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Rydberg atom arrays offer flexible geometries of strongly interacting neutral atoms, which
are useful for many quantum applications such as quantum simulation and quantum
computation. Here, we consider an all-optical gate-based quantum computing scheme for
the Rydberg atom arrays, in which auxiliary atoms (wire atoms) are used as a mean of
quantum-mechanical remote-couplings among data-qubit atoms, and optical individual-
atom addressing of the data and wire atoms is used to construct universal quantum gates
of the data atoms. The working principle of our gates is to use the wire atoms for coupling
mediation only, while leaving them in noncoupling ground states before and after each gate
operation, which allows the double-excited states of data qubits to be accessible by a
sequence of π or π/2 pulses addressing the data and wire atoms. Optical pulse sequences
are constructed for standard one-, two-, and multi-qubit gates, and the arbitrary two-qubit
state preparation is considered for universal computation prospects. We further provide a
detailed resource estimate for an experimental implementation of this scheme in a Rydberg
quantum simulator.
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1 INTRODUCTION

Quantum computing is being actively studied as a mean to revolutionize humankind’s
computational capability beyond the limits of digital computers [1, 2]. Quantum computing
hardware are two-level physical systems, which we refer to as qubits hereafter, and quantum
computation performs operations of universal quantum gates on them. Gate-based quantum
computations have been demonstrated in many physical systems, including linear optics [3, 4],
circuit quantum electrodynamics of superconductor [5–7], trapped ions [8–10], defects in solid-state
materials [11, 12], and neutral atoms [13, 14].

Neutral atoms have been considered for gate-based quantum computations using interactions
between the Rydberg atoms [15, 16]. The advantages of using Rydberg atoms are strong
dipole–dipole interactions that can be switched on and off by fast laser excitation, large-scale
atom arrays that can be prepared with almost any desired geometries and topologies [17–19], and
stable ground hyperfine states that can be used for long-term quantum information. Quantum gates
using Rydberg atoms can utilize the distance-dependent interactions [20] or the Rydberg blockade
effect which prohibits adjacent atoms from being excited to a Rydberg state [21, 22]. There are many
Rydberg atom schemes for quantum gates and entanglements [23–26] and experimental
demonstrations [27–31, 33, 34]. The single-qubit gate fidelity of the recent demonstrations was
recorded 0.97 in the alkali atom system [29] and 0.99 in the alkaline-earth atomic system [31]. Many
of these previous studies are based on coding quantum information in the stable states, which are the
hyperfine-Zeeman substates, requiring a hybrid microwave or Raman excitation scheme in addition
to Rydberg atom excitation.
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In this article, we consider an all-optical quantum gate scheme
in a Rydberg atom array, which does not resort to the ground
sublevels and, instead, utilizes auxiliary atoms (wire atoms) to
mediate coupling among qubit atoms (data atoms), and single-
atom addressing operations. When we use a Rydberg state and
ground state to be the two qubit states for a data qubit and use a
cluster of data and wire qubits in a Rydberg atom array, in which
the wire atoms between the data qubits mediate interactions
between the data atoms, by a sequence of single-atom addressing
operations. The advantage of this setup comes in twofold. First,
the gates are all realized with fast laser excitation of the ground-
Rydberg transitions, so that the quantum circuit for a certain
computational task (including digital quantum simulation) can
be carried out fast. Second, the distance between the data atoms
can be large, for which analyses shown later with practical and
currently available resources estimates that, for example, a CZ
gate between two atoms separated about 19 μm could be created
with a high fidelity over 98% within a duration 2π/Ω, where Ω is
the Rydberg Rabi frequency.

In the rest of the article, we first outline the main idea of the
quantum wire gates based on the Rydberg interaction and single-
atom addressing in Section 2, and then construct single- and two-
qubit gates in Sections 3, 4. We then discuss the general two-
qubit state generation and multi-qubit gates in Sections 5, 6.
Experimental implementations, gate performances, and
alternative schemes are discussed in Section 7.

