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The study of Bose–Einstein condensation (BEC) in lower dimensions plays an important
role in understanding the fundamentals of many-body physics as they can be treated
theoretically with relative ease and can be verified experimentally. Recently, observation of
a liquid-like state in a BEC mixture has been reported along with a theoretical prescription
for its observation in the lower dimension. This observation is unique and has serious
ramifications in our prevailing conception of the liquid state, which has a deep influence on
the van der Waals theory. In explaining the self-bound nature of this state, quantum
fluctuation and its fine balance with mean-field (MF) interaction turn out to be playing a key
role. Though the experiments are performed predominantly in three dimensions,
theoretical studies extend to the lower dimensions. In this brief review, we plan to
summarize the recent theoretical advances in droplet research in the lower dimension
and elaborate on the description of our contributions. We will mainly focus on analytical
results related to this self-bound state in a one-dimension and quasi one-dimension
environment. We aim to cover a few results from the family of cnoidal solutions to droplet
solutions with smooth transitions between each other, finishing it by carrying a modest
discussion on the supersolid phase.
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1 INTRODUCTION

The first successful experimental realization of the atomic Bose–Einstein condensate (BEC) has
paved the way for new research on this unique quantum state theoretically and experimentally [1–3].
Over the last two decades, experimentalists have been able to perform experiments with atomic gases
with an unprecedented level of accuracy. The magneto-optic trapping technology is the backbone of
such experiments. Moreover, scientists have also been able to tune the interactions between the
particles via an external magnetic field. This technique follows from the theory of Fano–Feshbach
resonance [4,5]. These unique experimental achievements have enabled multi-facet research in ultra-
cold atomic gases [6].

Quantum gas properties are vastly governed by interparticle interactions. For instance, bright
solitons are obtained as a solution of the mean-field one-dimensional GP equation for attractive
inter-particle interaction, whereas dark solitons result from repulsive interaction [7–16].

Recently, the formation of a liquid droplet-like state in a dipolar BEC [17,18] followed by a BEC
mixture [19,20] has been experimentally observed. However, the possibility of the formation of a
liquid-like state was first proposed theoretically in the context of binary BEC while describing the
collapse of the condensate due to attractive interaction [21] and soon after for dipolar BEC [22]. It
was predicted that the collapse in both cases could be arrested by quantum fluctuation.

This is unique because our conception of liquid is highly influenced by the description provided
by van der Waals. According to the theory of van der Waals, the liquid state arises at high densities
from an equilibrium between attractive inter-atomic forces and short-range repulsion. However,
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these newly emerged droplets in extremely dilute ultra-cold
atomic gases are quite different from the well-known van der
Waals liquids [23]. In ultra-cold BEC, the gas is very diluted, and
the inter-atomic distances between the particles are larger than
the usual classical liquid. At low temperature, a large de-Broglie
wavelength associated with atoms interact with interaction
potential as contact potential, leading the BEC to exist only in
the gaseous phase. However, to make self-bound states like
classical liquids, interactions are required to counterbalance
each other. In ultra-cold atomic systems, the interplay of
quantum fluctuation and effective mean-field interaction
allows the formation of self-bound liquid-like states. The
underlying theory relies on the Lee–Huang–Yang (LHY)
correction [24] to the mean-field Gross–Pitaevskii (GP)
equation [25,26].

The GP equation is a well-known non-linear Schrödinger
equation (NLSE), used with great effect to describe the ground
state behavior of BEC. The solution of NLSE usually comes in a
cnoidal form. Cnoidal solutions can be expressed in periodic or
solitonic types. Solitons are solitary waves and self-trapped and
localized objects, existing in a great variety of physical media due
to the interplay of dispersion and non-linearity, which represents
the self-attraction of matter [27]. In one-dimensional settings,
solitons come in different forms—bright, dark, grey, kink, and
antikink—but in two- and three-dimensional settings, the
question on stability impedes their progress with time [28].

