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In this study, we obtained low-rank approximations for the solution of parametric non-
symmetric elliptic partial differential equations. We proved the existence of optimal
approximation subspaces that minimize the error between the solution and an
approximation on this subspace, with respect to the mean parametric quadratic norm
associated with any preset norm in the space of solutions. Using a low-rank tensorized
decomposition, we built an expansion of approximating solutions with summands on
finite-dimensional optimal subspaces and proved the strong convergence of the truncated
expansion. For rank-one approximations, similar to the PGD expansion, we proved the
linear convergence of the power iteration method to compute the modes of the series for
data small enough. We presented some numerical results in good agreement with this
theoretical analysis.
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1 INTRODUCTION

This study deals with the low-rank tensorized decomposition (LRTD) of parametric non-symmetric
linear elliptic problems. The basic objective in model reduction is to approximate large-scale
parametric systems by low-dimension systems, which are able to accurately reproduce the
behavior of the original systems. This allows tackling in affordable computing times, control,
optimization, and uncertainty quantification problems related to the systems modeled, among other
problems requiring multiple computations of the system response.

The PGD method, introduced by Ladévèze in the framework of the LATIN method (LArge Time
INcrement method [22]) and extended to multidimensional problems by Ammar et al [2], has
experienced an impressive development with extensive applications in engineering problems. This
method is an a priori model reduction technique that provides a separate approximation of the
solution of parametric PDEs. A compilation of advances in the PGD method may be found in [11].

Among the literature studying the convergence and numerical properties of the PGD, we can
highlight [1], where the convergence of the PGD for linear systems of finite dimension is proved. In
[8], the convergence of the PGD algorithm applied to the Laplace problem is proven, in a tensorized
framework. The study [9] proves the convergence of the PGD for an optimization problem, where
the functional framework is strongly convex and has a Lipschitz gradient in bounded sets. In [17], the
authors prove the convergence of an algorithm similar to a PGD for the resolution of an optimization
problem for a convex functional defined on a reflective Banach space. In [16], the authors prove the
convergence of the PGD for multidimensional elliptic PDEs. The convergence is achieved because of
the generalization of Eckart and Young’s theorem.
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The present study is motivated by [5], where the authors
present and analyze a generalization of the previous study [16]
when operator A depends on a parameter. The least-squares
LRTD is introduced to solve parametric symmetric elliptic
equations. The modes of the expansion are characterized in
terms of optimal subspaces of a finite dimension that
minimize the residual in the mean quadratic norm generated
by the parametric elliptic operator. As a by-product, this study
proves the strong convergence in the natural mean quadratic
norm of the PGD expansion.

A review of low-rank approximation methods (including
PGD) may be found in the studies [18, 19]. In particular,
minimal residual formulations with a freely chosen norm for
Petrov–Galerkin approximations are presented. In addition,
the study [10] gives an overview of numerical methods based
on the greedy iterative approach for non-symmetric linear
problems.

In [3, 4], a numerical analysis of the computation of modes for
the PGD to parametric symmetric elliptic problems is reported.
The nonlinear coupled system satisfied by the PGD modes is
solved by the power iteration (PI) algorithm, with normalization.
This method is proved to be linearly convergent, and several
numerical tests in good agreement with the theoretical
expectations are presented.

Actually, for symmetric problems, the PI algorithm to solve
the PGD modes turns out to be the adaptation of the alternating
least-squares (ALS) method thoroughly used to compute
tensorized low-order approximations of high-order tensors.
The ALS method was used in the late 20th century within the
principal components analysis (see [6, 7, 20, 21]) and extended in
[27] to the LRTD approximation of high-order tensors. Its
convergence properties were subsequently analyzed by several
authors; local and global convergence proofs within several
approximation frameworks are given in [14, 25, 26]. Several
generalizations were reported; as mentioned, without intending
to be exhaustive, in the studies [12–15, 23].

The convergence proofs within the studies [14, 25, 26] cannot
be applied to our context as we are dealing with least-squares with
respect to the parametric norm intrinsic to the elliptic operator,
even for symmetric problems. Comparatively, the difference is
similar to that between proving the convergence of POD or PGD
approximations to elliptic PDEs. The POD spaces are optimal
with respect to a user-given fixed norm, while the PGD spaces are
optimal with respect to the intrinsic norm associated to the
elliptic operator (see [5]). This use of the intrinsic parametric
norm does not make it necessary the previous knowledge of the
tensor object to be approximated (in our study, the parametric
solution of the targeted PDE), as is needed in standard ALS
algorithms.

In the present study, we propose an LRTD to approximate
the solution of parametric non-symmetric elliptic problems
based upon symmetrization of the problem (Section 2). Each
mode of the series is characterized in terms of optimal
subspaces of finite dimension that minimize the error
between the parametric solution and its approximation on
this subspace, but now with respect to a preset mean quadratic
norm as the mean quadratic norm associated to the operator

in the non-symmetric case is not well-defined (Section 3). We
prove that the truncated LRTD expansion strongly converges
to the parametric solution in the mean quadratic norm
(Section 4).

The minimization problems to compute the rank-one optimal
modes are solved by a PI algorithm (Section 5). We prove that
this method is locally linearly convergent and identifies an
optimal symmetrization that provides the best convergence
rates of the PI algorithm, with respect to any preset mean
quadratic norm (Section 6).

We finally report some numerical tests for 1D
convection–diffusion problems that confirm the theoretical
results on the convergence of the LRTD expansion and the
convergence of the PI algorithm. Moreover, the computing
times required by the optimal symmetrization are compared
advantageously to those required by the PGD expansion
(Section 7).

2 PARAMETRIC NON-SYMMETRIC
ELLIPTIC PROBLEMS

Let us consider the mathematical formulation for parametric
elliptic problems introduced in [5] that we shall extend to non-
symmetric problems.

Let (Γ,B, μ) be a measure space, where we assume that the
measure μ is σ-finite. Let H be a separable Hilbert space
endowed with the scalar product (·, ·) and associated norm
‖ ·‖, denote by H′ the dual space of H and by 〈·, ·〉 the duality
pairing between H′ and H. We will consider the Lebesgue
space L2μ(Γ) and the Bochner space L2μ(Γ;H) and its dual space
L2μ(Γ;H′), denoting 〈·, ·〉 as the duality between L2μ(Γ;H) and
L2μ(Γ;H′). We are interested in solving the parametric family
of variational problems:

Find u: Γ → H such that
a u γ( ), v; γ( ) � 〈f γ( ), v〉, ∀ v ∈ H, μ − a.e. γ ∈ Γ,{ (1)

where a(·, ·; γ): H × H → R is a parameter-dependent, possibly
non-symmetric, bilinear form and f(γ) ∈ H′ is a parameter-
dependent continuous linear form.

