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The aim of this work is to study constrained optimization problems by means of (Φ, ρ)-
convexity. We provide some sufficient conditions of optimality for a class of vectors of
cuvilinear integrals by means of an adequate generalized convexity. Dual problems
associated with this one are stated and developed, in terms of weak, strong, and
converse duality results. The framework chosen here is one specific to the Riemannian
geometry, namely that of first order jet bundles.
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1 INTRODUCTION

Multiobjective optimization is a modern direction of study in science, from reasons related to their
real world applications. In this regard, we mention the shortest path method, which involves the
length of the paths and their costs. More than that, multiple criteria may refer to the length of a
journey, its price, or the number of transfers. Also, the timetable information could be considered as a
result of multiobjective optimization, if we have in view the unknown delays. Physics encounters
many problems whose solutions can be found by using optimization approach, since a considerable
number of them refer mainly to minimization principles. In this respect, there can be mentioned the
study of interfaces and elastic manifolds, morphology evaluation of flow lines in high temperature
superconductor or the analysis of X-ray data; for a detailed analysis, please see Hartman and Heiko
[1], or Biswas et al. [2]. Another field which provides real world multiobjective optimization
problems is material sciences, where an optimal estimation of the parameters of the materials is
required. Further more such optimization problems can be found also in economics, or game theory,
see Ehrgott et al. [3], Gal and Hanne [4] and the references therein.

One of the main directions of research in optimization refers to determining necessary or/and
sufficient efficiency conditions for some vector optimization programs, and that of developing
various duality results in connection to the primal multiobjective problem. These kinds of outcomes
require the use of various types of generalized convexities, a direction of study started by Craven [5]
and Hanson [6]. The pseudo-convexity and quasi-convexity provided to be appropriate tools for the
development of duality results, please see Bector et al. [7]. Suneja and Srivastava [8] used generalized
invexity in order to prove various duality results for multiobjective problems. Osuna-Gómez et al. [9]
introduced optimality conditions and duality properties for a class of multiobjective programs under
generalized convexity hypotheses. Antczak [10] used B-(p, r)-invexity functions to obtain sufficient
optimality conditions for vector problems. Su and Hien [11] used Mordukhovich pseudoconvexity
and quasiconvexity to prove strong Karush-Kuhn-Tucker optimality conditions for constrained
multiobjective problems. The optimal power flow problem is solved bymeans of a characterization of
the KT-invexity, by Bestuzheva and Hijazi [12]. Suzuki [13] joined quasiconvexity with necessary
and sufficient optimality conditions in terms of Greenberg-Pierskalla subdifferential and Martínez-
Legaz subdifferential. Jayswal et al. [14] developed duality results for semi-infinite problems in terms
of (F, ρ)-V-invexity. The (F, ρ)-convexity introduced by Preda [15] allowed the study of efficiency of
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multiobjective programs. The same tool was used by Antczak and
Pitea [16] to develop sufficient optimality conditions in a
geometric setting, or by Antczak and Arana-Jiménez [17] who
studied vector optimization problems by additional means of
weighting.

The aim of this work is to develop sufficient optimality
conditions and duality results, by the use of the generalized
convexity introduced by Caristi et al. [18], and also one of the
most effective tool in the study of multiobjective optimization, the
parametric approach, whose basis were put by Saaty and Gass
[19]. The class of problems which are to be proposed in the work
refers to minimizing a vector of curvilinear integrals, where the
integrand depends also on the velocities. This kind of problems
are connected, for example, with Mechanical Engineering,
considering that curvilinear integral objectives are frequently
used because of their physical meaning as mechanical work,
and there is a need to minimize simultaneously such kind of
quantities, subject to some suitable constraints.

The paper is organized as follows. Section 2 presents
preliminary issues on jet bundles, and the (Φ, ρ)-invexity,
needed to develop our theory. Section 3 is dedicated to
sufficient efficiency conditions for a multitime
multiobjective minimization problem with constraints, by
means of the generalized convexity. Section 4 consists of
weak, strong, and converse duality results in the sense of
Mond-Weir and Wolfe.

