

Superalkalis for the Activation of Carbon Dioxide: A Review

Harshita Srivastava and Ambrish Kumar Srivastava*

Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India

The activation of carbon dioxide is essential not only for global carbon balance but also for its conversion into fuel. As CO_2 is highly stable, it is quite challenging to activate or reduce CO_2 . Recently, the ability of superalkalis to easily transfer an electron to CO_2 has been proposed in several studies. The superalkalis are species possessing lower ionization energy than alkali atoms. These are hypervalent species, having an excess of electrons. Owing to this, they possess strong reducing power and cause the linear structure of CO_2 to bend by transferring an electron to it. Herein, we present a comprehensive account of the single-electron reduction and activation of CO_2 by various kinds of superalkalis. This review also includes a novel strategy for the capture and storage of CO_2 by superalkali.

Keywords: CO₂ activation, CO₂ reduction, charge transfer, superalkalis, theoretical studies

INTRODUCTION

OPEN ACCESS

Edited by:

Moyuan Cao, Tianjin University, China

Reviewed by:

Jin-Chang Guo, Shanxi University, China Di Qiu, Tianjin Normal University, China

> *Correspondence: Ambrish Kumar Srivastava ambrishphysics@gmail.com

Specialty section:

This article was submitted to Physical Chemistry and Chemical Physics, a section of the journal Frontiers in Physics

> Received: 06 February 2022 Accepted: 08 March 2022 Published: 05 April 2022

Citation:

Srivastava H and Srivastava AK (2022) Superalkalis for the Activation of Carbon Dioxide: A Review. Front. Phys. 10:870205. doi: 10.3389/fphy.2022.870205 Carbon dioxide (CO_2) is a colorless and odorless gas with the property of trapping greenhouse gases, which are produced due to human activities as well as natural processes. Recently, the sharp decline in CO₂ levels has been noticed at the expense of the COVID-19 pandemic, which has caused a severe health emergency in the world and is not sustainable. The fueling of CO_2 in our environment is mainly through the CO₂ emissions from power plants and other industrial facilities, primarily waste products, and the developed economies are the leading contributors. As mentioned, it traps greenhouse gases which generally cause a change in the behavior of climate since it is a major contributor to global warming. In order to reduce its contribution to global warming, it is necessary to convert CO₂ into value-added products. The best way to back-pedal climate change without using expensive methods is extricating CO_2 from the air and then converting it into a useful product like fuel. These important issues were addressed by numerous techniques, which can be employed to reduce and capture CO_2 by other molecules [1–7]. As CO_2 is an extremely stable molecule [8, 9], it is quite challenging to convert it into usable fuel. To convert CO_2 into fuel, it is needed to activate CO_2 by some means or chemically reduce it by catalysts. CO2 can be reduced either electrochemically (electrical energy) or photoelectrochemically (incident light) into CO. Single-electron reduction of CO_2 to CO_2^- was experimentally not viable due to the large energy of reorganization between linear CO_2 and bent CO_2^- anion. Notably, the electron affinity of CO_2 is negative so that CO_2^- is metastable. CO_2^- anion is stable in the ²A₁ state [10] which can be treated as an activated CO_2 moiety with the weaker C-O bond. The potential energy surface of the CO_2^- anion suggests three vibronically coupled bound states [11].

It is difficult to extract an electron from carbon dioxide because of its high ionization energy (13 eV) [12]. However, it has been revealed that there is a possibility of oxidation of CO_2 using superhalogens [13], whose electron affinity overrides the halogen atoms [14]. The counterparts of superhalogens are superalkalis which bear lower ionization energy than alkali atoms [15]. Due to the stronger reducibility of superalkalis over alkali atoms, they might activate stable CO_2 . To investigate this, a few studies have been performed recently. In this review, we will provide an

1

overview of how superalkalis play a significant role in the activation or reduction of CO_2 , which is the initial step to convert CO_2 into fuel. Exploration of chemical processes used in the reduction of CO_2 is of tremendous importance in various fields, like biological, environmental, and industrial processes [16]. Before we go further, let us first have a look at superalkalis.

What Are Superalkalis?

Alkali atoms possess the lowest ionization energy (IE), ranging from 5.39 to 3.89 eV, among all the elements in the periodic table. However, superalkalis are clusters whose ionization energies are even lower than this range. These clusters were originally introduced by Gutsev and Boldyrev in 1982 using sp-block elements [15]. They proposed species like Li₂F, Li₃O, and Li₄N as superalkalis. In the form of a superatom, these clusters impersonate the behavior of alkali atoms. There have been several studies on the design of various kinds of superalkalis [17–24]. For instance, the binuclear superalkalis including F_2Li_3 . have been widely studied [17]. Hou et al. [18] described nonmetallic binuclear cations such as $F_2H_3^+$ and $O_2H_5^+$. Zhao et al. [19] proposed some special superalkalis like N₄Mg₆Li, Al₃, Mn(B₃N₃H₆)₂, B₉C₃H₁₂, Al₁₂P, and C₅NH₆, which were designed by using different schemes like jellium rule, 18electron rule, Wade-Mingos rule, and Huckle's rule, respectively. Al12P was reported to be an alkali-metal-like superatom [20, 21]. Recently, Sikorska and Gaston [22] reported the superalkali behavior of polynuclear N4Mg6M for M = Li, Na, and K. Srivastava [25] noticed that the IE of C_6Li_6 , being lower than that of Li, makes it a closed-shell superalkali. The IE scale of these superalkalis is depicted in Figure 1.

Superalkalis find applications in the design of supersalts [26-28], superbases [29-31], alkaloids [32-34], and so forth. Due to their low IE, superalkalis play an important role in chemical industries as reducing agents. Here, we provide an

account of how superalkalis are exploited to activate the CO_2 molecule.

