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Deep learning techniques can be introduced into the digital holography to

suppress the coherent noise. It is often necessary to first make a dataset of noisy

and noise-free phase images to train the network. However, noise-free images

are often difficult to obtain in practical holographic applications. Here we

propose a label-free training algorithms based on self-supervised learning. A

dilated blind spot network is built to learn from the real noisy phase images and a

noise level function network to estimate a noise level function. Then they are

trained together via maximizing the constrained negative log-likelihood and

Bayes’ rule to generate a denoising phase image. The experimental results

demonstrate that our method outperforms standard smoothing algorithms in

accurately reconstructing the true phase image in digital holographic

microscopy.
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Introduction

Digital holographic microscopy (DHM) is a non-invasive, highly precise and real-

time quantitative phase measurement technology, and it has important applications in the

fields of microsurface topography measurement, flow field measurement, biological cell

measurement, and so on [1–4]. However, under high coherent illumination, uneven

surfaces such as dust and scratches on the specimen will introduce random amplitude and

phase fluctuations, and finally form speckle noise in the reconstructed holographic image

[5]. And furthermore, the undesired diffraction and multiple reflections include the phase

noise. They are all coherent noise because of the high coherence of optical field. Thus, the

suppression of coherent noise is a key research subject, which is of great significance to

improve the measurement accuracy and resolution of DHM.

The coherent noise suppression technologies can be classified into the optical

approach and the digital image processing method. A light source with a low
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coherence length can prevent noise outside the coherence length

from being imaged on the hologram, thus lowering the coherent

noise [6, 7]. Multiple holograms with different incident angles [8,

9], polarization states [10] or wavelengths [11] can be collected

and then superimposed to average the speckle noise. However,

this increases the complexity of optical system, and can’t process

holograms offline. In digital image processing, the median

filtering and mean filtering are usually used for speckle noise

suppressing, but high frequency details will inevitably be lost. The

wiener filtering, blind convolution method and Block-matching

and 3D filtering (BM3D) can also be used with the disadvantage

that the parameter selection is difficult to determine [12]. The

frequency-domain denoising assumes that the noise belongs to

high-frequency information, so the denoising is accomplished by

suppressing high-frequency information, such as windowed

Fourier transform, wavelet transform, and so on [13]. The

third type of digital image processing methods convert the

denoising problem into an unconstrained optimization

problem by building an optimization function such as a

convex optimization form [14].

In recent years, the deep learning-based denoising methods

have emerged. The work of Wang et al. demonstrated that the

neural network can adapt to coherent noise on its own [15]. In

most deep learning based coherent noise suppression methods,

the training data pairs of noisy and noise-free phase images are

first constructed using the noise model. The training data pairs

are utilized to train a neural network capable mapping both the

noisy and noise-free phase images [16–20]. However, these

methods require paired data to train the neural network,

which is difficult in practical holographic applications. Yin

et al. used neural networks to learn common information

from paired noisy phase images without noise-free data and

achieved neural network denoising for noisy phase images [21].

However, this method still needs to obtain multiple noisy phase

images while ensuring the consistency of the underlying sample.

We propose a label-free coherent noise suppression method

based on deep learning, which realizes the self-supervised

learning between the noise generation and suppression models

by establishing the negative log-likelihood function of noise. The

noise-free phase images are not necessary as labels, only the noisy

phase images are needed to complete the network training. The

trained network can achieve noise suppression for various noisy

phase images, and the algorithm has remarkable generalization

ability, which is of great significance for dynamic holographic

imaging.

Methods

Physical generation of speckle noise

Assuming that the coordinates of the holographic recording

plane is (x, y), the off-axis digital holographic intensity I (x, y) is

expressed as [22].

I(x, y) � ∣∣∣∣O(x, y)∣∣∣∣2 + ∣∣∣∣R(x, y)∣∣∣∣2 + O(x, y)R*(x, y)
+ O*(x, y)R(x, y) + n(x, y) (1)

Where, O (x, y) and R (x, y) are the object wavefront and

reference wavefronts at the recording plane, respectively. The

third and fourth terms can be used to reconstruct the amplitude

and phase of object wavefront, and the fifth term is speckle noise.

For any scattering point source p of the imaging system, the

coherent noise n (x, y) can be expressed as [5].

n(x, y) �
∣∣∣∣∣∣∣∣∣∑
N

1

a(xp, yp) exp[jφ(xp, yp)] exp[jφ(x, y)]
∣∣∣∣∣∣∣∣∣
2

(2)

Where, a (xp, yp) is the random intensity fluctuation, φ(xp, yp) is

the random phase fluctuation, and φ(x,y) is the propagation

phase of the light.