It is assumed that a (·, ·; γ) is uniformly continuous and
uniformly coercive on H μ-a. e. γ ∈ Γ and there exist positive
constants α and β independent of γ such that,

a w, v; γ( )≤ β ‖w‖ ‖v‖, ∀w, v ∈ H, μ − a.e. γ ∈ Γ, (2)
α ‖w‖2 ≤ a w,w; γ( ), ∀w ∈ H, μ − a.e. γ ∈ Γ. (3)

By the Lax–Milgram theorem, problem (1) admits a unique
solution μ-a. e. γ ∈ Γ. To treat the measurability of u with
respect to γ, let us consider the problem:

Let f be a function that belongs to L2μ(Γ;H′) such that f(γ) =
f(γ) μ-a. e. γ ∈ Γ,

Find u ∈ L2
μ(Γ;H) such that

�a u, v( ) � 〈f , v〉, ∀ v ∈ L2
μ(Γ;H),{ (4)

where �a: L2μ(Γ;H) × L2μ(Γ;H) → R is defined by
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�a w, v( ) � ∫
Γ
a w γ( ), v(γ); γ( ) dμ γ( ). (5)

By the Lax–Milgram theorem, owing to (2) and (3), problem
(4) admits a unique solution. Problems (1) and (4) are equivalent
in the sense that (see [5])

u γ( ) � u γ( ), μ − a.e. γ ∈ Γ.

We shall consider a symmetrized reformulation of the
formulation (4). Let us consider a family of inner products in
H, {(·, ·)γ}γ∈Γ which generate the norms ‖ ·‖γ uniformly equivalent
to the ‖ ·‖ norm and there exist αH > 0 and βH > 0 such that,

αH ‖v‖≤ ‖v‖γ ≤ βH ‖v‖ for all γ ∈ Γ, (6)
considering the associated scalar product in L2μ(Γ;H) and∫Γ(·,·)γ dμ(γ). As �a is continuous and coercive on L2μ(Γ;H), there
exists a unique isomorphism in L2μ(Γ;H) that we denoteA, such that

∫
Γ

Aw( ) γ( ), v γ( )( )γ dμ γ( ) � �a w, v( ), ∀w, v ∈ L2
μ(Γ;H). (7)

Let us define a new bilinear form
�b: L2μ(Γ;H) × L2μ(Γ;H) → R by

�b w, v( ) ≔ �a w,Av( ). (8)
It is to be noted that �b is symmetric, as it can be written as

�b w, v( ) � ∫
Γ

Aw( ) γ( ), Av( ) γ( )( )γ dμ γ( ). (9)

Thus, as a consequence of (2) and (3), the form �b defines a scalar
product in L2μ(Γ;H) and generates a norm equivalent to the usual
norm is this space.

Now, problem (4) is equivalent to

Find u ∈ L2
μ(Γ;H) such that

�b u, v( ) � 〈f ,Av〉, ∀ v ∈ L2
μ(Γ;H).{ . (10)

We shall use this formulation to build optimal
approximations of problem (1) on subspaces of finite-
dimension, when the form �a(·, ·) is not symmetric. For a
given integer k ≥ 1, we denote by Sk the Grassmannian
variety of H formed by its subspaces of dimension smaller
than or equal to k and consider the problem:

min
Z∈Sk

�b u − uZ, u − uZ( ), (11)

where u is the solution of problem (4) and uZ is its approximation
given by the Galerkin approximation of problem (10) in L2μ(Γ;Z):

Find uZ ∈ L2
μ(Γ;Z) such that

�b uZ, v( ) � 〈f ,Av〉, ∀ v ∈ L2
μ(Γ;Z).{ (12)

Then, for any k ∈ N, an optimal subspace of dimension smaller
than or equal to k is the best subspace of the family Sk that
minimizes the error between the solution u and its Galerkin
approximation uZ on this subspace, with respect to the mean
quadratic norm generated by �b. Theorem 4.1 of [5] proves the
following result:

Theorem 2.1 For any k ≥ 1, problem (11) admits at least one
solution.

3 TARGETED-NORM OPTIMAL
SUBSPACES

It is assumed that we give a family of inner products
{(·, ·)H,γ}γ∈Γ on H, which generate norms ‖ ·‖H,γ uniformly
equivalent to the reference norm in H. Eventually, we may set
(·,·)H,γ = (·, ·). Our purpose is to determine the inner products
(·,·)γ (introduced in Section 2 and which we will call (·,·)γ,+) in
such a way that the corresponding bilinear form �b defined by
(8) actually is

�b w, v( ) � ∫
Γ
w γ( ), v γ( )( )H,γ dμ γ( ).

In this way, the optimal subspaces are the solution of the problem

min
Z∈Sk

∫
Γ
‖u γ( ) − uZ γ( )‖2H,γ dμ γ( ). (13)

Let us consider the operators Aγ,+: H↦H and the bilinear forms
(·,·)γ,+ on H × H defined by

a w, Aγ,+v; γ( ) � w, v( )H,γ, ∀w, v ∈ H, (14)
w, v( )γ,+ � A−1

γ,+w,A
−1
γ,+v( )

H,γ
, ∀w, v ∈ H. (15)

It is to be noted that Aγ,+ is an isomorphism onH and consequently
(·,·)γ,+ is an inner product on H. Due to (2) and (3), the norms
generated by these inner products are uniformly equivalent to the
reference norm in H. Moreover, by (14) and (15),

Aγ,+w, v( )
γ,+

� w,A−1
γ,+v( )

H,γ
� a w, v; γ( ). (16)

Let us consider now the inner product in L2μ(Γ;H) given by∫Γ(·,·)γ,+ and the isomorphism A+: L2μ(Γ;H) ↦ L2μ(Γ;H)
defined by

∫
Γ

A+w( ) γ( ), v γ( )( )γ,+ dμ γ( ) � �a w, v( ), ∀w, v ∈ L2
μ(Γ;H).

(17)
Then, it holds.
Lemma 1 Let Aγ : H → H be the continuous linear operators

defined by

Aγw, v( )
γ
� a w, v; γ( ), ∀w, v ∈ H, μ − a.e. γ ∈ Γ. (18)

Then, it holds

Aw( ) γ( ) � Aγw γ( ), ∀w ∈ H, μ − a.e. γ ∈ Γ. (19)
This result follows from a standard argument using the

separability of space H that we omit for brevity. Then, by Lemma
1, we have

A+w( ) γ( ) � Aγ,+w γ( ), ∀w ∈ L2
μ(Γ;H), μ − a.e. γ ∈ Γ. (20)

Let us denote by �b+ the bilinear form on L2μ(Γ;H) given by
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�b+ w, v( ) � �a w,A+v( ), ∀w, v ∈ L2
μ(Γ;H). (21)

Then, by (20) and (14),

�b+ w, v( ) � ∫
Γ
a w γ( ), Aγ,+v γ( ); γ( ) dμ γ( )

� ∫
Γ
w γ( ), v γ( )( )H,γ dμ γ( ). (22)

As a consequence, the optimal subspaces obtained by the least-
squares problem (11) when �b � �b+ satisfy (13).

Remark 1When the forms a (·, ·; γ) are symmetric, if we choose

w, v( )H,γ � a w, v; γ( ), ∀w, v ∈ H, μ − a.e. γ ∈ Γ, (23)
then Aγ,+ defined by (14) is the identity operator in H. From (21),
it follows that �b+ � �a. We, thus, recover the intrinsic norm in the
symmetric case to determine the optimal subspaces.

