nontrivial case,
it is necessary to take the three lowest bands as a set since there is a
band crossing between the first and second bands. As shown in
Figure 4H, there is no winding but the Wannier centers are
localized at the edge of the unit cell, in contrast to that in the
trivial case. In the literature, such a topological insulator with
non-winding values of Wilson loop is called the photonic

FIGURE 4 | Photonic analog of quantum spin Hall insulator [97, 101]. (A) Schematic configuration of a triangular PhC using core–shell dielectric. (B) Typical band
structure of the core–shell PhCs, where the photonic-like orbits are labeled. (C) Phase diagram of the p − d inversion induced photonic topological insulator in the geometric
parameter spaces. (D) Eigen modes of p doublets (px, py) and d doublets (dxy, dx

2−y2), which served as the photonic pseudospin DoF. (E, F) Band structure of core–shell
PhCs with (E) trivial and (F) nontrivial band gaps. (G, H)Wannier center positions of the bands below the (G) trivial and (H) nontrivial band gap. Reproduced permission
from Ref. 101. (I) Projected band structure of two PhCs with helical edge states. (J) and (K) are the Ez field pattern in (I). Reproduced permission from Ref. 97.
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obstructed atomic limit [101, 102], which is easily confusing with
the concept of fragile topological insulator [96, 99, 102, 103].
Parallel to the topological invariant calculation, a typical
calculation of the edge state using two PhCs with distinct
topology is presented in Figure 4I. Note that the helical edge
states are gapped, which originate from theC6 symmetry breaking
at the boundary between the two different PhCs. The size of the
gap depends on the strength of the perturbation induced by the
symmetry breaking. However, the helical feature of the edge states
is still clearly demonstrated. As shown in Figures 4J,K, the edge
states at the J(K) point are mostly pseudospin-down (pseudospin-
up) as recognized from the real space distribution of the Poynting
vector with the negative (positive) group velocity.

Utilizing the robust transport properties of the topological
PhC interface, many intriguing physical systems are explored,
including unidirectional electromagnetic waveguide [84],
topological all-optical logic gates [104], topological whispering
gallery modes [105], coupled cavity-waveguide system [106],
topological converter [95], topological bulk laser [93], Dirac
vortex cavity [107], and Dirac vortex fiber [108]. Additionally,
all-dielectric PTIs also open an avenue to quantum optics. In
2018, Barik et al. [86] proposed an all-dielectric topological PhC
slab with 2D helical edge states confined in a dielectric slab, which
is highly desirable to achieve out-of-plane confinement without
the use of metal [85, 86, 90, 94]. They also demonstrate the strong
interface between the single quantum emitters and topological
photonic states [94]. Since all-dielectric PTIs take full advantage

of crystalline symmetry and thus go beyond the material
limitation, more in-depth research based on all-dielectric PTIs
is foreseen.

Photonic Analog of Valley Hall Insulator
Another kind of topology-related gapped systems with T is PVHIs
[40, 109–135]. Following the idea of valleytronics in the graphene,
Chen et al. [119] proposed a PVHI based on the modified
honeycomb PhCs, as shown in Figure 5A, where the radii of
the two rods are different in a unit cell. Note that most PVHI
studies are based on themodified honeycomb lattice [110, 111, 113,
116, 117, 119, 122, 123] since it provides a concise physical picture.
Other proposals, including detuning the refractive index [124, 125]
and specific geometric designs without P [40, 109, 112, 114, 115,
118, 120, 121, 126], are also adopted to study valley physics. From
the point of view of the symmetry, these PVHIs broke the C6

symmetry of the structure while preserved the C3 symmetry. A
typical band structure of PVHI is presented in Figure 5B, where
two inequivalent but T valleys (K and K′) with vortex-valley
locking (Figures 5C,D) are observed.

Using the valley as a binary DoF, the unidirectional excitation
of the valley chirality bulk states can be realized either by sources
carrying orbital angular momentum with proper chirality
(Figures 5E,F) [119] or by a point-like chiral source based on
the azimuthal phase matching condition [120]. Similar to the
pseudospin–momentum locking effect in PTIs, there also exist
valley pseudospin–momentum locking edge states at the interface