In the numerical reconstruction of the digital hologram, the

reconstructed complex amplitude U (ξ, η) can be obtained by

using the angular spectrum method [23]. Then, the phase of the

sample can be calculated through

FIGURE 1
The schematic diagram for the label-free coherent noise suppression in digital holographic microscopy.
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φ(ξ, η) � arctan
Im[U(ξ, η)]
Re[U(ξ, η)] (mod 2π) (3)

Where, Im ( ) and Re ( ) represent the operations of taking the

complex imaginary part and the real part, respectively. Then the

real phase of the sample can be obtained through the unwrapping

operation. However, the obtained phase image will inevitably

contain noise. Assuming that the noisy phase image can be

expressed as

φ(ξ, η) � ~φ(ξ, η) + n(ξ, η) (4)

Where, n (ξ, η) denotes the noise in φ(ξ, η), ~φ(ξ, η) is the

underlying noise-free phase image [24]. Assuming that the

phase φ(ξ, η) is spatially correlated, the noise n (ξ, η) is a

pixel-independent and signal-dependent Gaussian noise [25].

And then, the noise variance of pixel i var (ni) is only determined

by the underlying noise-free pixel value ~φi of pixel i. The noise

variance var (ni) can be regarded as a noise level function (NLF)

g(~φi), which can be expressed as

var(ni) � g(~φi). (5)

Label-free coherent noise suppression

The label-free coherent noise suppression method is

composed of two steps, shown in Figure 1. In the first step,

the object beam passes through the sample and the simulated

coherent noise screen successively, and then interferes with the

reference beam after the beam splitting prism (BS) to form the

digital hologram. In this step, the coherent noise is introduced

and a real holographic recording system is simulated. In the

simulation process, the model of speckle-noise involves only

phase distribution of object waves. The simulated coherent noise

screen modulates the object beam in the form of an exponential

term to simulate the random phase fluctuation of digital

holography. In the second step, the noisy phase images will be

processed by the trained neural network to reconstruct the clean

phase images.

DBSN and NLFN

As shown in Figure 2A, the main structure is composed of the

dilated blind spot network (DBSN) and the noise level function

network (NLFN) [26]. Then, a self-supervised loss function is

introduced to jointly train DBSN and NLFN by maximizing the

constrained log-likelihood. For a given noisy phase image, DBSN

and NLFN cooperate to produce a clean denoising phase image

under a Bayes’ rules.

The structure of DBSN in Figure 2B is based on the blind spot

network. DBSN starts with a 1 × 1 convolutional layer followed

by two network branches. A 3 × 3 center-masked convolutional

layer and six multi-dilated convolutional (MDC) modules make

up each branch. The feature maps of the two branches are then

concatenated, followed by the deployment of four 1 ×

1 convolutional layers to yield the network output. The MDC

module in Figure 2B utilizes a residual structure involving three

sub-branches. In these branches, zero, one, and two 3 × 3 dilated

convolutional layers are stacked on top of 1 × 1 convolutional

FIGURE 2
The framework for the label-free holographic phase noise suppression.
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layers, respectively. These branches’ outputs are then

concatenated, followed by another 1 × 1 convolutional layer,

and summed with the input of theMDCmodule. Finally, four 1 ×

1 convolutional layers are further applied to produce the DBSN

output by concatenating the feature maps from the two network

branches.

To enhance the model’s flexibility, the noise is assumed as a

signal-dependent multivariate Gaussian noise [25], with each

noisy phase image being NLF-specific. The noise level will always

be determined by input values at the same location. In the self-

supervised learning, only noisy reconstructed phase images can

be utilized. So NLFN learns NLF to approximate g(~φi) from the

noisy phase image. The NLFN comprises five 1 × 1 convolutional

FIGURE 3
Neural network coherent noise suppression results on simulation data. (A) The noise-free phase images; (B) The noisy phase images
reconstructed by a DHM; (C) The network denoising phase images; (D) The profile map along with the red lines.

FIGURE 4
Comparison of noise suppression results on cell phase. The upper and lower rows are different cells. (A) The phase images of the resolution
board, HT22 cell and line board; (B) The noise suppression phase by the network; (C) The noise suppression phase by median filter in a 6-by-
6 neighborhood; (D) The noise suppression phase by BM3D with noise variance of 0.02; (E) The profile map along with the red at the red arrow.
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layers with 16 channels, as shown in Figure 2C. Except for the

final layer, the activation function ReLU applies to all

convolutional layers.