ACTIVATION OF CO2 BY SUPERALKALIS

 CO_2 is known to be a highly stable molecule due to its very high IE [12], as mentioned earlier, and no positive electron affinity [36, 37]. However, the low IE of superalkalis enables them to transfer an electron to CO_2 , reducing it to CO_2^- anion and thus activating it. In **Figure 2**, we show the structures of CO_2 and its anion, along with the charge distribution. One can see that the CO_2^- anion is bent, in which the bond length is increased as compared to neutral CO_2 due to the negative charge.

Thus, the activation of CO_2 requires the following conditions to be satisfied:

- 1) The negative charge on CO_2 moiety is close to unity.
- 2) The structure of the CO_2 moiety is bent.
- 3) The bond length of CO_2 moiety is increased.

It has been reported earlier [38] that CO_2 would assume a bent structure when an electron is transferred to it or due to its interaction with the electrons of the metal atom. One would expect that the stable geometry of the M-CO₂ complex depends upon the IE of the metal atom, M. This may lead us to infer that an atom with a smaller IE should be able to transfer an electron to CO_2 more easily than one with a large IE. Later, we will discuss the interaction of CO_2 with various superalkalis described earlier.

Interaction With Typical Superalkalis (FLi₂, OLi_3 , and NLi_4)

Srivastava [35] studied the interaction of CO_2 with FLi₂, OLi₃, and NLi₄ superalkalis using the second-order Møller–Plesset perturbative (MP2) method [39] and the 6–311+G(d) basis set in the Gaussian 09 program [40]. Such interaction leads to the formation of complexes, as shown in **Figure 3**, and corresponding parameters can be found in **Table 1**. It is evident that the minimum energy of these complexes corresponds to the structure in which the interaction between CO_2 , and superalkalis is mediated by both the O atoms of CO_2 . The bond length of Li-O lies between 1.865 and 1.892 Å. The low-lying isomers of FLi₂-CO₂ and OLi₃-CO₂ are of higher energy in which CO_2 interacts *via* a single atom, whereas in the case of NLi₄-CO₂, there are no competing isomers obtained.

The binding energy (BE) of superalkali–CO₂ complexes is calculated and listed in **Table 1**. The BE of these complexes monotonically decreases with the increase in the size of superalkalis. This can be explained on the basis of a more delocalized electron cloud that is generally associated with the larger superalkalis. The natural population analysis (NPA) [45] charges (Δq) on CO₂ have also been listed. The most stable structure of superalkali–CO₂ complexes takes the values of Δq as –0.90e for FLi₂, –0.88e for OLi₃, and –0.85e for NLi₄.

In isomer (b) of FLi_2 - CO_2 , Δq has a very small magnitude (-0.17e), which is consistent with an almost linear CO_2 moiety just as in a neutral CO_2 molecule. On the contrary, the Δq in isomer (b) of OLi_3 - CO_2 is, albeit smaller than that in its lowest energy structure (a), large enough to bend the CO_2 moiety. It should be noted that the size of the superalkalis is a more important factor than their IE in CO_2 activation. As per calculated binding energy and charge transfer, FLi_2 is more effective for CO_2 reduction. In these complexes, the CO_2 moiety is bent by 133° and the bond length C-O becomes 1.246 Å which is comparable to the bond lengths of 1.237 Å and bond angle 137° in the CO_2^- anion, obtained at the MP2/6-311+G(d) level. This study suggests simple and catalyst-free single-electron reduction of CO_2 by using typical superalkalis such as FLi₂, OLi₃, and NLi₄.

Interaction With Binuclear Superalkali (Li_3F_2)

Park and Meloni [41] reported the interaction of CO₂ and superalkali species Li_3F_2 using the CBS-OB3 composite model [46] through the Gaussian 09 program. They obtained three isomers, two planar (a) and (b), as well as one non-planar (c), of the Li_3F_2 -CO₂ complex, as shown in **Figure 4**. There was no appreciable change in bond lengths between Li and F on interaction with CO₂. Despite some structural changes in the superalkalis, the structure of CO₂ changes from linear to bending. Therefore, it is clear that the strongly bound CO₂ is activated upon interaction with the superalkali. From **Table 1**, the BE of Li_3F_2 -CO₂ isomers is found to be in the range of 1.06–1.63 eV (106–163 kJ/mol). The lowest BE was obtained for the isomer (c) in which one oxygen interacts with both the terminal Li atoms

System	Isomers	Relative energy (eV)	BE (eV)	∆ q (e)	C-O (Å)	O-C-O (Deg)
FLi ₂ -CO ₂ ¹	(a)	0	2.41	-0.90	1.25	133
	(b)	1.07	1.34	-0.17		
OLi3-CO21	(a)	0	1.23	-0.88	1.24	133
	(b)	0.40	0.83	-0.82		
NLi ₄ -CO ₂ ¹	-	_	1.17	-0.85	1.25	133
Li ₃ F ₂ -CO ₂ ²	(a)	0	1.63	-0.78	1.24	137
	(b)	0.05	1.58	-0.63	1.23	133
	(C)	0.57	1.06	-0.88	1.25	131
Al ₃ -CO ₂ ³	-	_	_	-1.26	1.29	126
					1.51	
Mn(B ₃ N ₃ H ₆) ₂ -CO ₂ ³	_	_	_	-0.90	1.25	133
B ₉ C ₃ H ₁₂ -CO ₂ ³	-	_	_	-0.91	1.28	131
					1.29	
C ₅ NH ₆ -CO ₂ ³	_	_	_	-0.63	1.35	129
O ₂ H ₅ -CO ₂ ⁴	(a)	0	1.30	-0.75	1.26	126
	(b)	0.02	1.28	-0.72	1.25	138
N ₂ H ₇ -CO ₂ ⁴	(a)	0	-0.03	-0.77	1.23	139
	(b)	0.79	-0.82	-0.38	1.27	140
Al ₁₂ P-CO ₂ ⁵	(a)	0	_	-0.71	1.24	130
	(b)	0.11	_	_	1.97	125
	(C)	0.20	_	_	1.26	132
N ₄ Mg ₆ Li-CO ₂ ⁶	(a)	0	1.57	-0.79	1.28	125
	(b)	0.04	1.53	-0.79		126
	(C)	0.11	1.46	-0.87		123
Li ₃ F ₂ -CO ₂ @C ₆₀ ⁷	_	-	1.84	-	1.20	132

TABLE 1 Relative energy, binding energy (BE), NPA charge (Δq), bond length (C-O), and bond angle (O-C-O) of the complexes of CO₂ with various superalkalis.