2 PRELIMINARIES

2.1 On the First Order Jet Bundle
In order to make our work self contained, we recollect some
basic facts on the first order jet bundle, J1 (T, M), formed by
the 1-jets j1tϕ of the local sections ϕ ∈ Γt (ϖ). A 1-jet at the
point t is an equivalence class of the sections which have the
same value and the same first order partial derivatives at the
point t.

If the local sections check the equality ϕ (t) = ψ (t), let (tα, χi)
and (tα′, χi′) be two adapted coordinate systems around ϕ (t).
Suppose the following equalities hold

zϕi

ztα
t( ) � zψi

ztα
t( ).

Then the next relations hold true

zϕi′

ztα′
t( ) � zψi′

ztα′
t( ).

Definition 1. Two local sections ϕ, ψ ∈ Γt (ϖ) are called 1-
equivalent at the point t if

ϕ t( ) � ψ t( ), zϕi

ztα
t( ) � zψi

ztα
t( ).

The equivalence class containing the section ϕ is precisely the 1-jet
associated with the local section ϕ, at the point t, denoted by j1tϕ.

Definition 2. The set J1(T,M) � {j1tϕ | t ∈ T, ϕ ∈ Γt(ϖ)} is
called the first order jet bundle.

If (U , u), u = (tα, χi) is an adapted coordinate system on the
product manifold T × M, the induced coordinate system,
(U1, u1), on J1 (T, M), is defined as

U1 � j1tϕ | ϕ t( ) ∈ U{ }, u1 � tα, χi, χiα( ),
where tα(j1tϕ) � tα(t), and χi(j1tϕ) � χi(ϕ(t)).

The pn functions χiα: U1 → R form the coordinate derivatives.

Proposition 1. On the product manifold T × M, consider (U , u)
the atlas of adapted charts. Then, the corresponding charts
(U1, u1) form a finite dimensional atlas, of C∞-class, on the
first order jet bundle J1(T, M).

In order to make the presentation more readable, in the sequel
we denote πχ (t) = (t, χ (t), χγ (t)), where χγ is the derivative of χ
with respect to tγ.

2.2 Lagrange 1-Forms of the First Order
Any Lagrange 1-form of the first order, on the jet space J1 (T,M),
takes the form

ω � Lα πχ t( )( )dtα +Mi πχ t( )( )dχi +Nβ
i πχ t( )( )dχiβ,

where Lα, Mi, and Nβ
i are Lagrangians of the first order, with the

pullback

χ*ω � Lα +Miχ
i
α +Nβ

i χ
i
βα( )dtα,

a Lagrange 1-form of the second order on M. The coefficients

Lα +Miχ
i
α +Nβ

i χ
i
βα,

second order Lagrangians, are linear in the second order
derivatives. The Pfaff equation ω = 0, and the partial
differential equations

Lα +Miχ
i
α +Nβ

i χ
i
βα � 0

can be associated with the form ω.
Let Lβ (πχ(t)) dtβ be a closed Lagrange 1-form (completely

integrable), that is DβLα = DαLβ.
A closed 1-form in a simple-connected domain is an exact one.

Its primitive can be expressed as a curvilinear integral,

ϕ t( ) � ∫
Γt0 ,t

Lα πχ s( )( )dsα, ϕ t0( ) � 0,

or as a system of partial derivative eqations,

zϕ

ztα
t( ) � Lα πχ t( )( ), ϕ t0( ) � 0.

Suppose there is a Lagrangian-like antiderivative

L πχ t( )( ) � ∫
Γt0 ,t

Lα πχ s( )( )dsα, L πχ t0( )( )) � 0,

or DαL = Lα, where the foregoing pullback is the given closed 1-
form,
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zL

ztβ
+ zL

zχi
zχi

ztβ
+ zL

zχiγ

zχiγ
ztβ

+ zL

zχiμ]

zχiμ]
ztβ

� Lβ,

which is a completely integrable system of partial derivatives
equations, with the unknown function χ(·).