1.1 Recent Developments
The research on the quantum droplet is enriched via two main
tributaries: 1) the quantum droplet in binary BEC and 2) the
quantum droplet in dipolar BEC. The latter is the result of balance
among the short-range repulsive interaction born from a two-
body contact pseudo-potential, namely, the mean-field (MF)
interaction, the repulsive beyond mean-field (BMF) effect,
which can be noted as a typical attribute of quantum
fluctuation, and attractive long-rang dipolar interaction.
However, the self-bound nature of the former comes from the
opposite nature of MF and BMF effects, where the interplay of
inter-species and intra-species plays a crucial role. In three
dimensions, the quantum droplet is balanced and shows
instability against collapse by attractive effective MF and a
repulsive BMF interaction, respectively. However, in the lower
dimension, specifically in one dimension, the role is reversed; that
is, effective MF energy is repulsive, whereas the BMF energy is
attractive. In this review article, we plan to explicate this unique
role reversal phenomena and elaborate on the consequences.

Since the experimental observation of the liquid-like state, it
has become the subject of intense research activity. In a recent
self-consistent theoretical formulation, LHY correction is
incorporated in the GP equation via quantum fluctuation [29].
We have also noted theoretical assertions on the collective modes
in a droplet-soliton crossover [30], the existence of vortices in
droplets [31–34], dynamics of purely one-dimensional droplets
[35], its collective excitations [36], and the effect of external
artificial coupling [37] along with comprehensive reviews [38]. At
this juncture, we also recall a numerical investigation of quantum
liquids for the dipolar BEC in quasi-one-dimensional (Q1D)

geometry [39]. Apart from that, we have also seen
considerable interest in analyzing the origin of the droplets in
lower dimensions [33,40]. A contemporary study also notes a
possible connection between the droplets and modulational
instability in a one-dimensional (1D) system [41].

1.2 Current Objective
The primary focus of this review article is quantum droplets in lower
dimensions emerging from a binary condensate. It has already been
demonstrated that the coupled equations can be projected into an
effective single component equation if both components share the
same spatial mode while neglecting the spin excitation [20]. Hence,
we start from an extended GP equation, which contains an
additional non-linear contribution of the quartic exponent. We
then summarize the well-known mathematical prescription to
reduce the 3 + 1-dimensional system to 1 + 1-dimension [42]. In
this case, the transverse confinement is much stronger than the
longitudinal trap frequency. As BEC in one dimension is not
realizable, this Q1D geometry is akin to the interest of the
experimental community as it can be amenable experimentally.
Nevertheless, we summarize the recent theoretical developments
in understanding quantum droplets in 1D, and then we move to
Q1D. In the 1D system, the GP equation carries an additional
quadratic non-linearity, which takes care of the BMF contribution.
Therefore, we name this equation quadratic-cubic NLSE or
QCNLSE. On the contrary, in Q1D, the governing dynamical
equation is cubic quadratic NLSE or CQNLSE. One can also
note a unique role reversal of MF and BMF interaction while
shifting from Q1D to 1D system geometry.

The review is arranged in the following way: we summarize the
theoretical formulation to analyze the liquid-like state in Section
2, which allows us to construct an extended GP equation in 1D.
We analyze the existence of the droplets at 1D in Section 3. In
Section 4, we present our recent results in Q1D geometry. We
brief some of the very recent theoretical developments to describe
the recently observed exotic state of the supersolid in Section 5. It
has been reported that in between droplet arrays and solitonic
state, it is possible to observe phase-coherent periodic waves as if
the droplets are immersed in the constant background of a liquid-
like state. This kind of paradoxical state of matter that combines
the friction-less flow of a superfluid with the crystal-like periodic
density modulation of a solid is noted as a supersolid [43].
Experiments were mainly performed using dipolar quantum
gases, proving the supersolid nature of arrays of quantum
droplets, and establishing the coexistence of spatial order and
global phase coherence [44–46]. We also explicate recent
theoretical contributions in this aspect in the lower dimension.
We draw our conclusion in Section 6.