In the proposed unpaired learning algorithms, the underlying

noise-free image φ̃ and the NLF are not available. Therefore, self-

supervised learning is used to train DBSN and NLFN. For a given

position i, μ is set to be the clean image predicted directly by

DBSN, which is closer to ~φi than φi. Then the assumption can be

expressed as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φi � ~φi + ni, ni ~ N(0,∑n

i
)

µi � ~φi + nµi , n
µ
i ~ N(0,∑u

i
)∣∣∣∣∣∑n

i

∣∣∣∣∣≫ ∣∣∣∣∣∑u

i

∣∣∣∣∣ ≈ 0

(6)

Among them, φi, ~φi, ni is constant. And further assume

that ni and µi are independent. Considering that ~φi is not

available, the self-supervised loss function employs the

negative log-likelihood of φi − ui, which can be written

as [26]

L(φi − ui) � ∑
i

1
2
(φi − ui)T(∑n

i
+∑u

i
)−1(φi − ui) + log

∣∣∣∣∣∑n

i

∣∣∣∣∣
+ tr((∑n

i
)−1∑u

i
)

(7)
where, ui, ∑u

i can be estimated from the output of the DBSN at

location i, and∑n
i can be estimated from the output of the NLFN

network at location i. After self-supervised learning, the

denoising phase image can be obtained using the Bayes’ rule

for each pixel

ϕi � (∑n

i
+∑u

i
)−1(∑n

i
ui +∑u

i
φi) (8)

The following are the specifics of DBSN and NLFN self-

supervised training. Noise-free phase images were obtained

via using the power spectrum inversion method [27] to

generate 10,000 images with 256 × 256 pixels. The

holographic phase noise model in Figure 1 is used to

generate noisy phase images. The test dataset consists of

actual noisy phase images reconstructed from a DHM. The

network is initialized with pre-trained parameters [26]

throughout training and terminated after 100 epochs.

DBSN and NLFN are trained using the Adam optimizer

with a learning rate of 3 × 10–4. The underlying noise-free

image is first computed using DBSN, and then its noise level is

estimated by NLF. Then, the loss function is calculated using

Eq. 7, and then the parameters of DBSN and NLF are updated

sequentially using the optimizer. The network is implemented

by Pytorch 1.7 based on Python 3.7.1, which is performed on a

PC with an Intel Core i7-10700K CPU, 32 GB of RAM, using

NVIDIA GeForce GTX 2080Ti GPU.

Results and conclusion

The test dataset consists of 1,000 phase images from the real-

world dataset [28] and 1,000 phase images simulated by the power

spectrum inversion method [27]. Noisy phase images with

atmospheric turbulence, fish and airplane patterns are shown in

Figure 3A. The phase variation varies from 0 to 8 rad. The noisy

phase images in Figure 3B are generated by the simulationmethod in

Figure 1, simulating the phase reconstruction results of a DHM. It is

worth emphasizing that the ground truth doesn’t participate in the

network’s training process. It is simply utilized for comparing

outcomes. A total of three sets of findings are shown in Figure 3.

The mean relative phase error between denoising results and the real

phase is 2.08%, which shows the self-supervised learning neural

network can effectively suppress the noise of noisy phase images. The

exact phase distribution at the red line on the left is shown in

Figure 3D. The profile of network denoising result is shown by the

red curve, while the profile of noise-free phase is represented by the

blue curve. The two curves have amean deviation error of 0.2838 rad,

less than 0.1 wavelength. It demonstrates that the network denoising

results accurately portray the samples’ real phase distribution.

The noise suppression test is conducted on the testing sample

once finishing the network training. A series of digital holograms

were recorded by using a DHM with a common-path and a

wavelength of 532 nm [29, 30]. The phase images of the

resolution board, HT22 cell and line board are numerically

reconstructed in Figure 4A. Here, it is evident for the impact

of coherent noise on quantitative phase measurements. To

compare the noise suppression effect, median filter in a 6-by-

6 neighborhood and BM3D with noise variance of 0.02 are

employed. As shown in Figure 4, the proposed label-free self-

supervised learning technique produces a smoother phase image

with superior noise suppression than the BM3D and median

filtering methods. Furthermore, the robustness of the proposed

method may be proved since the feature space of phase images

from a DHM and simulated turbulent phase images, which is the

train dataset differ from each other significantly.

In summary, we propose a label-free coherent noise suppression

method based on self-supervised learning. The proposed method

has excellent coherent noise suppression performance and good

robustness. By constructing a negative log-likelihood loss function,

we can complete the training of the denoising network without

noise-free phase data. The mean relative phase error between

denoising results and the real phase is 2.08%.
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