Each smooth Lagrangian L(πχ(t)), t ∈ Rm
+ , leads to two

smooth closed 1-forms:
- the differential

dL � zL

ztγ
dtγ + zL

zχi
dxi + zL

zχiγ
dχiγ,

with the components (zL
ztγ,

zL
zχi), with respect to the corresponding

basis (dtγ, dχi, dχiγ);
- the restriction of dL to πχ (t), namely the pullback

dL|πχ t( ) � zL

ztβ
+ zL

zχi
zχi

ztβ
+ zL

zχiγ

zχiγ
ztβ

⎛⎝ ⎞⎠dtβ,

of components

DβL � zL

ztβ
πχ t( )( ) + zL

zχi
πχ t( )( ) zχi

ztβ
t( ) + zL

zχiγ
πχ t( )( ) zχiγ

ztβ
t( ),

with respect to the basis dtβ.
For other important facts on jet bundles, we address the reader

to the book of Saunders [20].

2.3 Generalized (Φ, ρ)-Invexity
Our results are developed by means of a suitable generalized
convexity, introduced in the following.

Further, let Π = J1 (T, M) be the first order jet bundle
associated to T and M. By C∞(Ωt0 ,t1,M) we denote the space
of all functions χ: Ωt0 ,t1 → Rn of C∞-class.

Let A: C∞(Ωt0 ,t1,M) → Rr be a path independent curvilinear
vector functional

A χ ·( )( ) � ∫
γt0 ,t1

aα πχ t( )( )dtα.
Now, we introduce the definition of the vectorial (Φ, ρ)-

convexity for the vectorial functional A, which will be useful
to state the results established in the paper. Before we do this, we
give the definition of a convex functional.

Definition 3. The functional F: Π × Π × C∞Ωt0 ,t1,R
n × R → R

is convex with respect to the third component, if, for all χ (·), �χ(·),
η1 (·), η2 (·), the following inequality holds

F πχ t( ), π�χ t( ); λ η1 t( ), q1( ) + 1 − λ( ) η2 t( ), q2( )( )( )
& λF πχ t( ), π�χ t( ); η1 t( ), q1( )( ) + 1 − λ( )F πχ t( ), π�χ t( ); η2 t( ), q2( )( ),
for q, q1, q2 ∈ Rn, λ ∈ (0, 1).

It can be easily proved that a similar property holds, if,
instead of λ ∈ (0, 1), and 1−λ, we use λ1, λ2, . . . , λk ∈ (0, 1), with∑k

i�1λi � 1.
Let S be a nonempty subset of C∞(Ωt0 ,t1,M), and �χ(·) ∈ S be

given. Following the footsteps of [18], we have the following
definition.

Definition 4. Let ρ � (ρ1, . . . , ρr) ∈ Rr, Φ: Π × Π × Rr → R be
convex with respect to the third component, and
Φ(πχ(t), π�χ(t); (0, ρi))≥ 0. The vectorial functional A is called
(strictly) (Φ, ρ)-convex at the point �χ(·) on S if, for each i, i � 1, r,
the following inequality

Ai χ ·( )( ) − Ai �χ ·( )( ) S ∫
γt0 ,t1

Φ πχ t( ), π�χ t( ); zaiα
zχ

π�χ t( )( )((
−Dγ

zaiα
zχγ

π�χ t( )( )⎛⎝ ⎞⎠, ρi⎞⎠⎞⎠dtα

holds for all χ (·) ∈ S, (χ(·) ≠ �χ(·))). If these inequalities are
satisfied at each �χ(·) ∈ S, then A is called (strictly) (Φ, ρ)-
convex on S.

This class of functionals entails that of (F, ρ)-convexity
introduced in [15].