¹Calculated at MP2/6-311+G (d) level in Ref. 35.

²Calculated at CBS-OB3 composite model in Ref. 41.

³Calculated at MP2/6-311+G (d) level in Ref. 19.

⁴Calculated at MP2/6-311+G (d,p) level in Ref. 42.

⁵Calculated at M06-2X/6-311+G (d) level in Ref. 43.

⁶Calculated at CCSD (T)/6-311+G (3df)//MP2/6-311+G (d) level in Ref. 22.

⁷Calculated at B3LYP/6-31G (d) level in Ref.44.

and the other oxygen with the central Li atom. The isomer (a) possesses greater BE and therefore stronger intermolecular interaction than isomer (b) because the electron density is more localized between the two terminal Li atoms and two oxygen atoms.

The BE of Li₃F₂-CO₂ complexes is comparable to or smaller than the BE of superalkali (FLi₂, OLi₃, NLi₄)-CO₂ complexes reported by Srivastava [35]. The charge transfer to CO₂ in Li₃F₂-CO₂ isomers ranges from -0.63e to -0.88e (see **Table 1**). Thus, the charge on the CO₂ moiety along with its structure suggests that CO₂ is reduced to a CO₂⁻ anion.

Interaction With Special Superalkalis $[AI_3, Mn(B_3N_3H_6)_2, B_9C_3H_{12}, C_5NH_6]$

Zhao et al. [19] presented the rational design of superalkalis and studied the activation of CO_2 by these special superalkalis using MP2/6-311+G(d) level in the Gaussian 09 program. They analyzed the interaction of CO_2 with special superalkalis like Al₃, Mn (B₃N₃H₆)₂, B₉C₃H₁₂, and C₅NH₆, which leads to the complexes shown in **Figure 5**. The distance between the CO_2 moiety and superalkali clusters has been calculated as 1.950 Å, 1.730 Å, 2.320 Å, and 1.040 Å for Al₃, Mn (B₃N₃H₆)₂, B₉C₃H₁₂, and C₅NH₆, respectively. In the case of Al₃, O-C bonds extend to

1.290 and 1.510 Å, about 4.4–22% longer than those in the CO_2^- anion, whereas in $B_9C_3H_{12}$, the O-C bonds are extended to 1.290 and 1.280 Å, about 3.3–4.4% longer than those in CO_2^- . The bond extension in Mn $(B_3N_3H_6)_2$ and C_5NH_6 is observed to be 1.250 Å which is slightly longer than that of 1.240 Å in CO_2^- and 1.35 Å which is about 9.3% longer than that in CO_2^- , respectively. The bond angle of O-C-O in Al₃CO₂, Mn $(B_3N_3H_6)_2CO_2$, $B_9C_3H_{12}CO_2$, and $C_5NH_6CO_2$ is 126°, 133°, 131°, and 129° making the bond bend by 8°, 3, 4, and 7% more than the corresponding value in CO_2^- . Thus, both the stretching of the O-C bonds and the bending of the O-C-O angle weaken the O-C bonds of CO_2 , making it easy to activate.

The NPA charge has been listed in **Table 1** to show how much charge is transferred to CO₂. This transfer of charge results in the bending of CO₂ and weakens the CO₂ bond, and therefore making it easier to break. The amount of charge transferred from Al₃, Mn (B₃N₃H₆)₂, B₉C₃H₁₂, and C₅NH₆ to CO₂ are -1.26e, -0.90e, -0.91e, and -0.63e, respectively. Note that this amount of charge transferred from Al₃, Mn (B₃N₃H₆)₂, B₉C₃H₁₂ are greater than that of noble gas (0.77e) [47] being very close to unity, whereas in the case of C₅NH₆, the amount of charge transferred is less. From this analysis, one may note that although the IE of Al₃ is not the lowest among these four superalkalis (see **Figure 1**), the charge transferred is the most

and it is capable of bending the CO_2 molecule the most. This indicates that the quantitative nature of the activation of CO_2 depends on the electronic structure and size of the superalkalis, as seen in an earlier section.

Interaction With Non-Metallic Superalkalis (O_2H_5, N_2H_7)

Kumar et al. [42] explored the scope of non-metallic superalkalis in the activation of CO₂. They studied the interaction of CO₂ with non-metallic superalkalis such as O_2H_5 and N_2H_7 , employing the MP2/6-311++G (d,p) level *via* the Gaussian 09 program. The equilibrium structures of O_2H_5 -CO₂ and N_2H_7 -CO₂ are shown in **Figure 6**, and related parameters are listed in **Table 1**. It was noticed that in O_2H_5 -CO₂ complexes, O atoms of CO₂ interact with the H-atom of superalkali, unlike in N_2H_7 -CO₂, in which the C-atom of CO₂ interacts with the H-atom. This may be due to the repulsion between excess electrons of N and O atoms.