4 A DEFLATION ALGORITHM TO
APPROXIMATE THE SOLUTION

Following the PGD procedure, we approximate the solution
of problem (1) by a tensorized expansion with summands of
rank ≤ k, obtained by deflation. For all N ≥ 1, we approximate

u ≃ uN ≔ ∑N
i�1

si, with si ∈ L2
μ(Γ;H), (24)

computed by the following algorithm:
Initialization: let be u0 = 0.
Iteration: assuming ui−1, known for any i ≥ 1, set ei−1≔u − ui−1.

Then,

ui � ui−1 + si, where si � ei−1( )W (25)
with (ei−1)W the approximation of ei−1 given by the problem (12) on
an optimal approximation subspaceW solution of the problem (11),

W ≔ argmin
Z∈Sk

�b ei−1 − ei−1( )Z, ei−1 − ei−1( )Z( ). (26)

It is to be noted that this algorithm does not need to know the
solution u of problem (4) since ei−1 is defined in terms of the
current residual f i � f −Aui−1 by

ei−1 ∈ L2
μ(Γ;H) such that

�a ei−1, v( ) � 〈f , v〉 − �a ui−1, v( ) ≔〈f i, v〉 ∀v ∈ L2
μ(Γ;H){

The convergence of the uN to u is stated in Theorem 5.3 of [5]
as the form �b is an inner product in L2μ(Γ;H), with the
generated norm equivalent to the standard one.

Theorem 4.1 The truncated series uN determined by the
deflation algorithm (24)–(26) satisfying

lim
N→∞

�b u − uN, u − uN( ) � 0.

Consequently, uN strongly converges in L2μ(Γ;H) to the solution
u of problem (4).

5 RANK-ONE APPROXIMATIONS

An interesting case from the application point of view arises when
we consider rank-one approximations. Indeed, when k = 1, the
solution of (12) uZ can be obtained as

uZ(γ) � φ γ( )w, μ − a.e. γ ∈ Γ, for someφ ∈ L2
μ(Γ), w ∈ H.

Then, the problem (11) can be written as (see [5], Sect. 6)

min
v∈H, ψ∈L2μ Γ( )

J v,ψ( ), (27)

where

J v,ψ( ) � �b u − ψ ⊗ v,u − ψ ⊗ v( ). (28)
Any solution of problem (27) has to verify the following

conditions:
Proposition 1 If (w,φ) ∈ H × L2μ(Γ) is a solution of problem

(27), then it is also a solution of the following coupled nonlinear
problem:

�a φ ⊗ w,φ ⊗ Aγv( ) � 〈f ,φ ⊗ Aγv〉 ∀ v ∈ H, (29)
�a φ ⊗ w,ψ ⊗ Aγw( ) � 〈f ,ψ ⊗ Aγw〉 ∀ψ ∈ L2

μ(Γ). (30)
We omit the proof of this result for brevity; let us just mention

that conditions (29) and (30) are the first-order optimality
conditions of the problem (27) that take place as the
functional J: H × L2μ(Γ) → R and is Gateaux-differentiable. It
is to be noted that the PGD method corresponds to replacing Aγ

by the identity operator in (29)–(30). From Theorem 2.1 and
Proposition 1, there exists at least a solution to problem (27) and
then to problem (29)–(30). However, as functional J is not
convex, there is no warranty that it admits a unique
minimum. Then, a solution to problem (29)–(30) could not be
a solution to the problem (27).

Relations (29)–(30) suggest an alternative way to compute the
modes in the PGD expansion to solve (1). Indeed, we propose a
LRTD expansion for u given by

u ≃ uN ≔ ∑N
i�1

φi ⊗wi, (31)

where the modes (wi,φi) ∈ H × L2μ(Γ) are recursively computed
as a solution of the problem (f i ≔ f −Aui−1) :

�a φi ⊗ wi,φi ⊗ Aγv( ) � 〈f i,φi ⊗ Aγv〉 ∀ v ∈ H,

�a φi ⊗ wi,ψ ⊗ Aγwi( ) � 〈f i,ψ ⊗ Aγwi〉 ∀ψ ∈ L2
μ(Γ).

⎧⎨⎩ (32)

If this problem is solved in such a way that its solution is also a
solution of

min
v∈H, ψ∈L2μ Γ( )

Ji v,ψ( ),
with Ji v,ψ( ) � �b u − ui−1 − ψ ⊗ v, u − ui−1 − ψ ⊗ v( ), (33)

then expansion (31) will be optimal in the sense of the expansion
(24), where each mode of the series is computed in an optimal
finite-dimensional subspace that minimizes the error.
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6 COMPUTATION OF LOW-RANK
TENSORIZED DECOMPOSITION MODES

In this section, we analyze the solution of the nonlinear problem (32)
by the power iteration (PI) method. As the operator Aγ appears in
the test functions, a specific treatment is needed, in particular, to
compute targeted-norm subspaces.We also introduce a simplified PI
algorithm that does not need to compute Aγ. Here, we report both.

We focus on solving the model problem (29)–(30), which we
assume to admit a nonzero solution. For simplicity, the notation fwill
stand either for the r. h. s. of the problem (4) or for any residual fi.

It is to be observed that (30) is equivalent to

∫
Γ
φ γ( ) a w, Aγw; γ( )ψ γ( ) dμ γ( ) �

∫
Γ
〈f γ( ), Aγw〉ψ γ( ) dμ γ( ), ∀ψ ∈ L2

μ(Γ),
and then

φ γ( ) � φ w, γ( ) ≔ 〈f γ( ), Aγw〉
a w, Aγw; γ( ) μ − a.e. γ ∈ Γ. (34)

Thus, problem (29)–(30) consists in

Findw ∈ H such that

∫
Γ
φ w, γ( )2 a w, Aγv; γ( ) dμ γ( ) �

∫
Γ
φ w, γ( ) 〈f γ( ), Aγv〉 dμ γ( ), ∀ v ∈ H.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(35)

with φ(w, ·) ∈ L2μ(Γ) defined by (34). For simplicity, we shall
denote by φ(w) the function φ(w, ·).

Let us define the operator T : H → H that transforms w ∈ H
into T(w) ∈ H solution to the problem

∫
Γ
φ w, γ( )2a T w( ), Aγv; γ( ) dμ γ( ) �
∫

Γ
φ w, γ( )〈f γ( ), Aγv〉 dμ γ( ), ∀ v ∈ H.

(36)

T is well-defined from (2) and (3), and a solution of (35) is a fixed
point of this operator. Moreover, as Aγ is linear,

φ λw( ) � λ−1 φ w( ) and then T λw( ) � λT w( ), ∀λ ∈ R.

Thus, if (w, φ) is a solution to (29)–(30), then (λ w, λ−1φ) is also a
solution to this problem. So, we propose to find a solution to
problem (35) with unit norm. For that, we apply the following PI
algorithm with normalization:

Initialization:Given any nonzerow0 ∈H such that φ0 = φ(w0) is
not zero in L2μ(Γ).