2 SINGLE-ATOM ADDRESSING IN A
RYDBERG-ATOM SYSTEM

We aim to construct quantum gates with a sequence of
individual-atom addressing in an array of atoms. We consider
a two-dimensional (2D) array of atoms as shown in Figure 1A. In
the Rydberg blockade regime, adjacent two atoms are inhibited
from being excited to an antiblockade state, |11〉, so the
computational space of the two atoms is limited to {|00〉, |01〉,
|10〉} excluding |11〉 (the antiblockade two-atom state), when the
two-level system, {|0〉, |1〉}, is defined with the ground and
Rydberg states of each atom. However, because |11〉 is
necessary for general quantum computation, we use the
auxiliary atoms (which we refer to as wire atoms, hereafter) to
mediate couplings among the data atoms. In Figure 1A, data
atoms are illustrated with red spheres and wire atoms are with
gray spheres.

In the three-atom system, AWB in Figure 1A, A and B are the
data atoms and W is the wire atom to couple A and B. When the
wire atom is excited to |1〉, only for data processing of |AB〉 and
otherwise left to be |0〉W, there are five computational base states |
00〉AB|0〉W, |01〉AB|0〉W, |10〉AB|0〉W, |11〉AB|0〉W, and |00〉AB|
1〉W. Here, the first four base states are the computational basis
for the two-data (AB) system and the last |00〉AB|1〉W can be
considered as a temporal register, as in Figure 1B. There are three
available atom addressings:

~W Θ, ϕ( ) � e
− i
Z∫HWdt

, (1a)

~A Θ, ϕ( ) � e
− i
Z∫ ZΩ

2 n̂ϕ · �σ
A+VnWnA( )dt

, (1b)

~B Θ, ϕ( ) � e
− i
Z∫ ZΩ

2 n̂ϕ · �σ
B+VnWnB( )dt

, (1c)
where Θ and ϕ are the Rabi rotation angle and axis, respectively.
HW is the Hamiltonian of single-addressing of W given by

HW � ZΩ
2
n̂ϕ · �σW + VnW nA + nB( ) (2)

in the Rydberg blockade regime of adjacent atoms,
i.e., d< dB <

�
2

√
d, where d and dB are the interatom and

blockade distances, respectively. Ω is the Rabi frequency, n̂ϕ is
the rotational axis defined by a laser phase ϕ, V = C6/d

6 is the van
der Waals interaction with coefficient C6, and �σ � (σx, σy, σz) is
the Pauli vector and n = (1 − σz)/2 is the excitation number.

It is noted that the atom-addressing operations in Eqs 1a–c are
three-qubit gates. We intend to use them for general quantum

FIGURE 1 | The Rydberg wire gate scheme: (A) A 2D atomic array
consists of data atoms (red spheres) and auxiliary (wire) atoms (gray spheres).
Atomic ground state |0〉 and Rydberg state |1〉 are used for the two-level
system of each atom. Wire atoms, e.g., W, mediate the couplings
between two adjacent data atoms, e.g., A and B which are separated fromW
by a distance d. (B) The energy level diagram of the three atoms, A,W, and B.
We use four computational basis states, |00〉AB|0〉W, |01〉AB|0〉W, |10〉AB|0〉W,
and |11〉AB|0〉W (in the blue dashed rectangle), out of five accessible states
including |00〉AB|1〉W, which is considered as a temporal register (in the light
green dashed rectangle). The other states, |10〉AB|1〉W, |01〉AB|1〉W, and |
11〉AB|1〉W are not accessible due to the Rydberg blockade.
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computations of the data AB atoms. ~W changes |00〉AB|0〉W to |
00〉AB|1〉W and preserves all the other states and their
superpositions. Thus, the ~W operation is the inverted
controlled rotation gate, where AB are the control qubits and
W is the target qubit. The other three operators are reduced to
single- and two-atom rotations in the data-qubit (AB) basis as

RA ⊗ IB � 〈0|W ~A|0〉W, (3a)
IA ⊗ RB � 〈0|W ~B|0〉W, (3b)
RA ⊗ RB � 〈0|W ~A~B|0〉W, (3c)

where R is the single-qubit rotation and I is the identity.