FIGURE 5 | Photonic analog of valley Hall insulator [119]. (A) Schematic of valley PhCs based on honeycomb lattice, where the radii of the two rods are different in a
unit cell. (B) Photonic band structure for transverse magnetic modes, in which four valley states are marked. (C,D) Valley-contrasting chiral orbital angular momentum
and the phase distributions of Ez at K and K′ valleys. (E, F) Electric intensity of the excited. (E) K′ and (F) K valley states. (G) Schematic of the edge constructed by two
distinct valley PhCs. (H) Valley-dependent edge states. (I) Electric field intensity at a specific frequency, illustrating the smooth propagating wave through the Z
sharp corners. Reproduced permission from Ref. 119.
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of two valley Hall PhCs (Figures 5G,H). Most studies hold that
the different valley topological index between two of the valley
Hall PhCs gives a nonzero valley Chern number and lead to the
emergence of the valley-dependent edge states. However, the
valley Chern number cannot be used as a topological invariant
because it is not a quantized value. Yang et al. [117] addressed
that the chiral vortex-valley locking plays a fundamental role in
the emergence of the valley-dependent edge states, rather than the
valley Chern number. Thanks to the chiral vortex-valley locking,
valley PhCs with valley-dependent edge states exhibit robust
transportation against sharp corners (Figure 5I).

For applications, many intriguing photonic devices, including
energy beam splitters [127, 131, 132, 135], logic gates [127],
switches [132], fiber [134], and filter [132] are created via PVHIs
[131, 132]. Based on valley edge states, the electrically pumped
terahertz quantum cascade laser is also realized [128]. Xie et al.
[133] constructed a topological cavity based on slow-light valley
Hall edge states, which exhibit a greatly enhanced Purcell factor.
Moreover, it is also desirable to realize PVHIs with a large Chern
number, which can support multimode topological transmission
[114, 118].

Photonic Higher-Order Topological
Insulators
The recent advances in higher-order topology deepen our
knowledge of the topology physics. The first HOTI proposed by
Benalcazar et al. [41] is a quadrupole topological insulator (QTI), in
which the bulk dipole is absent while the quantized, fractional
electric multipole moments emerged in the bulk. The key to realize
a QTI is to generate both positive and negative nearest-neighbor
couplings in a single physical system. In order to meet such
requirements, Chen et al. [136] proposed a scheme to realize
QTI in plasmon-polaritonic systems by utilizing the sign-
reversal mechanism for the coupling between the plasmon-
polaritonic cavities. In addition, He et al. [137] extended the
idea of QTI from tight-binding models to continuum theories.
They demonstrated that the quadrupole topological phase survived
in a gyromagnetic PhC, of which the quadrupole moment is
quantized by the simultaneous presence of crystalline symmetry
and broken T. Since the realization of photonic QTI is limited to
some specific systems, most studies focus on the photonic HOTIs
with quantizedWannier centers. In 2018, Ezawa [43] constructed a
tight-bindingmodel on the breathing kagome lattice, in which both
gapped edge states and corner states are observed. In his proposal,
the bulk polarization is served as a topological index, which can be
defined as the integral of the Berry connection. Intuitively, the bulk
polarization characterizes the displacement of the average position
of theWannier center from the center of the unit cell, giving rise to
the emergence of corner states in a finite system.

Inspired by Ezawa’s proposal, the studies on the HOTI based on
the kagome lattice are later transferred to various classical systems
[50, 138–143]. In particular, all-dielectric PhCs provide an
excellent platform to study HOTI with quantized Wannier
centers and thus have been extensively studied [50, 144–154].
Wang et al. [154] systematically studied the multiple higher-order
phase transition in a 2D hexagonal PhC with C3 symmetry, where

each unit cell consists of three dielectric rods, as illustrated in
Figure 6A. By moving the three dielectric rods along three
symmetry lines, the PhCs undergo a continuous geometry
transformation that includes three triangular lattice
configurations and three kagome lattice configurations. Typical
band structures for the triangular and kagome lattices are presented
in Figures 6B,C. Accompanying with the geometry
transformation, the first photonic band experiences multiple
phase transitions (Figure 6D). To characterize the higher order
topology, one can calculate the bulk polarization (Wannier center
positions) via the Wilson loop approach, as depicted in Figures
6E–G, or use the symmetry indicators [155], which can be achieved
from C3 eigenvalues at high symmetry points.

As a direct manifestation of the higher-order band topology,
onemay expect that corner states appear in a finite systemwith C3

symmetry. However, the emergence of corner states also depends
on the geometric configurations [141, 156]. We remark that often
the photonic bands do not have the chiral symmetry and the
corner states may shift into the bulk continuum and disappear
without the chiral symmetry. To avoid this, it is necessary to place
two all-dielectric PhCs with distinct higher topological phases
together in a finite system. Along with the geometry
transformation, various cases of the calculated supercell are
realized, where outside PhCs are of trivial phase, while the
insider PhCs are dependent. Several prototype geometries of
the calculated supercell are presented in Figure 6H. The eigen
solutions are displayed systematically in Figure 6I. Figures 6J,K
give the electric field |Ez| distributions of the eigenstates of the
corner and edge states. In particular, two types of corner states
emerge, as revealed in Refs. 50, 142, 154: type-I corner states due
to the nearest neighbor couplings and type-II corner states
originating from the next nearest-neighbor coupling.