Iteration: Knowing wn ∈ H, the following is computed :

i) ~wn+1 � T wn( ) ∈ H

ii) wn+1 � ~wn+1

‖ ~wn+1‖ ∈ H

iii) φn+1 � φ wn+1( ) ∈ L2
μ(Γ).

(37)

The next result states that this iterative procedure is well-
defined.

Lemma 2 It is assumed that for some nonzero w ∈ H, it holds
that φ(w) ∈ L2μ(Γ) is not zero. Then ~w � T(w) is not zero in H
and φ( ~w) is not zero in L2μ(Γ).

Proof First, by reduction to the absurd, it is assumed that T(w)
= 0. From (36), we have

∫
Γ
φ w, γ( ) 〈f γ( ), Aγv〉dμ γ( ) � 0, ∀ v ∈ H.

In particular, for v = w and taking into account (34), we deduce
that

∫
Γ

|〈f γ( ), Aγw〉|2
a w,Aγw; γ( ) dμ γ( ) � 0.

Then,

〈f γ( ), Aγw〉 � 0, μ − a.e. γ ∈ Γ,

and thus, φ(w) = 0 is in contradiction with the initial
hypothesis. This proves that T(w) is not zero. Second,
arguing again by reduction to the absurd, it is assumed
that φ( ~w) � 0. From (34), we have

〈f γ( ), Aγ ~w〉 � 0, μ − a.e. γ ∈ Γ.

Then, setting v � ~w in (36) and using (19), we obtain

�b φ w( ) ⊗ ~w,φ w( ) ⊗ ~w( ) � ∫
Γ
a φ w, γ( ) ~w,φ w, γ( )Aγ ~w( ) dμ γ( )

� 0.

As �b is a scalar product in L2μ(Γ;H), this implies that

‖φ w( ) ⊗ ~w‖L2μ(Γ;H) � ‖φ w( )‖L2μ(Γ) ‖ ~w‖ � 0.

We have already proven that ~w ≠ 0. So, φ(w) has to be equal to
zero, in contradiction with the initial hypothesis. Thus, our
assumption is false and φ( ~w) is not zero.

This result proves that if w0 and φ0 are not zero, then the
algorithm (37) is well-defined.

6.1 Computation of Power Iteration
Algorithm for Targeted-Norm Optimal
Subspaces
From a practical point of view, in general, the algorithm (37) is
computationally expensive. Indeed, in practice, H is a space of
large finite-dimension and the integral in Γ is approximated by
some quadrature rule with nodes {γi}Mi�1. The method requires the
computation of Aγiv for all the elements v on a basis of H and all
the γi.

It is to be noted that when targeted subspaces are searched for,
in the way considered in Section 3, the expression of algorithm
(37) simplifies. Indeed, as a (w, Aγ,+v; γ) = (w,v)H,γ, then

φ w, γ( ) � 〈f γ( ), Aγ,+w〉
‖w‖2H,γ

μ − a.e. γ ∈ Γ. (38)

In addition, the problem (36) that defines the operator T
simplifies to problem:
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∫
Γ
φ w, γ( )2 T w( ), v( )H,γ dμ γ( ) �
∫

Γ
φ w, γ( )〈f γ( ), Aγ,+v〉 dμ γ( ), ∀ v ∈ H.

(39)

We shall refer to the method (38)–(39) as the TN (targeted-
norm) method.

6.2 A Simplified Power Iteration Algorithm
An approximate, but less expensive, method is derived from the
observation that Aγ is an isomorphism in H. If we approximate
the first equation in (32) by

�a φi ⊗ wi,φi ⊗ Aγ0v( ) � 〈f i,φi ⊗ Aγ0v〉 ∀ v ∈ H,

for some γ0 ∈ Γ, then this equation is equivalent to

�a φi ⊗ wi,φi ⊗ v( ) � 〈f i,φi ⊗ v〉 ∀ v ∈ H. (40)
We then consider the following adaptation of the PI method (37)
to compute an approximation of the solution of the optimality
conditions (32):

Iteration: Known wn ∈ H, the following is computed:

i) ~wn+1 � T̂ wn( ) ∈ H

ii) wn+1 � ~wn+1

‖ ~wn+1‖ ∈ H

iii) φn+1 � φ wn+1( ) ∈ L2
μ(Γ).

(41)

where T̂(w) is computed by

∫
Γ
φ w, γ( )2 a T̂ w( ), v; γ( )dμ γ( ) � ∫

Γ
φ w, γ( ) 〈f γ( ), v〉 dμ γ( ), ∀ v ∈ H, ,

(42)
where φ(w, γ) is defined by (34). We shall refer to method
(41)–(42) as the STN (simplified targeted-norm) method. The
difference between the STNmethod and the standard PGD one is
only the definition of the function φ that in this case is given by

φ γ( ) ≔ 〈f γ( ), w〉
a w, w; γ( ) μ − a.e. γ ∈ Γ.

6.3 Convergence of the Power Iteration
Algorithms
In this section, we analyze the convergence of the PI algorithms (37)
and (41) (Theorem 6.1). We prove that the method with optimal
convergence rate corresponds to the operator Aγ,+ introduced in
Section 3, choosing all the inner products ‖ ·‖H,γ equal to the
reference inner product ‖ ·‖.

As in [5], we shall assume that the iterates φn remain in the
exterior of some ball of positive radius, say ε > 0, of L2μ(Γ), that is,

‖φn‖L2μ Γ( ) ≥ ε, n � 0, 1, 2, / . (43)
This is a working hypothesis that makes sense whenever the mode that
we intend to compute is not zero, considering that thewn is normalized.

From the definition of Aγ and (6), it holds

~α ‖v‖≤ ‖Aγv‖γ ≤ ~β ‖v‖ for all γ ∈ Γ,
with ~α � α

βH
, ~β � β

αH
, (44)

where α and β are given by (2) and (3), respectively, and αH and
βH are defined in (6).

Let us define the function:

δ r, s( ) � 2 λ k2 1 + 2 − r

1 − r
k2( ) 1 + 2 − r

1 − r
λ k2 s( ) s2,

where k �
~β

~α
, and λ �

k2 formethod (37)
β

α
formethod (41)

⎧⎪⎪⎨⎪⎪⎩
It holds.

Theorem 6.1 It is assumed that (43) holds, and

Δ � δ r, �s( )< 1, for some r ∈ 0, 1( ) with �s � ‖u‖L2μ(Γ;H)
ε

. (45)

Then, there exists a unique solution with norm 1 w of problem
(35); the sequence {wn}n≥ 1 computed by either method (37) or
method (41) is contained in the ball BH(w, r) if w

0 ∈ BH(w, r), and

‖w − wn+1‖ ≤ Δ ‖w − wn‖, ∀ n≥ 0. (46)
As a consequence, the sequence {wn}n≥ 1 that is defined by either

method (37) or method (41) is strongly convergent to w with linear
rate and the following error estimate holds:

‖w − wn‖ ≤ Δn ‖w − w0‖, ∀ n≥ 1, wheneverw0 ∈ BH w, r( ).
(47)

Proof. Let us consider at first the method (37). Let x ∈ BH(w, r)
such that ‖φ(x)‖L2μ(Γ) ≥ ε. Denote ~x � T(x) which by the
definition of operator T in (36) is the solution to the problem

∫
Γ
φ x, γ( )2 a ~x, Aγv; γ( ) dμ γ( ) �

∫
Γ
φ x, γ( ) 〈f γ( ), Aγv〉 dμ γ( ), ∀ v ∈ H.