3 STANDARD ONE-QUBIT GATES

With the atom-addressing operations, ~W, ~A, and ~B, in Eqs 1a–c,
we construct standard one-qubit gates which include Pauli gates,
X, Y, and Z, general rotation R(Θ, ϕ), Hadamard gate H, and
phase gate, P.

Pauli gates rotate the quantum state of one atom, while leaving
the other atoms unchanged. For the data atoms, A and B, PauliX-
gates are given by

XA ⊗ IB � eiα〈0|W ~XA|0〉W, (4a)
IA ⊗ XB � eiα〈0|W ~XB|0〉W, (4b)

where ~XA � ~A(π, 0), ~XB � ~B(π, 0), and α = π/2 is the global
phase. Likewise, Pauli Y and Z gates are given by

YA ⊗ IB � eiα〈0|W ~YA|0〉W, (5a)
IA ⊗ YB � eiα〈0|W ~YB|0〉W, (5b)

ZA ⊗ IB � eiα〈0|W ~XA
~YA|0〉W, (5c)

IA ⊗ ZB � eiα〈0|W ~XB
~YB|0〉W, (5d)

where ~YA � ~A(π, π/2) and ~YB � ~B(π, π/2). The general rotations
are given by

RA Θ, ϕ( ) ⊗ IB � 〈0|W ~A Θ, ϕ( )|0〉W, (6a)
IA ⊗ RB Θ, ϕ( ) � 〈0|W ~B Θ, ϕ( )|0〉W. (6b)

The Hadamard gate,H, converts the quantum states, |0〉 and |
1〉, to the superposition states, | + 〉 � (|0〉 + |1〉)/ �

2
√

or
| − 〉 � (|0〉 − |1〉)/ �

2
√

, respectively. The Hadamard gate is
identical to eiπ/4X

��
Y

√
, given by

HA ⊗ IB � eiα〈0|W ~XA

���
~YA

√
|0〉W, (7a)

IA ⊗ HB � eiα〈0|W ~XB

���
~YB

√
|0〉W, (7b)

where
���
~YA

√
� ~A(π/2, π/2) and

���
~YB

√
� ~B(π/2, π/2) are the

pseudo-Hadamard gates. α = π/2.
The phase gates, PA(ϕ) and PB(ϕ), are given by

PA ϕ( ) ⊗ IB � eiϕ/2〈0|W ~X
†

A
~A π, ϕ/2( )|0〉W, (8a)

IA ⊗ PB ϕ( ) � eiϕ/2〈0|W ~X
†

B
~B π, ϕ/2( )|0〉W. (8b)

S and T gates are obtained as SA = PA(π/2), SB = PB(π/2), TA =
PA(π/4), and TB = PB(π/4).

The global phase, α, of the abovementioned gates can be
eliminated with a global phase gate. One example is

Ph α( ) � 〈0|W ~YB
~X
†

W
~W π, α( )~Y†

AB
~X
†

W
~W π, α( )

× ~Y
†

B
~X
†

W
~W π, α( )~YAB

~X
†

W
~W π, α( )|0〉W,

(9)

which is a combination of four two-qubit phase rotations, |00〉→
eiα|00〉 which is performed by ~X

†
W

~W(π, α), |01〉 → eiα|01〉 by
~YB ~X

†
W

~W(π, α)~Y†
B, |10〉→ eiα|10〉 by ~Y

†
A
~X
†
W

~W(π, α)~YA, and |11〉
→ eiα|11〉 by ~Y

†
AB

~X
†
W
~XW(π, α)~YAB, where ~YAB denotes ~YA ~YB.

4 STANDARD TWO-QUBIT GATES

Now, we consider the standard two-qubit gates including the
controlled-NOT gate, CNOT, the swap gate, SWAP, and the
controlled-phase gate, CP.

