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A gradual edge-enhanced ghost imaging method with pseudo-thermal light is proposed in
both the theory and experiment. In the experiment, a phase object and fractional spiral phase
filter are placed symmetrically in the imaging plane of the pseudo-thermal light source in the
distributed test and reference beams of the lensless ghost imaging system. The procedure of
gradual edge-enhanced ghost imaging is carried out bymodulating the fractional topological
charge from 0 to 1. We observe that the brightness of the object edge increases with the
increase of the fractional topological charge. It is also found that the intensity distribution is
uniform and isotropic when the topological charge is an integer; otherwise, the intensity
distribution is not uniform. Theoretical analysis is also provided. The proposed gradual edge-
enhanced ghost imaging scenario releases the position limitation in the Fourier plane for the
filter of the traditional phase filtering imaging process. The method is believed to have
prospective applications in microscopic imaging and biomedical detection.

Keywords: spiral phase contrast imaging, second-order correlation, edge enhancement, orbital angularmomentum,
fractional-order spiral filtering

1 INTRODUCTION

As early as the 1930s, Zernike first proposed the phase contrast imaging method and won the Nobel
Prize for employing this technology to observe the structure of living cells in 1953 [1]. Different from the
traditional optical microscopy, the phase contrast method can convert the invisible phase distributions
into visible optical field intensity [2–4] to highlight the edges of an object with phase changes, which is
called edge enhancement [5–7]. Edge-enhanced imaging, a kind of image processing, can extract the
contour features of an image, so that the boundary of the target can be displayed more clearly, and the
position of the target can be determined. Since then, the phase contrast technology has been further
developed to expand its applications from the initial differential interference phase contrast microscopy
and interference reflection contrast microscopy to the later spiral phase contrast (SPC) microscopy [8,
9]. In the 1990s, researchers realized the imaging of one-dimensional (1D) and two-dimensional (2D)
phase objects by employing the SPC technology [10, 11]. In 2006, the homogeneous enhancement of the
amplitude and phase objects was achieved using SPC technology combined with optical microscopy
[12]. In 2015, Prof. Lixiang Chen’s research group used a fractional spiral phase filter (SPF) in the Fourier
plane of the lens to achieve the isotropic edge enhancement with laser [13, 14].

SPC was applied in quantum imaging in 2009 by Jack et al. [15]. The entangled two-photon was
separated using a beam splitter (BS). The pure phase object and the SPF were symmetrically placed in the
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image plane of the entangled two photons. The phase objects can be
recognized through edge enhancement through the two-photon
coincident measurement. However, ghost imaging can not only be
implemented with an entangled two-photon light source but also be
achieved with incoherent thermal light [16–20]. The quantum
entangled source behaves like a mirror, whereas the classical
thermal source acts like a phase-conjugate mirror in the ghost
imaging [21]. It has been demonstrated that intensity fluctuations
give rise to the formation of correlations in theOAMcomponents and
angular positions of random light in [22]. It was then proved that the
spatial signatures and phase information of an object with rotational
symmetries can be identified using classical OAM correlations in
random light [23]. Furthermore, an experimental scenario of
distributed angular double-slit interference based on the OAM
correlations of pseudo-thermal light was accomplished in [24]. In
2020, we proved the classical physical essence of the spatial dimension
of the non-local edge-enhanced ghost imaging system by making use
of orientated SPF [25]. Inspired by the previous research, we proposed
the scenario here to observe the phase object edge-enhanced imaging
with a fractional-order spiral phase filter based on the OAM
components of incoherent random light. The experimental results
proved that the enhanced edge intensity of the image increased with
the increase of the topological charge from 0 to 1. The reason why the
edge brightness increases with the increase of the fractional orbital
angular momentum (OAM) is due to the pseudo-thermal light OAM
correlation and eigenvalue decomposition of the fractional topological
charge of the SPF. The theoretical analysis finds good agreement with
the experimental results. The proposed scenario can accomplish the
continuously modulated edge-enhanced ghost imaging even with the
incoherent light source.

2 EXPERIMENT

A schematic diagram of the experimental setup is shown in
Figure 1. The input light is a Gaussian beam derived from a

632.8 nm He–Ne laser (THORLABS, HNL225RB). The light
beam illuminates a slowly rotating glass (RG) with the
rotation angular velocity of 0.013 rad/s to produce a pseudo-
thermal light beam. P1 and P2 are polarizers to modulate the
intensity of the laser beam. N is a telescope (×2 magnification) to
collimate and expand the transverse size of the laser beam.
Radiation from a chaotic pseudo-thermal source via an Iris is
then divided into two optical paths, namely, a test beam and a
reference beam, by a 50:50 non-polarizing BS. The pseudo-
thermal light source is imaged, by two convex lenses L1 and
L2, to the transverse planes of the spatial light modulators (SLMs,
HOLOEYE, PLUTO-2-VIS-016), a device with full high-
definition resolutions of 1920 × 1080 square pixels. The focal
length of the convex lens is 25 cm. Then, the SLM1 and SLM2,
located at a distance of 50 cm from the biconvex lens, are re-
imaged to the charge-coupled devices (CCDs, MTV-1881EX)
with the resolution of 575 × 767 square pixels placed at the end of
each light beam, respectively. Two beams are connected with a
data acquisition card embedded in a personal computer, and the
intensity correlation calculation can be carried out.