(48)

We aim to estimate ‖w − ~x
‖~x‖‖. To do that, from problems (35) and

(48), we obtain

∫
Γ
φ w, γ( )2 a w − ~x, Aγv; γ( ) dμ γ( )
� −∫

Γ
φ w, γ( )2 − φ x, γ( )2( ) a ~x, Aγv; γ( ) dμ γ( )

+ ∫
Γ
φ w, γ( ) − φ x, γ( )( ) 〈f γ( ), Aγv〉 dμ γ( ), ∀ v ∈ H.

(49)
It holds

a y, Aγz; γ( ) � Aγy, Aγz( )
γ
≤ ~β

2 ‖y‖ ‖z‖, ∀y, z ∈ H, (50)

using (44). Thus,

〈f γ( ), Aγv〉 � a u γ( ), Aγv; γ( )≤ ~β
2 ‖u γ( )‖ ‖v‖, ∀ v ∈ H. (51)
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Moreover,

a y, Aγy; γ( ) � Aγy, Aγy( )
γ
≥ ~α2 ‖y‖2 ∀y ∈ H. (52)

Setting v � w − ~x in (62) and using (50)-(52), we have

~α2 ‖φ w( )‖2L2μ Γ( ) ‖w − ~x‖2 ≤
~β
2 ‖φ2 w( ) − φ2 x( )‖L1μ Γ( ) ‖~x‖ + ‖φ w( ) − φ x( )‖L2μ(Γ) ‖u‖L2μ(Γ;H)( ) ‖w − ~x‖.

(53)
To bound the second term in the r. h s. of (53), from (34), it holds

φ w, γ( ) − φ x, γ( ) � a u γ( ), Aγ w − x( ); γ( )
a w, Aγw; γ( )

+ a x, Aγ x − w( ); γ( ) + a x − w,Aγw; γ( )
a w, Aγw; γ( ) a x, Aγx; γ( ) a u γ( ), Aγx; γ( ).

Then, using (50) and (52),

|φ w, γ( ) − φ x, γ( )| ≤ k2 1 + k2
1
‖x‖ + 1( )( ) ‖u γ( )‖ ‖w − x‖

≤ k2 1 + 2 − r

1 − r
k2( ) ‖u γ( )‖ ‖w − x‖,

(54)
where k � ~β

~α
. In the last estimate, we have used that as x ∈ BH(w, r),

‖w‖ − r ≤ ‖x‖ and then 1
‖x‖ ≤ 1

1−r. Therefore,

‖φ w( ) − φ x( )‖L2μ(Γ) ≤ ϕ1 r( ) ‖u‖L2μ(Γ;H) ‖w − x‖, (55)
where

ϕ1 r( ) � k2 1 + 2 − r

1 − r
k2( ).

It is to be noted that from (34),

|φ z, γ( )| � a u γ( ), Aγz; γ( )
a z, Aγz; γ( )

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣≤ k2

‖u γ( )‖
‖z‖ , ∀z ∈ H. (56)

Then, from (54) and (56)

|φ w, γ( )2 − φ x, γ( )2| ≤ |φ w, γ( ) − φ x, γ( )| |φ w, γ( ) + φ x, γ( )|
≤ k2 ϕ1 r( ) 1 + 1

‖x‖( ) ‖u γ( )‖2 ‖w − x‖.

Hence,

‖φ w( )2 − φ x( )2‖L1μ(Γ) ≤ ϕ2 r( ) ‖u‖2L2μ(Γ;H) ‖w − x‖, (57)
where

ϕ2 r( ) � k2 ϕ1 r( ) 2 − r

1 − r
.

Combining (53) with (55) and (57), we deduce

‖w − ~x‖ ≤ ‖u‖L2μ(Γ;H)
‖φ w( )‖L2μ Γ( )

⎛⎝ ⎞⎠2

k2 ϕ1 r( ) + ϕ2 r( ) ‖~x‖( ) ‖w − x‖.

(58)

Setting v � ~x in (48) and using (52) and (51), we obtain

~α2 ‖φ x( )‖2L2μ Γ( ) ‖~x‖2 ≤ ~β
2 ‖φ x( )‖L2μ Γ( ) ‖u‖L2μ(Γ;H) ‖~x‖.

Thus,

‖~x‖≤ k2
‖u‖L2μ(Γ;H)
‖φ x( )‖L2μ Γ( )

≤ k2
‖u‖L2μ(Γ;H)

ε
� k2 �s. (59)

It holds ‖ w
‖w‖ − ~x

‖~x‖‖≤ 2 ‖w − ~x‖. Then, using (58) and (59), we
deduce

w

‖w‖ −
~x

‖~x‖
�������

�������≤ 2 k2 �s2 ϕ1 r( ) + ϕ2 r( ) k2 �s( ) ‖w − x‖.
That is,

w − ~x

‖~x‖
�������

������� ≤ Δ ‖w − x‖, withΔ given by (45). (60)

Estimate (46) follows from this last inequality for x = wn, assuming
that wn ∈ BH(w, r). Assuming w0 ∈ BH(w, r) this recursively proves
that all the wn are in BH(w, r). Furthermore, suppose that there exists
another solution to (35)with normone in the ballBH(w, r),w*. In this
case, estimating (60) for x = w* implies

‖w − w*‖≤Δ ‖w − w*‖
because ~x � T(w*) � w*. Thenw =w*, and there is uniqueness of
solution with norm one in the ball BH(w, r). Finally, (47) follows
from (46) by recurrence.

Let us now consider method (41). In this case ~x � T̂(x), by
(42), is the solution of the problem

∫
Γ
φ x, γ( )2 a ~x, v; γ( ) dμ γ( ) �
∫

Γ
φ x, γ( ) 〈f γ( ), v〉 dμ γ( ), ∀ v ∈ H. (61)

To estimate ‖w − ~x
‖~x‖‖, from problems (35) and (61), we obtain

∫
Γ
φ w, γ( )2 a w − ~x, v; γ( ) dμ γ( ) �

−∫
Γ
φ w, γ( )2 − φ x, γ( )2( ) a ~x, v; γ( ) dμ γ( )

+∫
Γ
φ w, γ( ) − φ x, γ( )( ) 〈f γ( ), v〉dμ γ( ), ∀ v ∈ H.