The controlled-NOT gate, CNOT, flips the target qubit (the
second qubit) only when the control qubit (the first qubit) is in |
1〉, i.e., |AB〉 → |A, A ⊕ B〉, which is also the controlled X-gate,
i.e.,CNOT =CX. With the atom addressing, CXAB and CXBA are,
respectively, given by

CXAB � 〈0|W ~Y
†

A

���
~Y
†

B

√
~Y
2

W

���
~YB

√
~YA|0〉W, (10a)

CXBA � 〈0|W ~Y
†

B

���
~Y
†

A

√
~Y
2

W

���
~YA

√
~YB|0〉W, (10b)

of which the sequence can be understood as follows: InCXAB, ~Y
2
W

at the center works as an inverted-CZ gate, which flips only the
sign of the coefficient of |00〉AB|0〉W. When this is multiplied by
~YAB from one side and by its Hermitian conjugate from the other
side, we get the controlled-Z gate, similarly as in Ref. [32], i.e.,

CZAB � CZBA � 〈0|W ~Y
†

AB
~Y
2

W
~YAB|0〉W, (11)

FIGURE 2 |Quantum circuits of (A) controlled-NOT gate,CXAB, and (B)
controlled-phase gate, CP00(α).
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which is then multiplied by
���
YA

√
and its Hermitian conjugate, to

attain CXAB. The quantum circuit of CXAB is presented in
Figure 2A. Likewise, the controlled-Y gates are given by

CYAB � 〈0|W ~Y
†

A

���
~X
†

B

√
~Y
2

W

���
~XB

√
~YA|0〉W, (12a)

CYBA � 〈0|W ~Y
†

B

���
~X
†

A

√
~Y
2

W

���
~XA

√
~YB|0〉W. (12b)

SWAP gate performs the state swapping of two qubits, i.e., |
AB〉→ |BA〉, which is also the exchange of the coefficients of |01〉
and |10〉. In our atom-addressing scheme, an X-gate version of
SWAP gate is given by

SWAP � 〈0|W ~XA
~XW

~XAB
~XW

~X
†

AB
~XW

~X
†

A|0〉W, (13)
in which the first three-pulse combination, X†

A
~XW ~X

†
A, exchanges

the coefficients of |10〉AB|0〉W and |00〉AB|1〉W. The coefficient of |
00〉AB|1〉W is then exchanged with that of |01〉AB|0〉W by the
second combination, ~XB ~XW ~X

†
B, before the coefficient of |00〉AB|

1〉W is returned to |10〉AB|0〉W by ~XA ~XW ~XA.
The controlled-phase gate, CP(α), puts the local phase of |11〉

of AB data qubits. In our atom-addressing scheme, W-atom
addressing, ~W(π, α), converts |00〉AB|0〉W to − ieiα|00〉AB|1〉W
and ~W(π, π) ~W(π, α) converts |00〉AB to eiα|00〉AB, so CP00(α),
which puts the local phase of |00〉, is given by

CP00 α( ) � 〈0|W ~X
†

W
~W π, α( )|0〉W. (14)

The quantum circuit ofCP00(α) is presented in Figure 2B. The
standard CP(α) = CP11(α) is, therefore, obtained by

CP ϕ( ) � 〈0|W ~X
†

AB
~X
†

W
~W π, ϕ( ) ~XAB|0〉W, (15)

where the CP00(α) in the middle is multiplied by ~XAB from one
side and by the conjugate of ~XAB from the other side, which
respectively exchanges and exchanges back the coefficients of |
00〉 and |11〉. As a result, we get |11〉 → eiα|11〉. Similarly,
CP01(ϕ) and CP10(ϕ) are obtained as

CP01 ϕ( ) � 〈0|W ~X
†

B
~X
†

W
~W π, ϕ( ) ~XB|0〉W, (16)

CP10 ϕ( ) � 〈0|W ~X
†

A
~X
†

W
~W π, ϕ( ) ~XA|0〉W. (17)

5 ARBITRARY TWO-QUBIT STATE
GENERATION

The general two-qubit state generation is to find a unitary
operation which transforms the initial state |00〉AB to an
arbitrary two-qubit state, i.e.,

U|00〉 � a0|00〉 + a1|01〉 + a2|10〉 + a3|11〉. (18)
The above U can be in principle constructed with the single-

and two-qubit gates. Also, it is sufficient to define the general
rotations and at least one inversion operation among the two-
qubit base states, {|00〉, |01〉, |10〉, |11〉} of AB atoms.