The (b) isomers of O_2H_5 - CO_2 and N_2H_7 - CO_2 are 0.24 and 0.78 eV, higher in energy in which CO_2 interacts through the O-atom as well as the C-atom in the N_2H_7 - CO_2 isomer. The relative stability of isomers can be explained on the basis of H-bond interactions. For instance, the bond lengths of O-H and C-H are 2.060 Å and 3.710 Å, respectively. The BE of these complexes provides relative strength through the interaction of CO_2 with non-metallic superalkalis. From **Table 1**, the BE suggests that O_2H_5 - CO_2 isomers are

stable, whereas $\mathrm{N_2H_7\text{-}CO_2}$ is slightly destabilized due to the negative value of BE.

From **Table 1**, the value of NPA charges of CO₂ is calculated to be -0.75e for O₂H₅-CO₂ and -0.77e for N₂H₇-CO₂ lowest energy structures (a). Thus, the NPA charge values are very close to each other. In isomer (b) of O₂H₅-CO₂ and N₂H₇-CO₂, the CO₂ moiety is bent, similar to that in its lowest energy structure. Therefore, the activation and the consequential reduction of CO₂ can also be possible by non-metallic superalkalis such as O₂H₅, if not by N₂H₇.

Interaction With Polynuclear Species (Al $_{12}$ P, N $_4$ Mg $_6$ M)

The compact (quasi) icosahedral $Al_{12}X$ (X = Be, Al, C, and P) clusters have been employed to analyze the dissociation and absorption of small gas molecules [48–54]. Zhang et al. [43] studied the interaction of $Al_{12}P$ superalkali with CO₂ using Minnesota density functional (M06-2X) [55] and 6-311+G(d) basis set in the Gaussian 09 program. They obtained three isomers of the $Al_{12}P$ -CO₂ complex as shown in **Figure 7**. The lowest energy corresponds to the isomer (a) in which the interaction is mediated by both O atoms. The isomers (b) and (c) are found to have a high energy of 0.11 eV (2.64 kcal/mol) and 0.20 eV (4.52 kcal/mol), respectively. Obviously, the chemisorbed CO₂ molecule undergoes structural changes from linear to bending in each $Al_{12}P$ -CO₂ isomer.

They confined their analyses to the global minimum structure, that is, isomer (a). The bond distance of C-O in isomer (a) is 1.24 Å, which is found to be 7.6% larger than free CO_2 (1.15 Å), consequently, weakening the C-O bond. Moreover, the variation of the C-O-C angle from 180° to 130.4° in isomer (a) advocates the change in hybridization of carbon in CO_2 from sp to quasi-sp² after activation by Al12P. Furthermore, the C-O bond is marginally larger (1.23 Å) as compared to isolated CO2-, whereas bond bending is also larger, about 4.7%, than that in isolated CO₂⁻, which clearly supports the activation of CO₂ assimilated on the Al12P cluster. The computed total NPA charge on the CO_2 subunit is -0.707e, which shows the transfer of almost one electron charge from Al₁₂P to CO₂ in the complex. Thus, CO_2 is successfully reduced to CO_2^- anion. The low IE of $Al_{12}P$ superatom is the main source of CO_2 reduction as it facilitates the transfer of charge to CO₂, which ultimately results in the contraction of the O-C-O angle and the weakening of the C-O bond of the CO2 moiety. The small activation barrier of 23 kcal/mol is calculated for the chemisorption of CO_2 on $Al_{12}P$ to form the $Al_{12}P$ - CO_2 complex (a), which further suggests the application of $Al_{12}P$ as a potential catalyst for CO₂ conversion. It has been found that the Al₁₂P complex shows high adsorption intensities in the visible region and, hence, promotes photocatalysis or photothermal catalysis of CO₂ and its transformation by absorbing sunlight.

Recently, Sikorska and Gaston [22] explored new superalkali species, N_4Mg_6M (M = Li, Na, K) by performing the MP2/6-311+G(d) and single-point CCSD(T)/6-311+G (3df) calculations

Ref. 56 in the Gaussian 09 program. They studied the catalytic behavior of N_4Mg_6Li , N_4Mg_6Na , and N_4Mg_6K for CO_2 activation. For the sake of brevity, we will discuss the interaction of CO_2 with

 N_4Mg_6Li superalkali. CO_2 interacts with N_4Mg_6M and the resultant $N_4Mg_6M\text{-}CO_2$ complexes are displayed in Figure 8 for M = Li. In all isomers, the interaction between CO_2 and

 N_4Mg_6M takes place via the C-N bond of 1.452–1.454 Å, which supports the evolution of a single bond between carbon and nitrogen.

The isomers (b) and (c) are found to be 0.04 eV (0.97 kcal/ mol) and 0.11 eV (2.48 kcal/mol) higher in energy than the lowest energy isomer (a) in the case of N_4Mg_6Li -CO₂. The binding energy of these isomers lies in the range of 1.46–1.57 eV (see **Table 1**). The C-O bond lengths, being in the range of 1.223–1.224 Å and 1.335–1.336 Å are indeed 8% larger than that of the CO₂ anion. Furthermore, the bending of the angle O-C-O, 123–126°, was 9% more than the angle of isolated CO₂⁻. The NPA charge transferred from N_4Mg_6M superalkalis to CO₂ varies from -0.799e to -0.806e. Ionization energy plays a major role in the activation process of CO₂, as the amount of transferred charge increases with the decrease in ionization energy because it is effortless to transfer charge from species with low ionization energy. Therefore, the extension of the bond distance of C-O along with the bending of angle O-C-O results in the weakening of C-O bonds of CO₂. Thus, the newly designed N_4Mg_6M superalkalis could be used as a catalyst for CO₂ activation.