(62)
As 〈f(γ), v〉 = a (u(γ), v; γ) ≤ β ‖u(γ)‖ ‖v‖, ∀ v ∈ H, setting
v � w − ~x, we have

TABLE 1 | Convergence rates of the PI algorithm for the first TN modes.

n Mode i = 1 Mode i = 2 Mode i = 3

‖wn
1 −wn

1 − 1‖ rn1 ‖wz
2n −wn−1

2 ‖ rn2 ‖wn
3 −wn−1

3 ‖ rn3

1 7,4844E-01 — 4,6117E-01 — 3,8004E-02 —

2 9,6123E-02 7,78 8,3125E-02 5,54 5,9211E-02 0,641
3 4,1109E-03 23,38 8,3769E-03 9,92 6,8704E-03 8,61
4 1,7378E-04 23,65 7,9166E-04 10,58 7,5651E-04 9,08
5 7,3741E-06 23,56 7,4417E-05 10,63 8,2797E-04 9,13
6 3,1308E-07 23,55 6,9923E-06 10,64 9,0557E-06 9,14
7 — — 6,5699E-07 10,64 9,9037E-07 9,14
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α ‖φ w( )‖2L2μ Γ( ) ‖w − ~x‖2 ≤∫
Γ
φ w, γ( )2 a w − ~x, w − ~x; γ( ) dμ γ( )≤

β ‖φ2 w( ) − φ2 x( )‖L1μ Γ( ) ‖~x‖ + ‖φ w( ) − φ x( )‖L2μ(Γ) ‖u‖L2μ(Γ;H)( ) ‖w − ~x‖.
(63)

The functions φ(w) and φ(x) have the same expressions for
methods (37) and (41).

Moreover, setting v � ~x in (61)

α ‖φ w( )‖2L2μ Γ( ) ‖~x‖2 ≤∫
Γ
φ w, γ( )2 a ~x, ~x; γ( ) dμ γ( )

� ∫
Γ
φ w, γ( ) 〈f γ( ), ~x〉 dμ γ( )

� ∫
Γ
a u γ( ), φ w, γ( ) ~x( ); γ( ) dμ γ( )

≤ β ‖u‖L2μ(Γ;H) ‖φ w( )‖L2μ Γ( ) ‖~x‖.

(64)

Hence, ‖~x‖≤ β
α �s. Then, similarly to (58), we obtain

‖w − ~x‖ ≤
β

α
�s2 ϕ1 r( ) + ϕ2 r( ) ‖~x‖( ) ‖w − x‖

≤
β

α
�s2 ϕ1 r( ) + ϕ2 r( ) β

α
�s( ) ‖w − x‖.

(65)

As ‖w − ~x
‖~x‖‖≤ 2‖w − ~x‖, the conclusion follows as for

method (37).

Remark 2 The optimal convergence rate Δ corresponds to k = 1
and λ = 1, that is, ~α � ~β and α = β. As α and β are predetermined,
the optimal convergence rate can only be obtained with method
(37). When the inner products (·,·)γ = (·,·)γ,+ and thus the operator
Aγ = Aγ,+, introduced in Section 3 are used to construct the
optimal targeted subspaces, it satisfies, by (15),

‖Aγ,+v‖2γ,+ � ‖v‖2H,γ, ∀ v ∈ H.

Then, from (44), choosing all the inner products ‖ ·‖H,γ equal to the
reference inner product ‖ ·‖, we obtain ~α � ~β � 1. Therefore, the
convergence rate is optimal for method (37) with this choice. It can

TABLE 2 | Convergence rates of the PI algorithm for the first STN modes.

n Mode i = 1 Mode i = 2 Mode i = 3

‖wn
1 −wn−1

1 ‖ rn1 ‖wn
2 −wn−1

2 ‖ rn2 ‖wn
3 −wn−1

3 ‖ rn3

1 8,0749E-1 — 5,0427E-1 — 3,9947E-1 —

2 1,4643E-1 5,51 1,7004E-1 2,96 1,1811E-1 3,38
3 9.8900E-3 14,08 4,0532E-2 4,19 8,9310E-2 1,32
4 6,0098E-4 16,45 8,8019E-3 4,60 4,1810E-2 2,13
5 3,6271E-5 16,56 1,8704E-3 4,70 1,8745E-2 2,23
6 2,1882E-6 16,57 3,9656E-4 4,72 8,2109E-3 2,28
7 1,3201E-7 16,57 8,3595E-5 4,73 3,5573E-3 2,30
8 7,9636E-9 16,57 1,7660E-5 4,73 1,5337E-3 2,31
9 — — — — 6,5980E-4 2,32

FIGURE 1 | Solutions of problem (66) by the LRTD (called FLSTD within the figure) expansion computed with the TN method. Left γ = 2.7375 Right γ = 49.7624.

FIGURE 2 | Convergence history of the PGD, TN, and STN series for
Test 2.

TABLE 3 | Numerical behavior of the PGD, STN, and TN methods for Test 2.

Methods Errors L2
μ(Γ,L2(Ω)) Errors L2

μ(Γ,H1
0(Ω))

PGD ‖u − u94‖ = 9.69e − 7 ‖u − u94‖ = 3.30e − 7
STN ‖u − u24‖ = 8.21e − 7 ‖u − u24‖ = 3.83e − 7
TN ‖u − u12‖ = 6.31e − 7 ‖u − u12‖ = 3.52e − 7
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be interpreted as preconditioning of the problem to solve, similar to
classical preconditioning to accelerate convergence in solving linear
systems (For example, see [24]).

Remark 3 If we intend to compute amode of order i≥ 2, Theorem
6.1 and Remark 2 also hold, replacing f by the residual f i � f −Aui−1
and u by the error u − ui−1, where ui−1 is defined by (31).

7 NUMERICAL TESTS

In this section, we discuss the numerical results obtained with
the methods TN (38)–(39) and STN (41)–(42) to solve some
non-symmetric second-order PDEs. Our purpose, on the one
hand, is to confirm the theoretical results stated in Theorem
4.1 and Theorem 6.1, and on the other hand, to compare the
practical performances of these methods with the
standard PGD.

We consider a parametric 1D advection–diffusion problem
with fixed constant advection velocity β,

γ β u′ − u″ � γf in Ω � 0, 10( )
u 0( ) � 1, u′ 10( ) � 0

{ (66)

We assume that β = 1, and then γ is the Péclet number. The source
term is f = 1/500. We have set Γ = [2.5, 50]; then, there is a large
asymmetry of the advection–diffusion operator.

Once the nonhomogenous boundary condition at x = 0
is lifted, problem (66) is formulated under the general
framework (1) when the space H and the bilinear form a (·, ·)
are given by H = {v ∈ H1(Ω) |v (0) = 0 }, and

a u, v; γ( ) � γ βu′, v( ) + u′, v′( ). (67)
We endow space H with the H1

0(Ω) norm (that we still denote
‖ ·‖), which is equivalent to the H1(Ω) norm on H.

In practice, we replace the continuous problem (1) by an
approximated one on a finite element space Hh formed by
piecewise affine elements. In addition, the integrals on Γ are
approximated by a quadrature formula constructed on a
subdivision of Γ into M subintervals,

∫
Γ
ψ γ( ) dμ γ( ) ≃ IM ψ( ) � ∑M

i�1
ωi ψ γi( ).