In addition to the kagome lattice with C3 symmetry, the
nontrivial bulk polarization and corner states can also appear
in the expanded C4 symmetric lattice. A typical case is the 2D Su-
Schrieffer–Heeger model, which has been extensively studied
[151–153]. The 2D Zak phase is employed to characterize the
higher-order topology. The photonic HOTIs have been found
promising applications in high-quality nanocavities [157], cavity
quantum electrodynamics [158], topological nanolasers [159,
160], and multi-channel system fibers [161]. Since HOTIs set
up examples with multidimensional topological physics going
beyond the bulk-edge correspondence in conventional
topological insulators and semimetals, it opens a new avenue
toward exploring novel topological phenomena and optical
device applications.

Before proceeding, let us comment on the 1D and 2D all-
dielectric topological PhCs. Since all-dielectric PhCs are the
optical analogs of conventional crystals, it is natural to explore
different topological phases as well as to find the potential
applications based on all-dielectric PhCs. For 1D topological
photonics, the 1D PhC consists of a dielectric AB layered
structure that is regarded as a photonic analog of the SSH
model. Since the 1D binary PhC supports the Tamm mode,
which originates from the lack of translation symmetry, there is a
need to clarify the difference as well as a connection between the
topological interface states and Tammmodes [162]. For 2D cases,
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topological phases in all-dielectric PhCs are more diverse,
including PCI, PTI, PVHI, and HOTI. We notice that most
studies focus on the topological phase transition between trivial
and nontrivial phases, while that between two nontrivial phases is
very few [163–165]. It is expected that all-dielectric PhCs will
become more versatile if two topological phases coexist in a
single system. In addition, it is also interesting to introduce other
ingredients into the all-dielectric PhCs, such as layer DoF [111, 166].

3D TOPOLOGICAL PHASES BASED ON
ALL-DIELECTRIC PHOTONIC CRYSTALS

In the previous sections, we have reviewed the 2D topological
phases. It is natural to extend 2D topological phases to 3D cases. In
what follows, we give a brief review on several milestone works of
3D topological insulators and topological semimetals that aremade
of all-dielectric PhCs.

3D All-Dielectric Photonic Topological
Insulator
Generally, 3D topological insulators can be realized in both
T-broken and T-invariant system. A typical T-broken case is
the 3D quantum Hall phase [also known as a strong topological

insulator (STI)], which can be regarded as a 3D extended version
of the 2D quantum Hall phase. To the best of our knowledge, Lu
et al. [58] first proposed the photonic analog of 3D STI by using
PhCs composed of ferrimagnetic materials (Figure 7A). A
magnetic field bias breaks T and produces a nontrivial band
gap that hosts a single-surface Dirac cone (Figures 7B,C), which
is protected by the nonsymmorphic glide reflections. Such a
gapless surface state is fully robust against the random
disorder of any type. The evolution of Wannier centers is
calculated via the Wilson loop approach to characterize the
bulk topological invariant (Figure 7D).

Similarly, the 3D quantum spin Hall phase [also known as a
weak topological insulator (WTI)] can be viewed as a
generalization of the 2D quantum spin Hall phase and
corresponds to the T-invariant case. In 2011, Yannopapas
[167] proposed a scheme for realizing a 3D photonic analog of
WTI. A tetragonal lattice of uniaxial dielectric cavities in a lossless
metallic host was investigated using a coupled dipole method,
which is the photonic counterpart of topological crystalline
insulators in an electronic system [168]. This system with T
and point-group symmetry exhibit a complete 3D band gap and
gapless topological surface states. Topological photonics with 3D
band gaps also have been proposed by using 3D bianisotropic
structures [59, 169]. As shown in Figure 7E a stacked layer of
triangular arrays of mirror-symmetry-broken dielectric rods