2 THEORETICAL MODEL

Let us consider, at T = 0, a uniform binary mixture of Bose gases
with masses m1 and m2 condensed in a trap Vtrap. They are
interacting with intra-atomic, g11 = 4πa11Z

2/m1, g22 = 4πa22Z
2/m2,

and inter-atomic coupling constant, g12 = 2πa12Z
2/mr, wheremr =

m1m2/(m1 + m2) is the reduced mass. For this particular case, we
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consider positive intra-species as a11, a22 and negative inter-
species s-wave scattering length as a12. The number of particles in
respective species can be written in a normalized form such that∫n1dr =N1 and ∫n2dr =N2, where n1, n2 are the number densities
of the corresponding species, which are expressed in atomic units,
a−3B (aB is the Bohr radius). The mixture can be characterized by
the total number of density, n = n1 + n2, and the total number of
atoms, N = N1 + N2. The energy density functional for this
mixture can be written as

ε � εkin + εtrap + εMF + εBMF

� Z2

2m1
|∇ ��

n1
√ |2 + Z2

2m2
|∇ ��

n2
√ |2 + n1 + n2( )Vtrap + 1

2
g11n

2
1

+1
2
g22n

2
2 + g12n1n2 + εBMF, (1)

The kinetic, potential, MF, and BMF contributions are
expressed as εkin, εtrap, εMF, and εBMF, respectively. An
additional term εBMF in an extended GP (eGP) equation
includes the effect of quantum fluctuations. It has a different
form and interaction type depending on the dimension of the
mixture. For the three-dimensional case, the BMF term has a
repulsive contribution. It includes the renormalization correction
[47] to the scattering amplitude within the second Born
approximation, and for the homonuclear mixture, it stands
as [21]

ε3DBMF �
8m3/2

15π2Z3
∑
±

g11n1 + g22n2 ±
����������������������
g11n1 − g22n2( )2 + 4g2

12n1n2

√( )5/2

.

ε3DBMF can be expressed for different masses as

ε3DBMF �
8m3/2

1 g5/2
11

15π2Z3 F
m2

m1
,

g2
12

g11g22
,

���
g22

g11

√( )| ����
n1n2

√ |5/2.

For a particular case, N1 = N2 = N/2, m = m1 = m2, g11 = g22 =

g12 = g = 4πaZ2/m, and εBMF � 256
�
π

√
Z2

15m (na)5/2. F > 0 is a

dimensionless function and for the case of equal masses, m =

m1 = m2, it can be written as F(1, x, y) �∑±(1 + y ±
������������
(1 − y)2 + 4xy

√
)5/2/4 �

2
√

.
In this approach, the spin excitations are neglected [21]. It is

also assumed that the two components have identical spatial
modes as ni=1,2 = |Φ|2 and in the density ratio such that
n1/n2 �

������
g22/g11

√ � η. Now, in the miscible phase but close to
the collapse point where the attractive inter-species interactions
overwhelm the repulsive interactions on each condensate, that
ism g12 > − ������

g11g22
√

, the following quantities can be defined g �������
g11g22

√
and δg � g12 + ������

g11g22
√

. δg describes the deviations
with respect to g12. The addition of the BMF term close to the
MF instability boundary, that is, δg < 0, results in ε3DBMF a complex
quantity, which also leads to imaginary sound velocity. To avoid
this ill effect created by the imaginary contribution, it is
approximated that |δg|≪ g, that is, instability, is very weak.
Close to instability boundary imaginary contribution is
avoided by setting |δg|~ 0 just for the BMF term. Then, the
energy functional turns out in the following form:

ε � εkin + εtrap + εMF + εBMF

� Z2

2m
n|∇Φ|2 + Vtrapn|Φ|2 + δg

η

1 + η( )2n2|Φ|4 + 8m3/2

15π2Z3
nηg11( )5/2|Φ|5,

(2)
This energy functional results in the following eGP equation:

iZ
zΦ
zt

� − Z2

2m
∇2 + Vtrap( ) + U|Φ|2 + U′|Φ|3[ ]Φ, (3)

where U � 2δg η
(1+η)2 n, U′ � 4m3/2

3π2Z3
(ηg11)5/2n3/2. For symmetric

case where g = g11 = g22, η = 1, Usym = δgn/2,
Usym′ � 4m3/2

3π2Z3
g5/2n3/2, and Vtrap � 1

2m[ω2
⊥(y2 + z2) + ω2

0x
2].

Here, ω⊥ is the transverse trap frequency and ω0 describes
longitudinal trap frequency. There are two types of non-
linearity in Eq. 3, the usual cubic non-linearity results from
MF interaction and an additional quartic non-linearity
accounting the effect of BMF. In optics, high-order material
non-linearities [48] are theorized with the cubic-quintic non-
linear Schrödinger equations. Though Eq. 3 bears strong
similarities with them, the repulsive term included in Eq. 3
comes with an unusual quartic dependence.

For 1D case, ε1DBMF has an attractive contribution [21], which
can be directly obtained from the second-order perturbation
theory [49], and ε1DBMF � −2

��
m

√
3πZ (g11n1 + g22n2)3/2 results in the

following 1D eGP equation:

iZ
zϕ

zt
� − Z2

2m
ϕxx + U|ϕ|2ϕ + U′|ϕ|ϕ, (4)

where U′ � −
��
2m

√
πZ (ηg11)3/2 and Usym′ � −

��
2m

√
πZ g3/2.

It is important to note that the nature of the interaction
strengths depends on the dimensionality. In the 3D case, the
imbalance caused by the negative MF term is balanced by the
positive BMF contribution. On the contrary, in the 1D case, a
negative BMF imbalance is balanced by a positive MF
contribution. Thus, we get a self-bound energy state.

The above-mentioned three-dimensional system can be
systematically reduced to an effective dimensional geometry,
which we note as Q1D system. Experimentally, this can be
obtained by tuning the trapping frequencies discussed in detail
in Section 4. Here, we intend to focus solely on these two lower
dimensional systems, 1D and Q1D. In the Q1D system, we
assume

���
na3

√
< 1 even though 1

| �����
n1Da1D

√ |> 1. Here, n, a, n1D, and
a1D stands for total number density, s-wave scattering length, and
number density on 1D and 1D scattering length, respectively. We
must also recall that, in a strict 1D system, 1

| �����
n1Da1D

√ |< 1 [50].
Hence, we plan to summarize the theoretical progresses on both
sides of the dimensional crossover where 1

| �����
n1Da1D

√ | ≃ 1.

3 ANALYSIS OF ONE-DIMENSIONAL
SYSTEM

In this section, we review some of the recently reported analytical
solutions while describing the effect of BMF contribution and the
emergence of a liquid-like state. It must be acknowledged that, in
a short span of time, several classes of analytical solutions have
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already been reported. We note a detailed discussion on droplet
formation in the 1D system and its dynamics in [35]. The nature
of MF and BMF interaction was systematically studied in [41].
We also note a class of the Cnoidal solution for QCNLSE from
there. However, we start our journey from the recently predicted
kink–antikink pairs from QCNLSE [51].

3.1 Kink–Antikink Pair
In the 1D setting, for the symmetric case g = g11 = g22 and n = n1 =
n2, we end up with the following effective energy density [21]:

ε1D � δgn2 − 4
�
2

√
3π

gn( )3/2, (5)

From Eq. 5, we can obtain the equilibrium density n0 = 8mg3/
π2Z2δg2, which denotes a stable liquid when the pressure is zero,
and the corresponding chemical potential is noted as ]0 =
−δgn0/2.