This is equivalent to approximating the Lebesgue measure μ
by a discrete measure μΔ located at the nodes of the discrete
set ΓΔ = {γi, i = 1, . . . , M} with weights ωi, i = 1, . . . , M.
Consequently, all the theoretical results obtained in the
previous sections apply, by replacing the L2μ(Γ, H) space by
L2μΔ(ΓΔ, Hh). It is to be noted that

‖v‖2L2μΔ ΓΔ ,Hh( ) � IM ‖v‖2( ). (68)

In our computations, we have used the midpoint quadrature
formula with M = 100 equally spaced subintervals of Γ to
construct IM and constructed Hh with 300 subintervals of Ω of
the same length.

Test 1:
This first experiment is intended to check the theoretical

results on the convergence rate of the PI algorithm, stated in
Theorem 6.1, for the TN and STN methods: we consider optimal
targeted subspaces, in the sense of the standard H1

0(Ω) norm.
That is, using

w, v( )H,γ � w, v( )H1
0 Ω( ) � w′, v′( ), ∀w, v ∈ H1 Ω( )

to define the mappings Aγ,+ by (14) and the form �b* by (22).
For each mode wi of the LRTD expansion (31), we have

estimated the numerical convergence rate of the PI algorithm by

rn+1i � ‖wn
i − wn−1

i ‖
‖wn+1

i − wn
i ‖
. (69)

Tables 1 and 2 show the norm of the difference between two
consecutive approximations and the ratios rni . We display the
results for the first three modes.

We observe that the PI method converges with a nearly
constant rate for each mode, in agreement with
Theorem 6.1. The convergence rate is larger for the TN
method, also as expected from this theorem. It is also noted
that the convergence rates are smaller for higher-
order modes.

In Figure 1, we present the comparison between the solution
obtained by finite elements for γ = 2.7375 and γ = 49.7625 and the
truncated series sum for the TN, the results for the STN are
similar.

Test 2:
In this test, we compare the convergence rates of PGD, TN,

and STN methods to obtain the LRTD expansion (31) for the
problem (66).

Figure 2 displays the errors of the truncated series with
respect to the number of modes, in norm L2μ(Γ, H1

0(Ω)). A
spectral convergence may be observed for the three
expansions. We observe that the convergence of the TN
expansion, in terms of the number of modes needed to
achieve an error level, is much faster than the convergence
of the STN expansion, while this one is faster than the PGD
one. This is clarified if we consider the number of modes
required to achieve an error smaller than a given level. We

FIGURE 3 | Comparison of CPU times to compute the TN, STN, and
PGD expansions.
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display these numbers for an error level of 10–6 in Table 3,
where much more modes are needed by the PGD expansion.
The TN and STN methods, thus, appear to be well-adapted to
fit the asymmetry of the operator.

Finally, we compare the CPU times required by the three
methods. By construction, it is clear that to compute every
single iteration of the PI method, the TN method is much
more expensive since it involves the calculation of the Aγ,*

operator for each finite element base function. However, due
to the fast convergence of the associated LRTD expansion, it is
less expensive than PGD to compute the expansion. Figure 3
displays the CPU times for the TN, STN, and PGD methods as
a function of the number of subintervals M considered in the
partition of Γ. The STN method is more expensive than the
PGD method; this arises due to the small convergence rate of
the PI algorithm with the STN method. However, the TN
method is less expensive than the PGD one, requiring
approximately half the CPU time.

8 CONCLUSION

In this study, we have proposed a new low-rank tensorized
decomposition (LRTD) to approximate the solution of
parametric non-symmetric elliptic problems, based on
symmetrization of the problem.

Each mode of the series is characterized as a solution to a
calculus of variation problem that yields an optimal finite-
dimensional subspace, in the sense that it minimizes the error
between the parametric solution and its approximation on this
subspace, with respect to a preset mean quadratic norm. We have
proven that the truncated expansion given by the deflation
algorithm strongly converges to the parametric solution in the
mean quadratic norm.

The minimization problems to compute the rank-one optimal
modes are solved by the power iteration algorithm. We have
proven that this method is locally linearly convergent when the
initial data are close enough to an optimal mode. We also have
identified an optimal symmetrization that provides the best

convergence rates of the PI algorithm, with respect to the
preset mean quadratic norm.

Furthermore, we have presented some numerical tests for 1D
convection–diffusion problems that confirm the theoretical
results on the convergence of the LRTD expansion and the
convergence of the PI algorithm. Moreover, the computing
times required by the optimal symmetrization compare
advantageously to those required by the PGD expansion.

In this study, we have focused on rank-one tensorized
decompositions. In our forthcoming research, we intend to
extend the analysis to ranks k ≥ 2. This requires solving
minimization problems on a Grassmann variety to compute
the LRTD modes. We will also work on the solution of higher-
dimensional non-symmetric elliptic problems by the method
introduced in order to reduce the computation times as these
increase with the dimension of the approximation spaces.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article, further inquiries can be directed to the corresponding
author.

AUTHOR CONTRIBUTIONS

TC and IS performed the theoretical derivations while MG did
the computations.

FUNDING

The research of TC and IS has been partially funded by
PROGRAMA OPERATIVO FEDER ANDALUCIA 2014-2020
grant US-1254587, which in addition has covered the cost of this
publication. The research of MG is partially funded by the
Spanish Research Agency - EU FEDER Fund grant RTI2018-
093521-B-C31.

REFERENCES

1. Ammar A, Chinesta F, Falcó A. On the Convergence of a Greedy Rank-One
Update Algorithm for a Class of Linear Systems. Arch Computat Methods Eng
(2010) 17:473–86. Number 4. doi:10.1007/s11831-010-9048-z

2. Ammar A, Mokdad B, Chinesta F, Keunings R. A New Family of Solvers
for Some Classes of Multidimensional Partial Differential Equations
Encountered in Kinetic Theory Modeling of Complex Fluids. J Non-
Newtonian Fluid Mech (2006) 139:153–76. doi:10.1016/j.jnnfm.2006.
07.007

3. Azaïez M, Chacón Rebollo T, Gómez Mármol M. On the Computation of
Proper Generalized Decomposition Modes of Parametric Elliptic Problems.
SeMA (2020) 77:59–72. doi:10.1007/s40324-019-00198-7

4. Azaïez M, Belgacem FB, Rebollo TC. Error Bounds for POD Expansions of
Parameterized Transient Temperatures. Comp Methods Appl Mech Eng (2016)
305:501–11. doi:10.1016/j.cma.2016.02.016

5. Azaïez M, Belgacem FB, Casado-Díaz J, Rebollo TC, Murat F. A New Algorithm of
Proper Generalized Decomposition for Parametric Symmetric Elliptic Problems.
SIAM J Math Anal (2018) 50(5):5426–45. doi:10.1137/17m1137164

6. ten Berge JMF, de Leeuw J, Kroonenberg PM. Some Additional Results on
Principal Components Analysis of Three-Mode Data by Means of Alternating
Least Squares Algorithms. Psychometrika (1987) 52:183–91. doi:10.1007/
bf02294233

7. Bulut H, Akkilic AN, Khalid BJ. Soliton Solutions of Hirota Equation and
Hirota-Maccari System by the (m+1/G’)-expansionMethod.AdvMathModels
Appl (2021) 6(1):22–30.