3 SUFFICIENT EFFICIENCY CONDITIONS

The following well-known conventions for equalities and
inequalities in case of vector optimization will be used in the
sequel.

For any χ = (χ1, χ2, . . . , χp), η � (η1, η2, . . . , ηp), consider.

1) χ = η if and only if χi = ηi, for all i � 1, p;
2) χ > η if and only if χi > ηi, for all 1, p;
3) χ S η if and only if χi ≥ ηi, for all 1, p;
4) χ ≥ η if and only if χ S η, and χ ≠ η.

This product order relation will be used on the
hyperparallelepiped Ωt0,t1 in Rp, with diagonal opposite points
t0 � (t10, . . . , tp0 ), and t1 � (t11, . . . , tp1 ). Assume that γt0 ,t1 is a
piecewise C1-class curve joining the points t0 and t1, and that
there exists an increasing piecewise smooth curve in Ωt0,t1 which
joins the points t0 and t1.

Let (T, h) and (M, g) be Riemannian manifolds of dimensions
p and n, respectively, with the local coordinates t = (tα), α � 1, p,
and χ = (χi), i � 1, n, respectively, and Π = J1 (T, M).

The closed Lagrange 1-forms densities of C∞-class

uα � ui
α( ): Π → Rr, i � 1, r, α � 1, p,

produce the following path independent curvilinear functionals

Ui x ·( )( ) � ∫
γt0 ,t1

ui
α πχ t( )( )dtα, i � 1, r, α � 1, p,

where πχ(t) = (t, χ(t), χγ(t)), and χγ(t) � zχ
ztγ (t), γ � 1, p, are

partial velocities.
Presume that the Lagrange densities matrix

g � gj
a( ): Π → Rms, a � 1, s, j � 1, m,m< n,

of C∞-class leads to the partial differential inequalities

g πχ t( )( &0, t ∈ Ωt0 ,t1,

and the Lagrange densities matrix
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h � hla( ): Π → Rms, a � 1, s, l � 1, z, z< n,
defines the partial differential equalities

h πχ t( )( ) � 0, t ∈ Ωt0 ,t1.

In the paper, we consider the multitime multiobjective
variational problem (CUP) of minimizing a vector of path
independent curvilinear functionals defined by

minU χ ·( )( ) � U1 χ ·( )( ), . . . , Ur χ ·( )( )( )
g πχ ·( )( )&0,

h πχ ·( )( ) � 0,
χ t0( ) � χ0, χ t1( ) � χ1.

CUP( )

Let

D � χ ∈ C∞ Ωt0 ,t1,M( ): t ∈ Ωt0 ,t1, χ t0( ) � χ0, χ t1( ){
� χ1, g πχ t( )( )&0, h πχ t( )( ) � 0}

denote the set all feasible solutions of problem (CUP).

Definition 5. A feasible solution �χ(·) ∈ D is called an efficient
solution to the problem (CUP) if there is no other feasible
solution χ (·) ∈ D such that

U χ ·( )( )≤U �χ ·( )( ).
If, in this relation, we use the strict inequality, then �χ(·) is called a
weakly efficient solution to the problem (CUP).

In [21] were proved necessary optimality conditions for a
problem similar to (CUP); for our case we obtain the next theorem.

Theorem 1. Let �χ(·) ∈ D be a normal efficient solution in
multitime multiobjective problem (CUP). Then there exist the
vector Λ ∈ Rr and the smooth functions M: Ωt0 ,t1 → Rmsp,
N: Ωt0 ,t1 → Rrsp such that

Λ, zuα

zχ
π�χ t( )( )〈 〉 + Mα t( ), zg

zχ
π�χ t( )( )〈 〉 + Nα t( ), zh

zχ
π�χ t( )( )〈 〉

−Dγ Λ, zuα

zχγ
π�χ t( )( )〈 〉 + Mα t( ), zg

zχγ
π�χ t( )( )〈 〉 + Nα t( ), zh

zχγ
π�χ t( )( )〈 〉⎛⎝ ⎞⎠ � 0,

(1)
Mα t( ), g π�χ t( )( )〈 〉 � 0, (2)

ΛS0, Λ, e〈 〉 � 1,Mα t( )S0, t ∈ Ωt0 ,t1, α � 1, p. (3)
The following theorem establishes sufficient conditions of

efficiency for the problem (CUP).