The above energy leads to an eGP equation:

iZ
zϕ

zt
� − Z2

2m
ϕxx + δg|ϕ|2ϕ −

���
2m

√
πZ

g3/2|ϕ|ϕ, (6)

The dynamics of quantum droplets governing Eq. 6 is given by
[35]. Eq. 6 can be carried over from weak to strong coupling
regime by tunning δg, previously discussed in [52].

Reference [51] explicitly demonstrates kink-like solitons in the
droplet regime, that is, 0 < δg ≪ g. The final form of the soliton
reads [51] as follows:

ϕ± �
g2

3g1
ei kx− ]

Z t( ) 1 ± tanh
x ± vt( )
ξ

[ ], (7)

Here, g1 = δg, g2 �
��
2m

√
πZ g3/2. The healing length is ξ � Z���

mδg
√ 1

A
where amplitudeA � g2

3g1
. Thus, the sharper the healing, the larger

the amplitude larger. These propagating modes share the same
phase as the background condensate. A denotes the constant
background present in the healing length. It is worth noting that
the value of A is exactly one-third of the uniform condensate
amplitude

��
2m

√
πZ g3/2/δg. When ϕ+ has maximum value, then ϕ−

shows its minimum value and vice versa [51]. These pairs, ϕ±,
vanish asymptotically at one end and connect the normal vacuum
with the quantum droplets located at the origin, which is
analogous to kink/antikinks in the ϕ4-theory [53].

Figure 1 illustrates the density profiles for BMF repulsion g =
5. The blue solid line denotes kink, and the red dashed line
describes antikink. These solitons, ϕ±, travel in the opposite
directions with equal velocity. The amplitude of the solitons is
directly proportional to the repulsive interaction.

3.2 Droplet Solution
Eq. 6 can also lead to flat-headed and localized solution as noted
in [35]. Here, we can observe a clear transition from a soliton-like
state to a liquid-like state from low-to-moderate particle number.
This type of solution is noted for τ > 0, where τ = δg/g, as a result
of the fine balance between the repulsive MF and attractive BMF
interaction:

ϕ � Ae−i]t

1 + Bcosh
����−2]√

x( ), (8)

where A � ��
n0

√ ]
]0, B �

�����
1 − ]

]0

√
. The solution in Eq. 8 suggests

negative values of the chemical potential and is bound in ]0 < ] <
0. It features the flat top shape at 0 < ] − ]0 ≪|]0|, with size of the
droplet L ≈ (−2]0)−1/2 ln[(1 − ]/]0)−1] [35,50].

From the norm of Eq. 8 [41],

N � n0

����
− 2
]0

√
ln

1 +
����
]/]0√�������

1 − ]/]0√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ −
����
]/]0√⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦, (9)

In Figure 2, density profiles are plotted for different particle
numbers. For N≪ 1, the kinetic term in Eq. 6 is significant, and a
non-uniform localized wave appears. To a certain extent, this
profile resembles a bright soliton-like profile where the kinetic
energy and the potential energy balance each other. As N
increases, for instance, at N = 10, we observe a monotonous
growth of the density distribution until it reaches the equilibrium

FIGURE 1 | (Color Online) Illustration of the kink–antikink solution
following Eq. 7 for arbitrary values of g and δ. We have assumed g and δg as 5
and 0.5, respectively. Furthermore, v = 2, t = 1, and Z = m = 1. The blue solid
line depicts the kink solution, that is, ϕ+, whereas the red dashed line
represents the antikink, that is, ϕ−.