FIGURE 6 | Photonic higher order topological insulator [154]. (A) 2D PhCs with C3 symmetry, where the primitive cell is indicated by hexagonal dotted lines. (B, C)
Typical band structure for (B) triangular PhCs and (C) kagome lattice. (D) Eigenfrequencies of the first and second photonic bands at the K point as a function of
geometric parameter d. (E–G) The calculated Berry phase for PhCs with (E) the phase [0,0], (F) the phase [−1,1], and (G) the phase [−1,0]. The bulk polarization is shown
in red dots. The corresponding Wannier center configuration is also displayed in the insets. (H) Schematic illustration of large triangular supercell with two types of
PhCs with distinct higher order topology. (I) Eigenfrequencies of the photon as functions of the geometric parameter d. (J–L) Typical electric field pattern for (J) type-I
corner state, (K) edge state, and (L) type-II corner state. Reproduced permission from Ref. 154.
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(Figure 7F) supports a conical dispersion of topological surface
states (Figures 7G,H) and backscattering immunity propagation
of the surface modes. The scheme for achieving 3D photonicWTI
paves a way to various optical devices, such as topological lasers
and circuits in previously inaccessible 3D geometries.

3D All-Dielectric Photonic Topological
Semimetals
As one of the earliest studies of topological semimetals, Lu et al.
theoretically [60] and experimentally [61] demonstrated the
existence of Weyl points in gyroid PhCs. The Weyl point
refers to the 3D linear point between two bands, of which the
dispersions are governed by the Weyl Hamiltonian. Unlike the
2D Dirac point, which is protected by PT symmetry, the 3DWeyl
point only exists on the systems that lack T or P or both
[170–176]. Such a character makes a single Weyl point
absolutely robust to any perturbations. The only way to
eliminate and create Weyl points is through pair annihilations
and pair generations of Weyl points with opposite chirality. It
seems the emergence of Weyl points is somehow accidental,
nevertheless, one can have a 3D topological phase with symmetry
protection first and then have the Weyl points by symmetry
reduction (Figure 8A) [170–173]. From this point of view, Wang

et al. [170, 171] systematically studied the 3D Z2 Dirac point,
which can be viewed as a pair of Weyl points with opposite
chirality, based on all-dielectric PhCs. Usually, the 3D Dirac
points are unstable when two Weyl points annihilate each other
and form a gap. Nevertheless, Wang et al. [170, 171] pointed out
that 3D Z2 Dirac can survive stably via certain crystalline
symmetry, and split into the Weyl points when the P is broken.

As an illustration, Figure 8B presents a kind of 3D all-
dielectric PhCs with nonsymmorphic symmetry. In each unit
cell, there are two dielectric blocks of the same shape and
permittivity, which are connected via screw symmetry Sx and
Sy (Figure 8C). To realize the Z2 photonic Dirac point, both
Kramers double degeneracy and parity-inversion should be
synthesized, in which the crystalline symmetry plays a key role
in realizing these two elements. On the one hand, anti-unitary
operators that combine the screw symmetry with T symmetry are
created to simulate the photonic Kramers degenerate pairs. On
the other hand, the eigenvalue of a two-fold rotation symmetry
operator is employed to define the parity of photonic states. The
distribution of 3D Z2 Dirac points in the BZ is displayed in
Figure 8D.

The 3D Dirac point emerges from the band crossing of two
doublets with distinct parities (Figures 8E,F). The spit–orbit
physics of the Dirac points can be understood via a symmetry-

FIGURE 7 | Three-dimensional photonic topological insulators [58, 59]. (A) Three-dimensional all-dielectric PhCs with topological band gap. (B) Bulk band
structure when magnetization is applied. (C) Single-surface Dirac cone in the M′ − M line. (D)) Gapless hybrid Wannier centers corresponding to the nontrivial surface
states in (C). (E) Schematics of the domain wall formed by the two 3D PTIs. (F, G) Band diagrams of topological surface states supported by the domain wall in (E) with
2D cut-planes (F) ω-k|| and (G) ω-kz, respectively. (H) Conical Dirac-like dispersion of the surface states. Reproduced permission from Refs. 58, 59.
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based ~k·p ~ theory. When the space symmetry is reduced, it is
expected that the Dirac point will split into Weyl points. As shown
in Figures 8G,H, by transforming the dielectric blocks into other
shapes, namely, breaking the screw symmetry while keeping the
two-fold rotation symmetry, the crossing between the band with
distinct parities (i.e., p and d bands) result in Weyl points

(Figure 8I). Following this idea, the Weyl point is also realized
in the metasurface [172] and twisted 1D dielectric PhCs [173].
Because the 3D Dirac point acts as the mother state of the Weyl
points, it is interesting to explore the properties of surface states
according to the bulk-edge correspondence principle. Figure 8J
shows a gapless surface band traversing the projected photonic