Theorem 2. Presume that the following conditions are fulfilled:

1) �χ(·) ∈ D, Λ,M (·) and N (·) satisfy the necessary conditions of
efficiency (Eqs 1–3).

2) The objective functional U is (Φ, ρU)-convex with regard to its
third argument at �χ(·) on D.

3) ∫
γt0 ,t1

〈Mαj(·), gj(πχ(·))〉dtα, j � 1, m, are (Φ, ρgj
)-convex

with regard to its third argument at �χ(·) on D;
4) ∫

γt0 ,t1
〈Nαl(·), hl(πχ(·))〉dtα, l � 1, z, are (Φ, ρhl)-convex with

regard to its third argument at �χ(·) on D;
5) 〈Λ, ρU〉 +∑m

j�1ρgj
+∑z

l�1ρhlS0.

Then �χ(·) is an efficient solution to the problem (CUP).

Proof 1.Assume that �χ(·),Λ,M, andN fulfill the conditions from
relations (Eqs 1–3), and that �χ(·) is not an efficient solution to
problem (CUP). In this case, there can be found ~χ(·) ∈ Γ(Ωt0 ,t1)
such that

U ~χ ·( )( )≤U �χ ·( )( ),
more precisely

Ui ~χ ·( )( )&Ui �χ ·( )( ), i � 1, r, (4)
with at least one index for which the inequality is a
strict one.

Taking advantage of the hypothesis 2), and the (Φ, ρ)-invexity,
the previous relations compel

Ui ~χ ·( )( ) − Ui �χ ·( )( )S∫
γt0 ,t1

Φ π~χ t( ), π�χ t( ); zu
i
α

zχ
π�χ t( )( )(

−Dγ
zui

α

zχγ
π�χ t( )( )⎛⎝ ⎞⎠, ρUi

)dtα, i � 1, r,

which, by inequalities (Eq. 4), imply that

∫
γt0 ,t1

Φ π~χ t( ), π�χ t( ); zu
i
α

zχ
π�χ t( )( ) −Dγ

zui
α

zχγ
π�χ t( )( )⎛⎝ ⎞⎠, ρUi

⎛⎝ ⎞⎠dtα&0, i � 1, r,

where at least one inequality is a strict one. Multiplying the
previous inequality by Λi accordingly, i � 1, r, and dividing by
L � ∑r

i�1Λi +m + z, we get

∑r
i�1

Λi

L
∫
γt0 ,t1

Φ π~χ t( ), π�χ t( ); zu
i
α

zχ
π�χ t( )( ) −Dγ

zui
α

zχγ
π�χ t( )( )⎛⎝ ⎞⎠, ρUi

⎛⎝ ⎞⎠dtα < 0.

(5)

On the other hand,

Mαj t( ), gj π~χ t( )( )〈 〉 − Mαj t( ), gj π�χ t( )( )〈 〉&0,

which leads, by the (Φ, ρ)-invexity, to
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1
L
∫
γt0 ,t1

Φ π~χ t( ), π�χ t( ); Mαj t( ), zg
j

zχ
π�χ t( )( )〈 〉(

− Dγ Mαj t( ), zg
j

zχγ
π�χ t( )( ), ρgj〈 〉⎛⎝ ⎞⎠, ρgj

⎞⎠dtα

&
1
L
∫
γt0 ,t1

Mαj t( ), gj π~χ t( )( )〈 〉 − Mαj t( ), gj π�χ t( )( )〈 〉( )dtα
& 0, j � 1, m.