Inversion operations are the reflection of the two-qubit state
vector about a given plane. For example, CZ inverts the state

vector about the plane orthogonal to |11〉, i.e., ~M11 � CZ.
Likewise, ~M00 � CP00(π), ~M01 � CP01(π), and ~M10 � CP10(π).

General rotations are the base-pair rotation between a pair of
two-qubit base states, i.e., ~Rjk(Θ, ϕ)|j〉 � cos Θ

2 |j〉 − ieiϕ sin Θ
2 |k〉

for j, k ∈ {|00〉, |01〉, |10〉, |11〉}. ~R00,01(Θ, ϕ) rotates the quantum
information stored in the base pair, |00〉 and |01〉, which are, for
example, given by

~R00,01 Θ, ϕ( ) � 〈0|W ~XW
~XB

~W Θ,−ϕ( ) ~X†

B
~X
†

W|0〉W, (19)
where the first two π-pulse operations, ~X

†
B and ~X

†
W, perform |

00〉AB|0〉W → |00〉AB|1〉W and |01〉AB|0〉W → |00〉AB|0〉W,
respectively, which means that the quantum state of B atom is
transferred toW atom. Then, the state vector ofW atom is rotated
by ~W(Θ,−ϕ) and transferred back to B atom by the last two π-
pulse operations. Similarly, other rotations can be obtained as
follows:

~R00,11 Θ, ϕ( ) � 〈0|W ~XW
~XAB

~W Θ,− ϕ + π/2( )( ) ~X†

AB
~X
†

W|0〉W,
(20a)

~R01,10 Θ, ϕ( ) � 〈0|W ~XB
~XW

~XAB
~W Θ,− ϕ + π/2( )( ) ~X†

AB
~X
†

W
~X
†

B|0〉W,
(20b)

~R01,11 Θ, ϕ( ) � 〈0|W ~XB
~XW

~XA
~W Θ,−ϕ( ) ~X†

A
~X
†

W
~X
†

B|0〉W, (20c)
~R10,11 Θ, ϕ( ) � 〈0|W ~XA

~XW
~XB, ~W Θ,−ϕ( ) ~X†

B
~X
†

W
~X
†

A|0〉W. (20d)

6 MULTI-QUBIT GATES

While the multi-qubit gates can be decomposed to a sequence of
single- and two-qubit elementary gates, the standard three-qubit
gates require many elementary gates. For example, a Toffoli gate
needs 15 or 17 elementary gates. In the following, we consider the
possibilities of using wire atom arrangements which can reduce
the number of gates significantly for the Toffoli and CCZ gates.

FIGURE 3 | (A) A 5-atom chain and (B) an Y-shape atomic array to
implement the multi-qubit wire gates. (C) Quantum circuit of the Toffoli gate
TOFFABC for the control atoms A, B and the target atom C.
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If we use the simple linear configuration, as in Figure 3A, of
ABC data atoms and two wire atoms W1 and W2, their pulse-
sequence solutions, e.g., for the Toffoli and CCZ gates, are rather
complicated:

CCZ � 〈00|W12

���
~YC

√
~YAB

~X
†

W2
~YW1

~X
†

BC

����
~XW2

√
~X
2

BC,

×
����
~X
†

W2

√
~X
†

BC
~XW12

~Y
†

AB

���
~Y
†

C

√
|00〉W12

, (21)
TOFF � 〈00|W12

�����
~Y
†

B
~YC

√
~YAB

~X
†

W2
~YW1

~X
†

BC

����
~XW2

√
~X
2

BC

×
����
~X
†

W2

√
~X
†

BC
~XW12

~Y
†

AB

�����
~Y
†

C
~YB

√
|00〉W12

.
(22)