Interaction With Li_3F_2 Superalkali Inside Buckminsterfullerene (C₆₀)

The interaction of CO₂ with the binuclear Li₃F₂ superalkali was reported by Park and Meloni as discussed in an earlier section. Recently, Meloni et al. [44] investigated the interaction of CO₂ with Li₃F₂ inside fullerene (C₆₀) by using B3LYP [57, 58] with the 6-31G (d) basis set in the Gaussian 09 program. They noticed two important features. When CO₂ is encapsulated within C₆₀, it gets destabilized as its binding energy is -147 kJ/ mol. The Li₃F₂ inside C₆₀ assumes trigonal bipyramidal (D_{3h}) geometry with a binding energy of 119 kJ/mol, unlike the free

 Li_3F_2 linear cluster (see **Figure 1**). Thus, C_{60} strongly interacts with Li_3F_2 and there is no reduction of C_{60} .

The unforeseen result has been noticed on insertion of CO_2 inside $Li_3F_2(D_3h)@C_{60}$ endofullerene, as displayed in **Figure 9**. On the inspection of the geometry inside the C_{60} , it was found that CO_2 has been activated by making a $\angle OCO 132^\circ$ and that the bond length of C-O has been increased to 1.20 Å. The activation of CO_2 has been attained by the transfer of F atom from Li_3F_2 to CO_2 , due to the F-C interaction with the bond distance of 1.38 Å. Thus, the endo-reaction simulates a nonplanar (trigonal pyramidal) FCO₂ interacting with the FLi₃- like species (also shown in **Figure 9**). There have been several studies [59, 60] in which the structures and interactions between species are greatly modified by encapsulation within C_{60} .

Interaction With C_6Li_6 : Capture and Storage of CO_2

Thus, the strong reducing power enables superalkalis to reduce CO_2 as well as several other molecules [61, 62], So far, it has been found that the superalkalis are restricted to activate one CO_2

TABLE 2] ω B97xD/6-311+G (d) calculated NBO charge on CO₂ (Δq), adsorption energy per CO₂ (E_{ad}), and consecutive adsorption energy (ΔE_{ad}) for C₆Li₆-nCO₂ complexes taken from Ref. 63.

System	∆ q (e)	E _{ad} (eV)	$\Delta \boldsymbol{E}_{ad}$ (eV)
C ₆ Li ₆ -CO ₂	-0.829	3.18	3.18
C ₆ Li ₆ -2CO ₂	-0.827	3.16	3.11
C ₆ Li ₆ -3CO ₂	-0.826	3.31	3.63
C ₆ Li ₆ -4CO ₂	-0.807	3.07	2.33
C ₆ Li ₆ -5CO ₂	-0.790	2.91	2.27
C ₆ Li ₆ -6CO ₂	-0.770	2.79	2.21

molecule per unit, that is, only one CO_2 molecule is reduced by a superalkali. This may limit the capture and storage of superalkalis for practical applications. Srivastava [63] reported that a single molecule of hexalithiobenzene (C₆Li₆) is not only capable of reducing but also capturing up to six CO_2 molecules sequentially using the ω B97xD functional [64] and 6-311+G(d) basis set in the Gaussian 09 program. The planar C₆Li₆ molecule has equal ring bond lengths of 1.418 Å, whose IE is reported to be lower than that of Li, thereby characterizing it as a superalkali molecule [25]. Note that planar star-like C₆Li₆ has been previously studied by several groups [65–67]. The sequential interaction of CO₂ molecules with C₆Li₆ results in the C₆Li₆-*n*CO₂ complexes as displayed in **Figure 10**.

The interaction between CO_2 and C_6Li_6 is mediated by one C-C and two Li-O bonds in these complexes. The C_6Li_6 ring moiety in C_6Li_6 - nCO_2 is deviated from planarity due to the out-of-plane displacement of Li atoms because of the Coulomb-repulsion between neighboring Li-atoms for n = 1, 2, 4, and 5. However, both C_6Li_6 - $3CO_2$ and C_6Li_6 - $6CO_2$ possess the perfect planar ring moiety, having equal bond lengths of 1.42 Å and 1.40 Å, respectively. The CO_2 moiety in C_6Li_6 - CO_2 has a bond length and an angle of 1.26 Å and 122.5°, respectively. With an increase in the number of CO_2 decrease and increase continuously up to 1.25 Å and 125.2°, respectively, for C_6Li_6 - $6CO_2$.

The activation of CO_2 leads to an increase in the bond length and a decrease in the bond angle by bending. **Table 2** lists the NBO charge (Δq) located at CO_2 moieties, adsorption (binding) energy (E_{ad}) per CO_2 molecule, and consecutive adsorption

REFERENCES

- Mirzaei S, Shamiri A, Aroua MK. Simulation of Aqueous Blend of Monoethanolamine and Glycerol for Carbon Dioxide Capture from Flue Gas. *Energy Fuels* (2016) 30(11):9540–53. doi:10.1021/acs.energyfuels. 6b01230
- Andreoni W, Pietrucci F. CO2 Capture in Amine Solutions: Modelling and Simulations with Non-empirical Methods. J Phys Condens Matter (2016) 28(50):503003. doi:10.1088/0953-8984/28/50/503003
- Yeh JT, Resnik KP, Rygle K, Pennline HW. Semi-batch Absorption and Regeneration Studies for CO2 Capture by Aqueous Ammonia. *Fuel Process Tech* (2005) 86(14-15):1533–46. doi:10.1016/j.fuproc.2005.01.015
- Kim HR, Yoon T-U, Kim S-I, An J, Bae Y-S, Lee CY. Beyond Pristine MOFs: Carbon Dioxide Capture by Metal-Organic Frameworks (MOFs)-Derived Porous Carbon Materials. RSC Adv (2017) 7:1266–70. doi:10.1039/c6ra26824b

energy (ΔE_{ad}). It is clear that the Δq of C_6Li_6 - nCO_2 becomes -0.83e, -0.81e, -0.79e, and -0.77e for n = 1-3, n = 4, n = 5, and n = 6, respectively. This suggests that C_6Li_6 can be employed in the activation of all CO₂ molecules and, consequently, their adsorption. One can note that the E_{ad} values are fairly large, ranging from 3.18 to 2.79 eV per CO₂, which predicts the stability of these C_6Li_6 - nCO_2 complexes. It is to be noticed that the adsorption of molecules is not feasible with negative ΔE_{ad} values, whereas sequential adsorption becomes feasible with positive ΔE_{ad} values. Thus, the study suggests that C_6Li_6 is not only capable of activation but also effective in the sequential adsorption of six CO₂ molecules.