(6)
Now, by the properties of h, �χ(·), and ~χ(·), we get

�Nαl t( ), hl π~χ t( )( )〈 〉 − Nαl t( ), hl π�χ t( )( )〈 〉 � 0,

which leads to

1
L
∫
γt0 ,t1

Φ π~χ t( ), π�χ t( ); Nαl t( ), zh
l

zχ
π�χ t( )( )〈 〉 −Dγ(

Nαl t( ), zh
l
α

zχγ
π�χ t( )( )⎛⎝ 〉〈 ⎞⎠, ρhl)dtα

&
1
L
∫
γt0 ,t1

Nαl t( ), hl π~χ t( )( )〈 〉 − Nαl t( ), hl π�χ t( )( )〈 〉( )dtα
& 0, l � 1, z. (7)
Using the convexity of the functional F in the third

component, and adding inequalities (Eqs 5, 6), it follows that

∫
γt0 ,t1

Φ π~χ t( ), π�χ t( ); 1
L

Λ, zu
i
α

zχ
π�χ t( )( )〈 〉(

+1
L
∑m
j�1

Mαj t( ), zg
j

zχ
π�χ t( )( )〈 〉 + 1

L
∑z
l�1

Nαl t( ), zh
l

zχ
π�χ t( )( )〈 〉

− 1
L

Dγ ∑r
i�1

Λi
zui

α

zχγ
π�χ t( )( ) +∑m

j�1
Mαj t( ), zg

j

zχγ
π�χ t( )( )〈 〉 +∑z

l�1
Nαl t( ), zh

l
α

zχγ
π�χ t( )( )⎛⎝ 〉〈 ⎞⎠⎛⎝ ⎞⎠,⎛⎝

1
L

∑r
i�1

ΛiρUi
+∑m

j�1
ρhj +∑z

l�1
ρhl

⎛⎝ ⎞⎠⎞⎠⎞⎠dtα

& ∑r
i�1

Λi

L
∫
γt0 ,t1

Φ π~χ t( ), π�χ t( ); zu
i
α

zχ
π�χ t( )( ) −Dγ

zui
α

zχγ
π�χ t( )( )⎛⎝ ⎞⎠, ρUi

⎛⎝ ⎞⎠
+1
L
∑m
j�1

∫
γt0 ,t1

Φ π~χ t( ), π�χ t( ); Mαj t( ), zg
j

zχ
π�χ t( )( )〈 〉(

−Dγ Mαj t( ), zg
j

zχγ
π�χ t( )( ), ρgj〈 〉⎛⎝ ⎞⎠⎞⎠dtα

+1
L
∑z
l�1

∫
γt0 ,t1

Φ π~χ t( ), π�χ t( ); Nαl t( ), zh
l

zχ
π�χ t( )( )〈 〉(

−Dγ Nαl t( ), zh
l
α

zχγ
π�χ t( )( )⎛⎝ 〉〈 ⎞⎠, ρhl

⎞⎠dtα

< 0.

By the equality from (Eq. 1), this inequality implies

Φ π~χ t( ), π�χ t( ); , 0, 1
L

∑r
i�1

ΛiρUi
+∑m

j�1
ρhj +∑z

l�1
ρhl

⎛⎝ ⎞⎠⎛⎝ ⎞⎠< 0,

which is a contradiction with the properties of the function Φ.
Therefore, our assumption was false, and �χ(·) is an efficient

solution to the problem (CUP).

4 DUAL PROGRAMMING THEORY

Consider the dual problem to (CUP) in the sense of Mond-
Weir

maxU χ ·( )( )
Λ, zuα

zχ
π�χ t( )( )〈 〉 + Mα t( ), zg

zχ
π�χ t( )( )〈 〉 + Nα t( ), zh

zχ
π�χ t( )( )〈 〉

DCUP( )

−Dγ Λ, zuα

zχγ
π�χ t( )( )〈 〉 + Mα t( ), zg

zχγ
π�χ t( )( )〈 〉⎛⎝

+ Nα t( ), zh
zχγ

π�χ t( )( )〈 〉) � 0,

Mαj t( ), gj π�χ t( )( )〈 〉 + Nαj t( ), hj πχ t( )( )〈 〉≥ 0,
ΛS0, t ∈ Ωt0 ,t1, α � 1, p, j � 1, m m � z( ).