Instead, if we use the Y-shape configuration, as shown in
Figure 3B, which has one wire atom, W, which couples all the
three data atoms, ABC, simultaneously, their solutions are
simple, given as the extensions of CX and CZ in Eqs 10a,b,
11. The CCZ utilizes the fact that 〈0|W ~Y

2
W|0〉W is the inverted-

CCZ, to attain

CCZ � 〈0|W ~Y
†

ABC
~Y
2

W
~YABC|0〉W, (23)

where ~YABC � ~YA ~YB ~YC and ~Y
†
ABC are for the bitwise flip and flip-

back of the data atoms, applied before and after to change the
inverted-CCZ to CCZ. The Toffoli gate of the AB controls and C
target is also obtained as

TOFFABC � 〈0|W
���
~Y
†

C

√
~Y
†

AB
~Y
2

W
~YAB

���
~YC

√
|0〉W, (24)

where
���
~Y
†
C

√
and

���
~YC

√
on both ends are the pseudo-Hadamard

and its inverse acting on the target. The quantum circuit of
TOFFABC is presented in Figure 3C.

7 DISCUSSION AND CONCLUSION

Experimental implementation: Rydberg wire gates introduced
previously can be implemented in optical-tweezer atomic
systems, which have been previously demonstrated elsewhere
[20, 29, 30]. As an example, we consider three rubidium (87Rb)
atoms arranged in the linear chain geometry. Once the single
atoms are loaded to individual tweezers from magneto-optical
trap, the atoms are prepared to one of the magnetic sublevels in
hyperfine ground states as the ground state |0〉 (for example, |0〉 =
|5S1/2, F = 2, mF = 2〉). The states |0〉 and |1〉 are coupled by
Rydberg state excitation lasers, and in general two-photon
excitation is used to transit to |nS〉 or |nD〉 Rydberg levels via
|5P3/2〉 with 780 and 480 nm lights. For |1〉 = |69S1/2〉, the atoms
undergo van der Waals interaction, and the interaction strength
when the interatomic distance d = 7 μm becomes V � |C6|/d6 �
(2π)6.2 MHz, where C6 = −(2π)732 GHz · μm6. Individual-atom
addressing to couple between |0〉 and |1〉 can be implemented by
diffracting multiple laser beams from an acousto-optic modulator
(AOM), then focusing to the individual atoms. The switching of
individual beams can be done by controlling the amplitude and
frequency of radio-frequency wave to AOM. The individual
addressing lasers can be either ground-Rydberg resonant lasers
[30] or far-detuned lasers [35], in which the latter suppress the

Rydberg state excitation with the additional AC Stark shift
combined with global resonant lasers.

Gate performance: the performance of the Rydberg wire gate
schemes can be estimated with numerical calculations. In
Figure 4, we estimate the average fidelity of CP00(π) gate for
all the initial states |00〉AB, |01〉AB, |10〉AB, |11〉AB{ } using the
time-dependent Schrödinger equations. For |1〉 = |69S1/2, mj =
1/2〉, the results with respect to the interatomic distance are
shownwith the solid line in Figure 4. For Rabi frequencyΩ = (2π)
2 MHz, the gate duration is 0.5 μs. It is expected that the
maximum fidelity F can be reached to 94% when the lattice
constant is around 6.8 μm.