The role of the SLMs is loading phase objects and fractional
SPF instead of the spiral phase plate, so that the gradual edge
enhancement by varying the fractional OAM value from 0 to 1
with a step length of 0.1 can be observed conveniently. The phase
object and the phase hologram are symmetrically loaded on SLM1

and SLM2 in the distributed beams. The size of the phase object
compass is 150 × 150 square pixels. The phase mutation along the
pointer and the dial is π. The black part of the phase object
presents the phase of 0, and the white part presents the phase of π.
The phase hologram placed on the SLM2 is 10 × 10 square pixels.
Correspondingly, the black part of each phase filter presents the
phase of 0, whereas the white part presents the phase of 2π. The
correlation detection is carried out through scanning
measurement. 10 × 10 square pixel points of the data obtained
from CCD2 are taken as a unit to traverse line by line to
implement the second-order correlation with the data of CCD1.

FIGURE 1 | Schematic diagram of the experimental setup. Phase objects in the upper left corner are the sketch of a compass (A) and a circle (B)which are loaded
by SLM1, and the dynamic phase hologram in the lower left corner is loaded by SLM2.
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3 RESULTS

The process of simulation calculation is as follows: first, a random
thermal light field of Gaussian distribution in both the amplitude
and phase is generated by a calculation program, which has the
same size as the phase object to be detected. Then, the thermal
light field is multiplied with the phase object and the vortex phase

filter, respectively, in the reference and test beams to obtain the
light field distributions in the detection planes. Finally, the
correlation calculation is carried out to achieve the edge-
enhanced imaging, as shown in Figure 2.

We can find in Figure 2 that the intensity at the position where
the phase gradient existed is lower than that where the phase
gradient did not exist when the fractional OAM topological

FIGURE 2 | Simulation and experimental results of the non-local edge-enhanced imaging with a fractional spiral phase filter. (a–f) in the upper row show the
simulation results, and (g–k) in the lower row show the experimental results.

FIGURE 3 | Experimental results of the circle phase with the integer and fractional vortex filters. (A–F) show the 2D edge-enhanced images and the fitted curves of
some special azimuth corresponding to different Q.
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charge Q is lower than 0.5. It is because when Q is less than 0.5,
the vortex has not formed yet, as shown in the lower right corner
of each subgraph of Figure 3. However, when Q is greater than
0.5, a black hole at the center of the vortex appears. Thus, the
contrast of the edge and background gradually reversed with the
increase of Q. The intensity distribution of the fractional-order
vortex light is not uniform along the radial direction, so the edge
enhancement is not isotropic as the integer-order condition.

Furthermore, we take a simple circular phase object as the
detected phase object to analyze the isotropic feature of the SPC
ghost imaging. The phase circle is shown in the upper left corner of
Figure 1B, whose dimension is 200 × 200 pixels and diameter is 130
pixels. The black part of the circle presents the phase of 0, whereas
the white part presents the phase of π. Figures 3A–F show the 2D
edge-enhanced intensity distribution and the fitted edge-enhanced
intensity curves of some special azimuth corresponding to the Q-
value of 0, 1.0, 0.3, 0.5, 0.7, and 0.9. The lower right corner of each
subgraph shows the vortex map of each fractional OAM. Figures
3C–F show that edge enhancement is non-isotropic of fractional Q.

4 THEORETICAL ANALYSIS

The aforementioned experimental results are based on SPC
imaging methods which are sensitive to the phase gradients by
making use of SPF. SPF is a common device to generate helical
wave fronts and vortex beams with an azimuthal structure exp
(jlϕ), in which the topological charge l is an integer and 0#ϕ <
2π. Light with this phase structure carries OAM of lZ per photon,
and the most commonly used filter in the SPC imaging is the SPF
with the integer topological charge of l = 1. All phase edges of a
sample object can be enhanced isotropically as a result of the
directional symmetry of an integer SPF.