Let ΔD be the set of the feasible solutions to the dual problem
(DCUP), and Δ = {η (·):[η (·), λ,M(·), ](·)] ∈ ΔD}. By using (Φ, ρ)-
convexity hypothesis, weak, strong, and converse duality results
may be stated and proved, as in the sequel.

We start with a weak duality result, as follows.

Theorem 3. Suppose that �χ(·) and [η (·), λ, M (·), N (·)] are feasible
solutions to the problems (CUP), and (DCUP), respectively.
Additionally, presume that the next hypotheses are satisfied:

1) The objective functional U is (Φ, ρU)-convex with regard to its
third argument at η(·).

2) ∫
γt0 ,t1

(〈Mαj(t), gj(π�χ(t))〉 + 〈Nαj(t), hj(πχ(t))〉)dtα,
j � 1, m, are (Φ, ρghj)-convex with regard to its third
argument at �χ(·);

3) 〈Λ, ρU〉 +∑m
j�1ρghjS0.

Then U(�χ(·))FU(η(·)).

Proof 2. Presume that U(�χ(·))≤U(η(·)), that is

Ui �χ ·( )( )≤Ui η ·( )( ), i � 1, r,

where the inequality is strict for at least one of the indices.
By the use of the (Φ, ρ)-invexity related to U, the previous

relations imply

∫
γt0 ,t1

Φ π�χ t( ), πη t( ); zu
i
α

zη
πη t( )( ) −Dγ

zui
α

zηγ
πη t( )( )⎛⎝ ⎞⎠, ρUi

⎛⎝ ⎞⎠dtα& Ui �χ ·( )( )
− Ui η ·( )( )& 0, i � 1, r,

We multiply each relation by Λi, i � 1, r, and then dividing by
L � ∑r

i�1Λi +m, it follows that

∑r
i�1

Λi

L
∫
γt0 ,t1

Φ π�χ t( ), πη t( ); zu
i
α

zη
πη t( )( ) −Dγ

zui
α

zηγ
πη t( )( )⎛⎝ ⎞⎠, ρUi

⎛⎝ ⎞⎠dtα < 0.

(8)
Having in mind assumption (Eq. 2) from the theorem, we get,

by the (Φ, ρ)-invexity, that
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1
L
∫
γt0 ,t1

Φ π�χ t( ), πη t( ); Mαj t( ), zg
j

zη
πη t( )( )〈 〉 + Nαj t( ), zh

j

zη
πη t( )( )〈 〉(

− Dγ Mαj t( ), zg
j

zηγ
πη t( )( )〈 〉 + Nαl t( ), zh

l
α

zηγ
πη t( )( )〈 〉⎛⎝ ⎞⎠, ρhgj

⎞⎠dtα

&
1
L
∫
γt0 ,t1

Mαj t( ), gj π�χ t( )( )〈 〉 + Nαl t( ), hl π�χ t( )( )〈 〉(
(9)

− Mαj t( ), gj πη t( )( )〈 〉 + Nαl t( ), hl πη t( )( )〈 〉)dtα
& 0, j � 1, m.