FIGURE 2 | (Color Online) Spatial variation of density calculated from Eq.
8 for different particle numbers. A lower particle number yields a localized
solution (N = 0.1, 1), whereas the larger number of particles (N = 10, 20) leads
to the bulk region described by the flat plateau. The dot-dashed blue line
is used forN = 0.1, dashed red line is used forN = 1, dotted green line denotes
N = 10, and solid orange line is for N = 20.
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density n0. Further increase in the particle number does not make
any substantial difference as the system has already attained an
equilibrium density. This suggests a delocalize wave with uniform
density n0. Adding more particles will lead to special growth of
the wave keeping the density of the flat-topped condensate
restricted at n0. The condensate showing this incompressibility
may be considered fluid. The situation is analogous to regular
liquid, where density remains constant over a wider spatial
dimension.

3.2.1 Stability
The stability of these solutions was demonstrated through the
Vakhitov–Kolokolov (VK) criterion [54]. The VK criterion is
involved in calculating the slope between the particle number and
the chemical potential, which gives a parameter regime in terms
of the chemical potential predicting the exponential growth or
decay of the soliton’s amplitude [55–57]. The necessary
calculation yields

dN

d]
� −n0

]20

���
−]
2

√
1

1 − ]/]0, (10)

where stability is defined as dN
d] < 0 for ]0 < 0 and 0 < ]/]0 < 1.

The matter-vacuum interface at the right side of the droplet
reduces to the kink structure for large N [41]. In the limit of large
N, bulk density of the droplets differs from n0 by an exponentially
small correction n = n0[1 + 4 exp( − 1 − 3N/4)] along with the
chemical potential ] = ]0[1 − 4 exp( − 2 − 3N/2)] [35].

At τ < 0, the exact solution of Eq. 8 is also valid. It is when the
MF term in Eq. 6, along with the BMF term, is also self-attractive.
In that case, Eq. 8 does not feature a plateau. However, a soliton-
like mode exists for all values of ] < 0. Therefore, for small N with
τ > 0, we can neglect the MF term, and with the quadratic BMF
term, it gives rise to the KdV-soliton shape, that is,
sech2( ����−]/2√

x). On the contrary, for large N with τ < 0, we
can neglect the BMF term, and with negative cubic MF term, we
get bright soliton-like shape, that is, sech( ����−2]√

x). A crossover is
observed with the sign change of the MF term in terms of the
solitonic shape.

For τ < 0, the N dependence for the soliton family takes the
following form [41]:

N � n0

��
2
]0

√ ����
]/]0√

− arctan
����
]/]0√( )[ ], (11)

This dependence also satisfies the VK criterion.

3.3 Dynamics of the Droplets
Solitons are in a bound state similar to droplets, except their
stabilization process is different. We can distinguish soliton from
droplets by analyzing their property while they collide, as the
former does not alter its shape upon collision, but the latter
behaves differently depending on their momentum, particle
number, and phase. We summarize a few recent reports
discussing the dynamics theoretically and experimentally
[19,35,39].

Dynamical analysis of droplets can be done by simulating Eq.
6 using the split-step method based on the fast-Fourier transform
[35]. The initial wave function was taken as ϕ(x, t = 0) = exp(ikx +
iφ)ϕ(x + x0) + exp( − ikx)ϕ(x − x0), where x0 is the initial position,
k is the initial momentum, and φ is the relative phase.

We note the dynamics in Figure 3, where we observe that
the droplets will separate or merge depending on their velocity
[19]. For lower initial momentum k = 0.1, droplets with
particle numbers N1 = N2 = 20 marge into one droplet, and
the presence of a sound wave states that the newly formed
droplet is in an excited state (Figure 3A). The sound wave can
be seen oscillating inside the merged droplet. The effect of the
phase is shown in Figures 3B,C. In case the collisions are out-
of-phase, that is, φ = π, small excitation can be seen at the time
of reflection. On the contrary, population transfer can be seen
for phase difference φ = π/2. Population transfer is different
for different phase differences. The effect of higher
momentum k = 1 leads to fission of the droplet into
multiple smaller droplets (Figure 3D), which can be seen
occurring in classical liquid [39].