CONCLUSION AND PERSPECTIVE

In summary, we have discussed the activation of CO_2 using various superalkalis. CO₂ is said to be activated when the charge is transferred to CO₂ from superalkali clusters, which ultimately results in the transformation of the linear structure of CO₂ to the bent structure of CO₂⁻. Based on quantum chemical methods, CO2 is successfully reduced to CO2⁻ by using typical superalkalis (FLi2, OLi3, and NLi4), binuclear superalkali (Li₃ F_2), special superalkalis (Al₃, Mn(B₃N₃H₆)₂, B₉C₃H₁₂, C₅NH₆), polynuclear superalkalis (Al₁₂P, N₄Mg₆M), and nonmetallic superalkalis (O₂H₅ and N₂H₇). It was noticed that the amount of charge transfer depends on the electronic structure, size, and ionization energy of superalkalis. The activation of CO_2 by Li₃F₂ inside C_{60} fullerene has also been discussed. It was also revealed that the C6Li6 molecule is not only capable of activating CO₂ but also capturing up to six CO₂ molecules. These results suggest that the superalkalis might be used as efficient catalysts for CO₂ activation. Thus, this activated CO₂ ion can be converted into fuel, such as methanol [68] via hydrogenation reaction.

AUTHOR CONTRIBUTIONS

HS: literature survey, data collection, writing draft. AKS: conceptualization, supervision, editing, and finalizing the draft.

- Jiang J-X, Su F, Trewin A, Wood CD, Campbell NL, Niu H, et al. Conjugated Microporous Poly(aryleneethynylene) Networks. *Angew Chem Int Ed* (2008) 47(7):1167. doi:10.1002/anie.200890021
- Plaza MG, García S, Rubiera F, Pis JJ, Pevida C. Post-combustion CO2 Capture with a Commercial Activated Carbon: Comparison of Different Regeneration Strategies. *Chem Eng J* (2010) 163(1-2):41–7. doi:10.1016/j.cej.2010.07.030
- Wang L, Zhao J, Zhou Z, Zhang SB, Chen Z. First-principles Study of Molecular Hydrogen Dissociation on Doped Al12X (X = B, Al, C, Si, P, Mg, and Ca) Clusters. *J Comput Chem* (2009) 30(15):2509–14. doi:10.1002/jcc. 21239
- Centi G, Perathoner S. Opportunities and Prospects in the Chemical Recycling of Carbon Dioxide to Fuels. *Catal Today* (2009) 148(3-4):191–205. doi:10. 1016/j.cattod.2009.07.075
- Qiao J, Liu Y, Hong F, Zhang J. A Review of Catalysts for the Electroreduction of Carbon Dioxide to Produce Low-Carbon Fuels. *Chem Soc Rev* (2014) 43(2): 631–75. doi:10.1039/c3cs60323g