(10)

The properties of F, jointly with inequalities (Eq. 8), and (Eq.
10), imply

∫
γt0 ,t1

Φ π�χ t( ), πη t( ); 1
L

Λ, zu
i
α

zη
πη t( )( )〈 〉(

+ 1
L
∑m
j�1

Mαj t( ), zg
j

zη
πη t( )( )〈 〉 +∑z

l�1
Nαl t( ), zh

l

zη
πη t( )( )〈 〉⎛⎝ ⎞⎠

− 1
L
Dγ ∑r

i�1
Λi
zui

α

zηγ
πη t( )( ) +∑m

j�1
Mαj t( ), zg

j

zηγ
πη t( )( )〈 〉⎛⎝⎛⎝

+ Nαl t( ), zh
l
α

zηγ
πη t( )( )⎛⎝ 〉〈 ⎞⎠)), 1

L
∑r
i�1

ΛiρUi
+∑m

j�1
ρghj

⎛⎝ ⎞⎠⎞⎠dtα

& ∑r
i�1

Λi

L
∫
γt0 ,t1

Φ π�χ t( ), πη t( ); zu
i
α

zη
πη t( )( ) −Dγ

zui
α

zηγ
πη t( )( )⎛⎝ ⎞⎠, ρUi

⎛⎝ ⎞⎠

+1
L
∑m
j�1

∫
γt0 ,t1

Φ π�χ t( ), πη t( ); Mαj t( ), zg
j

zη
πη t( )( )〈 〉 + �Nαl t( ), zh

l

zη
π�η t( )( )〈 〉(

−Dγ Mαj t( ), zg
j

zηγ
πη t( )( ), ρghj〈 〉 + Nαl t( ), zh

l
α

zηγ
πη t( )( )〈 〉⎛⎝ ⎞⎠, ρghj

⎞⎠dtα<0.

By the constraints of the dual problem (DCUP), this
inequality leads to

Φ π�χ t( ), πη t( ); , 0, 1
L

∑r
i�1

ΛiρUi
+∑m

j�1
ρghj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠< 0,

which is a contradiction with the properties of the function Φ.
Therefore, our assumption was false, and U (χ(·))FU (η(·)).
In the following, we provide a strong duality result and also a

converse duality one.

Theorem 4. Consider that χ (·) is an efficient solution to the
primal problem (CUP). Then there exists λ, M, N so that [χ (·), λ,
M (·), N (·)] ∈ ΔD. More than that, if assumptions (Eqs 2–5) from

Theorem 2 are fulfilled. then [χ (·), λ, M (·), N (·)] is an efficient
solution to the dual problem (DCUP).

Theorem 5. Let (η(·), λ,M(·)), N(·)) be an efficient solution to
the dual problem (DCUP). Assume that conditions 2)-5) from
Theorem 2 are satisfied. Then η (·) is an efficient solution to the
primal problem (CUP).

In a similar manner, a dual problem in the sense of Wolfe can
be associated to our vector problem (CUP). First, we introduce
the objective of this problem.

φ η ·( ),M ·( ), N ·( )( ) � ∫
γt0 ,t1

uα πη t( )( ) + Mα t( ), g πη t( )( )〈 〉[{
+ Nα t( ), h πη t( )( )〈 〉]e}dtα,

where e � (1, . . . , 1)T ∈ Rr.
The associated multitime multiobjective problem dual to

(CUP) in the sense of Wolfe is (WDCUP), as in the following.

maxφ η ·( ),M ·( ),N ·( )( )
Λ, zuα

zη
πη t( )( )〈 〉 + Mα t( ), zg

zη
πη t( )( )〈 〉 + Nα t( ), zh

zη
πη t( )( )〈 〉

−Dγ Λ, zuα

zηγ
πη t( )( )〈 〉 + Nα t( ), zg

zηγ
πη t( )( )〈 〉 + Nα t( ), zh

zηγ
πη t( )( )〈 〉⎛⎝ ⎞⎠ � 0,

η t0( ) � χ0 , η t1( ) � χ1 ,

Mαj t( ), gj π�χ t( )( )〈 〉 + Nαj t( ), hj πχ t( )( )〈 〉≥ 0,
ΛS0, t ∈ Ωt0 ,t1 , α � 1, p, j � 1, m m � z( ).

WDCUP( )

Again, by the use of the notion of (Φ, ρ)-convexity, some weak,
strong and converse duality results can be stated and proved, in a
similar manner.
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