Gate imperfection sources: The sources of finite infidelities
related to the Rydberg atomic properties can be characterized.
The finite lifetime of Rydberg state gives imperfection to the
transition to |1〉. For the lifetime of |1〉 to be τ, this gives the
average gate error 9π

4Ωτ [36]. Another source of gate infidelity is the
Rydberg blockade error: as the Rydberg interaction strength is
proportional to 1/d6, the interaction strength within the blockade
distance dB is finite, and there is nonzero residual interactions
outside. For the interaction strength, V, between a nearest
neighbor Rydberg atomic pair, the gate error is given by Z2Ω2

2V2

for the initial state |10〉AB, |01〉AB and Z2Ω2

8V2 for |11〉AB [37, 38]. In
addition, the phase shift 2πV2

ZΩ occurs for the initial state |11〉AB,
due to the nonzero interactions between atom A and B.
Considering all these error budgets, we estimate the average
fidelity error as

1 − F � 9π
4Ωτ

+ 9Z2Ω2

32V2
+ πV

128ZΩ, (25)

where the terms denote the Rydberg state decay error, the
Rydberg blockade error, and the residual interaction error,
respectively. Their estimated infidelity contributions are 4 ×
10−3, 2.04 × 10−2 and 9.12 × 10−2, respectively, at d = 6.8 μm.
While our fidelity estimation considers limitedly sub-μs pulsed
gate significantly shorter than the typical coherence time of
Rydberg atoms, a detailed analysis, for example, in a large-
scale quantum circuit requires many-body effects and open

FIGURE 4 | Performance estimation of the CZ gate for the present van
der Waals scheme (solid line) in comparison with the Förster resonance
scheme (dashed line).
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quantum system dynamics [39–43].Toward the higher fidelity
gates, we discuss methods to improve the gate fidelity to suppress
the last two errors in Eq. 25. One approach is to utilize the
dipole–dipole interaction by Förster resonance between the
nearest neighbor atomic pair. Near the principal quantum
number n = 69 discussed previously, there exist two transition
channels between the Rydberg pair states, |69S1/2 + 71S1/2〉 ↔|
69P3/2 + 70P1/2〉 and |69S1/2 + 71S1/2〉↔|69P1/2 + 70P3/2〉 by the
dipole–dipole interaction, with Förster defects of 6.6 and
19.7 MHz, respectively [44]. This induces the dipole–dipole
interaction with the strength of V′ = C3/d

3, where C3 = (2π)
12.32 GHz · μm3, with the interatomic distance less than the
crossover distance 11 μm [45]. In realizing the CP00(π) gate, the
atomW is to be excited to |1′〉 = |71S1/2,mj = 1/2〉 state, while the
data atoms A and B are excited to |1〉. Then, the interaction
strength between A(B) and W is increased due to the Förster
resonance, so the interatomic distance can also be increased. This
further reduces the long range residual van der Waals interaction
between A and B, thus the gate infidelity can be suppressed. In
Figure 4, we illustrate the improved performance of the CP00(π)
gate of the dipole–dipole interaction (the dashed line). The overall
fidelities F are increased compared to the previous example, and
the maximum reached to 98% at d = 9.17 μm.

Weakness of the Rydberg wire gates: The weakness of the
present scheme is that the Rydberg states are not stable. There is a
constant decay process occurring during the quantum control
process. However, for a fast quantum control process, the decay-
induced error can be relatively small for the decay error and is
proportional to the Rydberg superposition time. Moreover, the
quantum error correction can, in principle, be executed by the
gates shown in this article, so that the error during the control
process can be corrected. Because both the main control process
and error correction are fast. Thanks to the fast pulsed operations
of quantum wire gates, the overall speed to reach a wanted
computational result can still surpass the traditional method of
coding information with the stable hyperfine-Zeeman substates.

In summary, the Rydberg wire gates are proposed, which
utilize auxiliary atoms to couple the data atoms. By coding the
information with a ground-state qubit state and a Rydberg
qubit state, the universal gate set can be realized based on the
strong, local interactions of the neutral Rydberg atoms. The
gates are realized by the fast laser excitation of Rydberg states,
so that their speed can be fast, and the well-separated data
atoms can be rapidly entangled. Fast entangling operations
are important basic elements in a quantum circuit for large-
scale quantum computation, and long-distance entanglement
can greatly simplify complex operations between distant
qubits in the array. The new idea of Rydberg wire gates
can bring new prospective in neutral-atom quantum
science and technology.
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