- Schröder D, Schalley CA, Harvey JN, Schwarz H. On the Formation of the Carbon Dioxide Anion Radical CO₂⁻⁻ in the Gas Phase. Int J Mass Spectrom (1999) 185-187:25–35. doi:10.1016/s1387-3806(98)14042-3
- Sommerfeld T, Meyer H-D, Cederbaum LS. Potential Energy Surface of the CO2? Anion. Phys Chem Chem Phys (2004) 6(1):42. doi:10.1039/b312005h
- Wang L-S, Reutt JE, Lee YT, Shirley DA. High Resolution UV Photoelectron Spectroscopy of CO+2, COS+ and CS+2 Using Supersonic Molecular Beams. J Electron Spectrosc Relat Phenomena (1988) 47:167–86. doi:10.1016/0368-2048(88)85010-2
- Czapla M, Skurski P. Oxidizing CO2 with Superhalogens. Phys Chem Chem Phys (2017) 19(7):5435–40. doi:10.1039/c6cp08043j
- Gutsev GL, Boldyrev AI. DVM-xα Calculations on the Ionization Potentials of MXk+1– Complex Anions and the Electron Affinities of MXk+1 "superhalogens". *Chem Phys* (1981) 56(3):277–83. doi:10.1016/0301-0104(81)80150-4
- Gutsev GL, Boldyrev AI. DVM Xα Calculations on the Electronic Structure of "superalkali" Cations. Chem Phys Lett (1982) 92:262–6. doi:10.1016/0009-2614(82)80272-8
- Weber JM. The Interaction of Negative Charge with Carbon Dioxide -Insight into Solvation, Speciation and Reductive Activation from Cluster Studies. Int Rev Phys Chem (2014) 33(4):489–519. doi:10.1080/0144235x. 2014.969554
- Tong J, Li Y, Wu D, Li Z-R, Huang X-R. Ab Initio Investigation on a New Class of Binuclear Superalkali Cations M2Li2k+1+ (F2Li3+, O2Li5+, N2Li7+, and C2Li9+). J Phys Chem A (2011) 115(10):2041-6. doi:10. 1021/jp110417z
- Hou N, Li Y, Wu D, Li Z-R. Do nonmetallic Superalkali Cations Exist? Chem Phys Lett (2013) 575:32–5. doi:10.1016/j.cplett.2013.05.014
- Zhao T, Wang Q, Jena P. Rational Design of Super-alkalis and Their Role in CO2activation. Nanoscale (2017) 9:4891–7. doi:10.1039/c7nr00227k
- 20. Molina B, Soto JR, Castro JJ. Stability and Nonadiabatic Effects of the Endohedral Clusters X@Al12 (X = B, C, N, Al, Si, P) with 39, 40, and 41 Valence Electrons. J Phys Chem C (2012) 116(16):9290–9. doi:10.1021/ jp3004135
- 21. Akutsu M, Koyasu K, Atobe J, Hosoya N, Miyajima K, Mitsui M, et al. Experimental and Theoretical Characterization of Aluminum-Based Binary Superatoms of Al12X and Their Cluster Salts. *J Phys Chem A* (2006) 110(44): 12073–6. doi:10.1021/jp065161p
- Sikorska C, Gaston N. N4Mg6M (M = Li, Na, K) Superalkalis for CO2 Activation. J Chem Phys (2020) 153(14):144301. doi:10.1063/5.0025545
- Sun W-M, Li Y, Wu D, Li Z-R. Designing Aromatic Superatoms. J Phys Chem C (2013) 117(46):24618–24. doi:10.1021/jp408810e
- Giri S, Reddy GN, Jena P. Organo-Zintl Clusters [P7R4]: A New Class of Superalkalis. J Phys Chem Lett (2016) 7(5):800–5. doi:10.1021/acs.jpclett. 5b02892
- Srivastava AK. Organic Superalkalis with Closed-Shell Structure and Aromaticity. *Mol Phys* (2018) 116(12):1642–9. doi:10.1080/00268976.2018. 1438678
- 26. Yang H, Li Y, Wu D, Li Z-R. Structural Properties and Nonlinear Optical Responses of Superatom Compounds BF4 -M (M = Li, FLi2, OLi3, NLi4). Int J Quan Chem. (2012) 112:770–8. doi:10.1002/qua.23053
- Li Y, Wu D, Li Z-R. Compounds of Superatom Clusters: Preferred Structures and Significant Nonlinear Optical Properties of the BLi6-X (X = F, LiF2, BeF3, BF4) Motifs. *Inorg Chem* (2008) 47(21):9773–8. doi:10.1021/ic800184z
- Giri S, Behera S, Jena P. Superalkalis and Superhalogens as Building Blocks of Supersalts. J Phys Chem A (2014) 118(3):638–45. doi:10.1021/jp4115095
- Srivastava AK, Misra N. Superalkali-hydroxides as strong Bases and Superbases. New J Chem (2015) 39(9):6787-90. doi:10.1039/c5nj01259g
- Srivastava AK, Misra N. OLi3O– Anion: Designing the Strongest Base to Date Using OLi3 Superalkali. *Chem Phys Lett* (2016) 648:152–5. doi:10.1016/j.cplett. 2016.02.010
- Winfough M, Meloni G. Ab Initio analysis on Potential Superbases of Several Hyperlithiated Species: Li3F2O and Li3F2OHn (N = 1, 2). *Dalton Trans* (2017) 47(1):159–68. doi:10.1039/c7dt03579a
- Chen W, Li Z-R, Wu D, Li Y, Li R-Y, Sun C-C. Inverse Sodium Hydride: Density Functional Theory Study of the Large Nonlinear Optical Properties. *J Phys Chem A* (2005) 109(12):2920–4. doi:10.1021/jp044541c