3.4 Quantum Rabi-Coupled Bosonic
Droplets
The exciting developments in droplet formation and recent
developments in artificial couplings motivate us to summarize
the recent theoretical prediction of droplet formation in Rabi-
coupled bosonic atoms in one dimension [37]. We consider the
effect of Rabi-coupling between two hyperfine states where
effective intra-species interactions are weakly repulsive,
whereas the inter-species interaction is attractive. In this
scenario, the beyond mean-field interaction and external Rabi
coupling play a crucial role in stabilizing the droplets. The
transition between the two states is induced by an external
coherent Rabi coupling of frequency ΩR.

The scaled energy density of ultra-dilute with uniform Rabi-
coupled mixtures can be written as [37]

εRs � 1
2
υ−n2s −ΩRsns − 4

�
2

√
3π

n3/2s − 2
�
2

√
π

ΩRs

υ−
n1/2s , (12)

Here, υ− = 1 − |υ|, υ � g12
g , and suffix s denotes scaled form. In

the absence of Rabi coupling, that is, ΩRs = 0, Eq. 12 becomes
analogous to Eq. 5. The shift in the ground state energy density in
the presence of Rabi-coupling leads to quantum mechanical
instability. Equilibrium density n0s is [37]

n0s � 128
81π2υ2−

cos
1
3
arccos 1 − 729π2ΩRsυ−

128
[ ] + 1

2
[ ][ ]2

, (13)

The mixture is stable for 0<ΩRsυ− ≤ 256
729π2 as plotted in

Figure 4A. The white band shows instability at |υ|~ 1.
Figure 4B shows that local minima in εRs disappears above
the critical value of Ωc

Rs ≃ 0.356 [37] as predicted by Eq. 13.
Beyond Ωc

Rs, the ground state becomes unstable due to effective
attraction between atoms.
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3.5 Cnoidal Solutions
The NLSE describes a homogeneous second-order non-linear
differential equation, which can be mapped to the Jacobi
Elliptic equation and solved analytically [58]. This mapping
allows us to use the 12 Jacobi elliptic or Cnoidal functions as
solutions [59]. The Jacobi elliptic functions can be derived
from the amplitude function of Jacobi elliptic integrals [58].
These solutions can be constant, periodic, or localized based on
the parameter q as 0 ≤ q ≤ 1. We examine the recently reported
cnoidal solutions for QCNLSE with different natures of
interaction strength.

3.5.1 τ > 0
In the case of comparable self-attractive BMF term and repulsive
MF term in Eq. 6 with δg > 0, exact solutions can be expressed in
terms of the Jacobi elliptic sn:

ϕ x, t( ) � exp −i]snt( ) A + Bsn Γx, q( )[ ], (14)
where A �

�
2

√
3π

1
τ > 0, B �

���
2

1+q2
√

A> 0, ]sn = −2τA2 < 0, and
Γ2 � 2

(1+q2) τA
2. Eq. 14 goes over into the kink in the limit of

q → 1 (the same as found in [60]),

ϕ x, t( ) � exp −i]kinkt( ) A + B tanh Γx, q( )[ ], (15)

FIGURE 3 | (Color Online) Panels cover the time evolution of the droplets under collision between two droplets of the same particle numbers N1 = N2 = 20. Their
respective momentum and phase are mentioned at the top of each panel.

FIGURE 4 | (Color Online) (A) Stability diagram of 1D self-bound Rabi-coupled droplets. The white band shows the asymptotic behavior |υ|~ 1. (B) shows the
variation of energy density with density for different ΩRs. The dot-dashed orange line represents the droplet phase in the absence of Rabi coupling. The solid red line
considers ΩRs = 0.2. The dashed green line corresponds to the critical value Ωc

Rs ≃ 0.356 at which the system becomes unstable. Inset: we present the local minimum
localization of εRs/ns predicted by Eq. 13. This plot is prepared for |υ| = 0.9.
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where A � B �
�
2

√
3π

1
τ > 0, ]kink = −2τA2, Γ2 = τA2.