FIGURE 8 | Photonic topological semimetals [171]. (A) Relationship between type-I/type-II Dirac points and Weyl points. (B) Three-dimensional structure of a unit
cell, where the boundaries are indicated by black lines. (C) Illustration of the two screw symmetry Sx and Sy in top-down view. (D) The bulk and surface Brillouin zone, with
the distribution of the Dirac points. (E) Parity inversion induced type-I and type-II Dirac points on theMA line. (F)Magnetic field profiles of the p- and d-wave doublets, p1/2
and d1/2, respectively. The doubly degenerate states are connected by the screw symmetries. (G) Unit cell structure of the symmetry-broken PhCs. (H) Three-
dimensional viewwith zoom-in illustration of structure deformations. (I)Band structure on theMA line for part of the first six photonic bands indicates, which the crossings
are identified as type-I and type-II Weyl points. (J) Surface band and projected bulk band on PhC–air surface. (K) Energy density and Poynting vector profiles for the
topological surface states at two opposite wavevectors. Reproduced permission from Ref. 171.

TABLE 1 | Summary of various all-dielectric photonic topological systems mentioned in this review.

Dimensionality
topological system

Topological invariant Significant feature Potential applications

1D Photonic SSH Zak phase Interface states Generate specific interface states
2D PCI Chern number Chiral edge states Unidirectional and backscattering immunity waveguide
2D PQSHI Spin Chern number Helical edge states Whisper gallery waveguide, all-logic gates, and lasers
2D PVHI Vortex chirality Valley-dependent edge states Energy beam splitter, all-logic gates, fiber, and filter
2D HOTI Polarization 1D gapped edge states and 0D corner states Nanocavity, nanolaser, and fibers
3D STI Z2 invariant Single-surface Dirac cone Optical diodes
3D WTI Z2 invariant Two-surface Dirac cone with spin locking High-power laser, optical diodes, and photonic computer chips
3D Weyl semimetal Topological charge Helicoid surface states Anomalous refraction
3D Dirac semimetal Z2 topological charge Doubled-helicoid surface states Open cavity and anomalous refraction
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band gap. The topological surface states carry finite total angular
momentum as indicated in Figure 8K by the winding profile of the
Poynting vectors. The sign of the photonic total angular moment is
changed when the wavevector is reversed. This property is similar
to the “spin–wavevector locking” on the edges of topological
insulators. Based on such a salient feature, one can further
study frequency-, angle-, wavevector-, and angular momentum-
selective transmission in Weyl/Dirac PhCs. In addition, note that
the topological surface states are below the light-line and hence can
form cavity states on the PhC–air interfaces with no need for
additional cladding. Last but not least, the conical dispersions in
Dirac/Weyl all-dielectric PhCs provide a newmechanism to realize
unconventional optical properties, such as anomalous
refraction [171].

CONCLUSION AND OUTLOOK

The past decade has witnessed the rapid development of
topological photonics, which is beneficial for both electronics
and photonics. Although many exotic topological phenomena
have been demonstrated, the aid of metamaterials hinders the
application of topological photonics. Therefore, it is highly
desirable to realize all-dielectric topological PhCs, which take
full advantage of the crystalline symmetry and get rid of the
limitation of the material. In this review, we give a brief review on
several milestones of all-dielectric topological PhCs by discussing
their topological invariants, intriguing properties, and potential
applications. A summary of all-dielectric topological PhCs
mentioned in this review is provided in Table 1. We conclude
that all-dielectric PhCs served as a common photonic system have
achieved great success in both emulating various topological
phases and finding potential application in light manipulation.

All-dielectric topological PhCs will continue to evolve in the
coming years, as in the past decade. The scope of all-dielectric

topological PhCs is becoming diverse and can be further
expanded by combing nonlinearity [177–181], non-hermiticity
[182–186], real space topology (such as dislocation [187] and
disinclination [188–190]), and synthesis dimension [196–206]. In
particular, it was reported recently that non-hermiticity
fundamentally changes the topological band theory, leading to
exotic phenomena like non-Hermitian skin effect, as confirmed
in the 1D SSH model [191–195]. By adding gain and loss into the
all-dielectric PhCs, one can study non-Hermitian topological
photonics in a direct way [182–185]. Alternatively, as an open
system, topological waveguide-cavity coupled structure made
of all-dielectric, offers an excellent platform to study non-
Hermitian topological physics [186]. In addition to non-
hermiticity, it also deserves to study the all-dielectric
topological PhCs with the ingredient of synthesis
dimension. It is generally believed that the dimension of a
physical system cannot be larger than its geometric
dimensionality. However, with the introduction of synthetic
frequency dimension, and combined with the intrinsic
geometric dimension, one can investigate higher
dimensional physics. These studies may sustain further
developments of all-dielectric topological photonics and
offer novel methods for light manipulations.
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