- Sun W-M, Fan L-T, Li Y, Liu J-Y, Wu D, Li Z-R. On the Potential Application of Superalkali Clusters in Designing Novel Alkalides with Large Nonlinear Optical Properties. *Inorg Chem* (2014) 53(12):6170–8. doi:10.1021/ic500655s
- Srivastava AK, Misra N. Competition between Alkalide Characteristics and Nonlinear Optical Properties in OLi3MLi3O (M = Li, Na, and K) Complexes. *Int J Quan Chem.* (2017) 117(3):208–12. doi:10.1021/ic500655s10.1002/qua. 25313
- Srivastava AK. Single- and Double-Electron Reductions of CO2 by Using Superalkalis: An Ab Initio Study. Int J Quan Chem. (2018) 118:e25598. doi:10. 1002/qua.25598
- Compton RN, Reinhardt PW, Cooper CD. Collisional Ionization of Na, K, and Cs by CO2, COS, and CS2: Molecular Electron Affinities. J Chem Phys (1975) 63(9):3821. doi:10.1063/1.431875
- Knapp M, Echt O, Kreisle D, Märk TD, Recknagel E. Formation of long-lived CO₂⁻, N₂O⁻, and their dimer anions, by electron attachment to van der waals clusters. *Chem Phys Lett* (1986) 126(3):225–31. doi:10.1016/s0009-2614(86) 80074-4
- Gutsev GL, Bartlett RJ, Compton RN. Electron Affinities of CO2, OCS, and CS2. J Chem Phys (1998) 108:6756–62. doi:10.1063/1.476091
- Møller C, Plesset MS. Note on an Approximation Treatment for Many-Electron Systems. *Phys Rev* (1934) 46(7):618–22. doi:10.1103/physrev.46.618
- 40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. *Gaussian 09*, Revision C02. Wallingford, CT: Gaussian, Inc. (2009).
- Park H, Meloni G. Reduction of Carbon Dioxide with a Superalkali. Dalton Trans (2017) 46:11942–9. doi:10.1039/c7dt02331f
- Kumar R, Kumar A, Srivastava AK, Misra N. Ab Initio investigations on the Interaction of CO2 and Non-metallic Superalkalis: Structure, Stability and Electronic Properties. *Mol Phys* (2021) 119(6):e1841311. doi:10.1080/ 00268976.2020.1841311
- 43. Zhang XL, Zhang L, Ye YL, Li XH, Ni BL, Li Y, et al. On the Role of Alkali-Metal-Like Superatom Al 12 P in Reduction and Conversion of Carbon Dioxide. *Chem Eur J* (2020) 27(3):1039–45. doi:10.1002/chem.202003733
- Meloni G, Giustini A, Park H. CO2 Activation within a Superalkali-Doped Fullerene. Front Chem (2021) 9:712960. doi:10.3389/fchem.2021.712960
- Reed AE, Weinstock RB, Weinhold F. Natural Population Analysis. J Chem Phys (1985) 83(2):735–46. doi:10.1063/1.449486
- Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA. A Complete Basis Set Model Chemistry. VI. Use of Density Functional Geometries and Frequencies. J Chem Phys (1999) 110(6):2822–7. doi:10.1063/1.477924
- Zhang X, Liu G, Meiwes-Broer KH, Ganteför G, Bowen K. CO 2 Activation and Hydrogenation by PtH N – Cluster Anions. *Angew Chem Int Ed* (2016) 55(33):9644–7. doi:10.1002/ange.20160430810.1002/anie.201604308
- Wang Y, LeVan MD. Adsorption Equilibrium of Carbon Dioxide and Water Vapor on Zeolites 5A and 13X and Silica Gel: Pure Components. J Chem Eng Data (2009) 54(10):2839–44. doi:10.1021/je800900a
- Henry DJ, Yarovsky I. Dissociative Adsorption of Hydrogen Molecule on Aluminum Clusters: Effect of Charge and Doping. J Phys Chem A (2009) 113: 2565–71. doi:10.1021/jp809619q
- Lu QL, Chen LL, Wan JG, Wang GH. First Principles Studies on the Interaction of O2 with X@Al12 (X = Al-, P+, C, Si) Clusters. J Comput Chem (2010) 31(15):2804–9. doi:10.1002/jcc.21573
- Zhao J-Y, Zhao F-Q, Xu S-Y, Ju X-H. DFT Studies on Doping Effect of Al12X: Adsorption and Dissociation of H2O on Al12X Clusters. *J Phys Chem A* (2013) 117(10):2213–22. doi:10.1021/jp309422p
- Zhao J-Y, Zhaog Y, Zhao F-Q, Ju X-H. Adsorption of Carbon Dioxide on Al12X Clusters Studied by Density Functional Theory: Effect of Charge and Doping. J Phys Chem A (2013) 117:12519–28. doi:10.1021/jp405934w
- Zhao J-Y, Zhao F-Q, Xu S-Y, Ju X-H. Theoretical Study of the Geometries and Decomposition Energies of CO2 on Al12X: Doping Effect of Al12X. J Mol Graphics Model (2014) 48:9–17. doi:10.1016/j.jmgm.2013.11.002
- Chakraborty D, Chattaraj PK. Reactions Involving Some Gas Molecules through Sequestration on Al12 Be Cluster: An Electron Density Based Study. J Comput Chem (2017) 39(10):535–45. doi:10.1002/jcc.25092
- 55. Zhao Y, Truhlar DG. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other

Functionals. Theor Chem Account (2008) 120(1-3):215-41. doi:10.1007/s00214-007-0310-x

- Watts JD, Gauss J, Bartlett RJ. Coupled-cluster Methods with Noniterative Triple Excitations for Restricted Open-shell Hartree-Fock and Other General Single Determinant Reference Functions. Energies and Analytical Gradients. *J Chem Phys* (1993) 98(11):8718–33. doi:10.1063/1.464480
- Becke AD. Density-functional Exchange-Energy Approximation with Correct Asymptotic Behavior. *Phys Rev A* (1988) 38:3098–100. doi:10.1103/physreva. 38.30910.1103/physreva.38.3098
- Lee C, Yang W, Parr RG. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys Rev B* (1988) 37:785–9. doi:10.1103/physrevb.37.785
- Ramachandran CN, Sathyamurthy N. Water Clusters in a Confined Nonpolar Environment. *Chem Phys Lett* (2005) 410(4-6):348–51. doi:10.1016/j.cplett. 2005.04.113
- Srivastava AK, Pandey SK, Misra N. (CH3Br···NH3)@C60: The Effect of Nanoconfinement on Halogen Bonding. *Chem Phys Lett* (2016) 662:240–3. doi:10.1016/j.cplett.2016.09.036
- Srivastava AK. Reduction of Nitrogen Oxides (NO) by Superalkalis. Chem Phys Lett (2018) 695:205–10. doi:10.1016/j.cplett.2018.02.029
- Srivastava AK. DFT and QTAIM Studies on the Reduction of Carbon Monoxide by Superalkalis. J Mol Graphics Model (2021) 102:107765. doi:10.1016/j.jmgm.2020.107765
- Srivastava AK. CO 2 -activation and Enhanced Capture by C 6 Li 6 : A Density Functional Approach. Int J Quan Chem. (2019) 119:e25904. doi:10.1002/qua. 25904
- Chai J-D, Head-Gordon M. Long-range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. *Phys Chem Chem Phys* (2008) 10(44):6615–20. doi:10.1039/b810189b

- 65. Xie Y, Schaefer HF, III. Hexalithiobenzene: a D₆h Equilibrium Geometry with Six Lithium Atoms in Bridging Positions. *Chem Phys Lett* (1991) 179(5-6): 563–7. doi:10.1016/0009-2614(91)87104-j
- Smith BJ. Hexalithiobenzene: beauty Is in the Eye of the Beholder. Chem Phys Lett (1993) 207(4-6):403–6. doi:10.1016/0009-2614(93)89021-9
- Bachrach SM, Miller JV. Structures and Relative Energies of Polylithiated Benzenes. J Org Chem (2002) 67(21):7389–98. doi:10.1021/jo02592010.1021/ jo025920
- Liu X, Song Y, Geng W, Li H, Xiao L, Wu W. Cu-Mo2C/MCM-41: An Efficient Catalyst for the Selective Synthesis of Methanol from CO2. *Catalysts* (2016) 6(5):75. doi:10.3390/catal6050075

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or any claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Srivastava and Srivastava. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.