8. Le Bris C, Lelièvre T, Maday Y. Results and Questions on a Nonlinear
Approximation Approach for Solving High-Dimensional Partial
Differential Equations. Constr Approx (2009) 30(3):621–51. doi:10.1007/
s00365-009-9071-1

9. Cancès E, Lelièvre T, Ehrlacher V. Convergence of a Greedy Algorithm for
High-Dimensional Convex Nonlinear Problems. Math Models Methods Appl
Sci (2011) 21(12):2433–67. doi:10.1142/s0218202511005799

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 86968110

Chacón Rebollo et al. Low-Rank Approximation Non-Symmetric

https://doi.org/10.1007/s11831-010-9048-z
https://doi.org/10.1016/j.jnnfm.2006.07.007
https://doi.org/10.1016/j.jnnfm.2006.07.007
https://doi.org/10.1007/s40324-019-00198-7
https://doi.org/10.1016/j.cma.2016.02.016
https://doi.org/10.1137/17m1137164
https://doi.org/10.1007/bf02294233
https://doi.org/10.1007/bf02294233
https://doi.org/10.1007/s00365-009-9071-1
https://doi.org/10.1007/s00365-009-9071-1
https://doi.org/10.1142/s0218202511005799
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


10. Cancès E, Lelièvre T, Ehrlacher V. Greedy Algorithms for High-Dimensional Non-
symmetric Linear Problems. Esaim: Proc (2013) 41:95–131. doi:10.1051/proc/
201341005

11. Chinesta F, Ammar A, Cueto E. Recent Advances and New Challenges in
the Use of the Proper Generalized Decomposition for Solving
Multidimensional Models. Arch Computat Methods Eng (2010) 17(4):
327–50. doi:10.1007/s11831-010-9049-y

12. Espig M, HackbuschW, Rohwedder T, Schneider R. Variational Calculus with
Sums of Elementary Tensors of Fixed Rank. Numer Math (2012) 122:469–88.
doi:10.1007/s00211-012-0464-x

13. Espig M, Hackbusch W. A Regularized Newton Method for the
Efficient Approximation of Tensors Represented in the Canonical
Tensor Format. Numer Math (2012) 122:489–525. doi:10.1007/s00211-
012-0465-9

14. Espig M, Hackbusch W, Khachatryan A. On the Convergence of Alternating
Least Squares Optimisation in Tensor Format Representations. arXiv:
1506.00062v1 [math.NA] (2015).

15. Espig M, Hackbusch W, Litvinenko A, Matthies HG, Zander E. Iterative
Algorithms for the post-processing of High-Dimensional Data. J Comput Phys
(2020) 410:109–396. doi:10.1016/j.jcp.2020.109396

16. Falcó A, Nouy A. A Proper Generalized Decomposition for the Solution
of Elliptic Problems in Abstract Form by Using a Functional Eckart-
Young Approach. J Math Anal Appl (2011) 376:469–80. doi:10.1016/j.
jmaa.2010.12.003

17. Falcó A, Nouy A. Proper Generalized Decomposition for Nonlinear Convex
Problems in Tensor Banach Spaces. Numer Math (2012) 121:503–30. doi:10.
1007/s00211-011-0437-5

18. Nouy A. Low-rank Tensor Methods forModel Order Reduction. In:Handbook
of Uncertainty Quantification (Roger GhanemDavid HigdonHouman Owhadi.
Eds. Philadelphia, PA: Springer (2017). doi:10.1007/978-3-319-12385-1_21

19. Nouy A. Low-rank Methods for High-Dimensional Approximation
and Model Order Reduction. In: P Benner, A Cohen, M Ohlberger,
K Willcox, editors. Model Reduction and Approximations.
Philadelphia, PA: SIAM (2017).

20. Kiers HAL. An Alternating Least Squares Algorithm for PARAFAC2 and
Three-Way DEDICOM. Comput Stat Data Anal (1993) 16:103–18. doi:10.
1016/0167-9473(93)90247-q

21. Kroonenberg PM, de Leeuw J. Principal Component Analysis of Three-Mode
Data of using Alternating Least Squares Algorithms. Psychometrika (1980) 45:
69–97. doi:10.1007/bf02293599

22. Ladévèze P. Nonlinear Computational Structural Mechanics. New
Approaches and Non-incremental Methods of Calculation. Berlin: Springer
(1999).

23. Mohlenkamp MJ. Musings on Multilinear Fitting. Linear algebra and its
applications (2013) 438(2): 834–52. doi:10.1016/j.laa.2011.04.019

24. Rasheed SM, Nachaoui A, Hama MF, Jabbar AK. Regularized and Preconditioned
Conjugate Gradient Like-Methods Methods for Polynomial Approximation of an
Inverse Cauchy Problem. Adv Math Models Appl (2021) 6(2):89–105.

25. Uschmajew A. Local Convergence of the Alternating Least Squares Algorithm
for Canonical Tensor Approximation. SIAM J Matrix Anal Appl (2012) 33(2):
639–52. doi:10.1137/110843587

26. Wang L, ChuMT. On the Global Convergence of the Alternating Least Squares
Method for Rank-One Approximation to Generic Tensors. SIAM J Matrix
Anal Appl (2012) 35(3):1058–72.

27. Zhang T, Golub GH. Rank-one Approximation to High Order Tensors. SIAM
J Matrix Anal Appl (2001) 23(2):534–50. doi:10.1137/s0895479899352045

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Chacón Rebollo, Gómez Mármol and Sánchez Muñoz. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 86968111

Chacón Rebollo et al. Low-Rank Approximation Non-Symmetric

https://doi.org/10.1051/proc/201341005
https://doi.org/10.1051/proc/201341005
https://doi.org/10.1007/s11831-010-9049-y
https://doi.org/10.1007/s00211-012-0464-x
https://doi.org/10.1007/s00211-012-0465-9
https://doi.org/10.1007/s00211-012-0465-9
https://doi.org/10.1016/j.jcp.2020.109396
https://doi.org/10.1016/j.jmaa.2010.12.003
https://doi.org/10.1016/j.jmaa.2010.12.003
https://doi.org/10.1007/s00211-011-0437-5
https://doi.org/10.1007/s00211-011-0437-5
https://doi.org/10.1007/978-3-319-12385-1_21
https://doi.org/10.1016/0167-9473(93)90247-q
https://doi.org/10.1016/0167-9473(93)90247-q
https://doi.org/10.1007/bf02293599
https://doi.org/10.1016/j.laa.2011.04.019
https://doi.org/10.1137/110843587
https://doi.org/10.1137/s0895479899352045
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Low-Rank Approximations for Parametric Non-Symmetric Elliptic Problems
	1 Introduction
	2 Parametric Non-Symmetric Elliptic Problems
	3 Targeted-Norm Optimal Subspaces
	4 A Deflation Algorithm to Approximate the Solution
	5 Rank-One Approximations
	6 Computation of Low-Rank Tensorized Decomposition Modes
	6.1 Computation of Power Iteration Algorithm for Targeted-Norm Optimal Subspaces
	6.2 A Simplified Power Iteration Algorithm
	6.3 Convergence of the Power Iteration Algorithms

	7 Numerical Tests
	8 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