In our case,Hi presents the impulse response functions during the
free transmission in the reference beam between RG andD1 while i =
1 and in the test beam between RG and D2 while i = 2, respectively,

Hi ri, r0( ) � exp jk 8f+ 1
2f

r20 + r2i( )[ ]− jπ{ }δ ri − r0( ) i � 1,2( ),
(1)

where k = ω/c is the wave number, f is the focal length of the
convex lens, r0 is the 2D transverse plane position vector of the
incident plane, and ri presents the 2D transverse plane position
vector of the output plate of the reference and test beams.

Then, the SPF function of the polar coordinates (r, ϕ) is
written as S (r1) = exp [jQϕ(r1)], where Q is a fraction varying
from 0 to 1 and ϕ(r1) is an angular function of the filter. The
amplitude transmittance of the input object is described by the
function of T (r2) = exp [jϕ′(r2)]. Consequently, from the cascade
relationship, the optical field in the transverse plane of the
detectors D1 and D2 can be described as follows:

Ei ri, r0( ) � E0 r0( )Hi ri, r0( )Fi i � 1, 2( ), (2)
where Fi represents the SPF function S (r1) when the value of i is 1;
otherwise, it represents the amplitude transmittance T (r2) of the
object.

The second-order correlation function of the thermal light
ghost imaging is given by [26].

〈I1 r1( )I2 r2( )〉 � 〈I1 r1( )〉〈I2 r2( )〉 + 〈E1* r1( )E2 r2( )〉| |2, (3)
where the cross-spectral density function is

〈E1 r1( )E2 r2( )〉 � ∫∫E1* r1( ) · E2 r2( )dr1dr2. (4)

The classical incoherent light source is characterized by the
cross-spectral density function as
I(r0, r0′) � E0(r0) · E0*(r0′) � I0δ(r0 − r0′), where r0 and r0′ are
the 2D transverse plane position vectors. Inserting Eqs. 1 and 2
into Eq. 4, we find that

〈E1* r1( )E2 r2( )〉 � I20 S* r1( )T r2( )| |2. (5)
It was demonstrated that the integer OAM eigenstates form a

complete and infinite basis [27–29]. A fractional vortex can be
expressed in terms of the OAM eigenstates as
S(r1) � exp(jQϕ) � ∑∞

l�−∞ Al exp(jlϕ), where |Al|2 �
|exp[jπ(Q − l)] sin[π(Q−l)]π(Q−l) |2 represents the weight of each OAM

component [30] and exp (jlϕ) is the eigenstate. Figure 4 shows the
spectra of the fractional OAM spread on its integer-order
eigenstates.

In the same way, T(r2) � exp(jϕ′) � ∑∞
m�−∞ Am exp(jmϕ),

where |Am|
2 represents the weight of each OAM component [30].

Hence, substituting the functions of the filter and object in Eq.
5, the second-order correlation function can be given as

〈I1 r1( )I2 r2( )〉 � I20 1 + ∑∞
l�−∞

∑∞
m�−∞

AmAl exp j m − l( )ϕ[ ]
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2⎧⎨⎩ ⎫⎬⎭.

(6)
Equation 6 provides a clear understanding of the edge-

enhanced effect of the fractional SPF. It indicates that the
edge-enhanced image can be considered a coherent
superposition of all images that are individually picked out by

FIGURE 4 | OAM spectra of fractional SPF.
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employing integer OAM filters. The OAM spectra of the phase
platform of the object only have the composition ofm = 0, so that
the second-order correlation value represented by Eq. 6will reach
the maximum with l = 0 of the SPF and the minimum with l = 1.
When the value of Q varies from 0 to 1, the OAM spectra
composition of l = 0 decreases while l = 1 increases, as shown
in Figure 4. Thus, the correlation value of the phase platform
decreased as the value of Q increased. However, the situation of
the edge part of the object is opposite to the phase platform. The
second-order correlation value will reach the maximumwith l = 1
and the minimum with l = 0, and the correlation value of the edge
of the object increases as the value of Q increases.

5 CONCLUSION

In summary, a fractional phase filtering ghost imaging method with
pseudo-thermal light is proposed. The experimental results show
that the edge of the phase object can be gradually enhanced by the
fractional SPF spatially distributed to the object with incoherent light
beam illumination. The non-local gradual edge enhancement is also
theoretically analyzed through correlation in the OAM components
of the random fluctuations of the incoherent light beam. This effect is
very important in a situation when entanglement is not required and
when correlations in OAM suffice. The physical explanations of the
gradual edge enhancement with the fractional topological charge
change are the coherent superposition of the images filtered out by
an integer vortex filter. The proposed scenario here provided a new
edge enhancement imaging technology releasing the position of the
filter in the Fourier plane with incoherent pseudo-thermal light. It is
believed that the proposed non-locally fractional SPF imaging
scenario may find potential applications in the field of micro-
detection of quantum imaging and bioengineering.
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