3.5.2 τ < 0
In the case when the attractive MF is stronger than the BMF
repulsion, resulting in δg < 0, solutions can be expressed in terms
of even Jacobi’s elliptic functions, dn(x, q) and cn(x, q). First
solution with dn,

ϕ x, t( ) � exp −i]dnt( ) A + Bdn Γx, q( )[ ], (16)
Here, the elliptic modulus can take all values 0 < q < 1, and

the solution parameters are A �
�
2

√
3π

1
τ < 0, B � −

���
2

2−q2
√

A> 0, ]dn =
−2τA2 > 0, and Γ2 � − 2

(2−q2) τA
2.

The second solution is expressed in terms of cn, with q2 > ½:

ϕ x, t( ) � exp −i]cnt( ) A + Bcn Γx, q( )[ ], (17)
where A �

�
2

√
3π

1
τ < 0, B � −

����
2

2q2−1
√

A> 0, ]cn = −2τA2 > 0, and Γ2 �
− 2
(2q2−1) τA

2.

Both solutions in Eqs 16, 17 marge into a “bubble” type [61]
state in the limit of q → 1, which changes the sign at two points
(the same solution was reported as an “W-shaped soliton”
in [60]):

ϕ x, t( ) � exp −i]bubblet( ) A + Bsech Γx, q( )[ ], (18)
whereA �

�
2

√
3π

1
τ < 0, B � − �

2
√

A> 0, and ]bubble = −Γ2 = −2τA2 > 0.

4 ANALYSIS OF QUASI-1D SYSTEM

As promised earlier, this section recaps the recent results where
the emergence of droplets and the existence of localized or
periodic modes in the Q1D system are discussed. We start
from the 3D extended GP equation described in Eq. 3 and
summarize the mathematical prescription to yield a Q1D
equation of motion [42].

It is possible to reduce a 3 + 1-dimensional system to a 1 + 1
dimension via careful trap engineering. Usually, a 3D trap
geometry is realized using isotropic harmonic trapping
potentials. However, if we introduce a strong confinement in
the transverse directions by tuning the trap frequency, the system
can be considered a Q1D system. The Q1D system is quite
amenable experimentally and it is possible to observe the
condensation in contrast to a 1D geometry. To reduce the
dynamical equation from 3 + 1 dimension to 1 + 1
dimension, we use of the following ansatz:

Φ r, t( ) � 1����
2πaB

√
a⊥

ϕ
x

a⊥
,ω⊥t( )e −iω⊥t−y2+z2

2a2⊥
( )

, (19)

Application of Eq. 19 in Eq. 3 yields the dynamical equation of
motion in Q1D [62]:

i
zϕ x, t( )

zt
� −1

2
z2ϕ x, t( )

zx2
+ 1
2
Kx2 + g|ϕ x, t( )|2 + g′|ϕ x, t( )|3[ ]ϕ x, t( ),

(20)
where g = 2δa/aB, g′ � (64 �

2
√

/15π)δa′/(a3/2B a⊥), andK � ω2
0/ω

2
⊥.

The spatio-temporal variables are now in dimensionless units

such that x ≡ x/a⊥ and t ≡ ω⊥t. From here onward, we will follow
this dimensionless notation of x and t.

We realize that the understanding of cubic and quartic non-
linearity is quite limited. Hence, we plan to revisit this unique
problem on a more mathematical level.

4.1 Cnoidal Solutions
Here, we are interested in discussing the static solutions, and for
that purpose, ϕ(x, t) is taken as ψ(x)e−i]t. Therefore, taking into
account the above consideration, Eq. 20 leads to [63]

d2ψ x( )
dx2

+ αψ x( ) − β|ψ x( )|2ψ x( ) − γ|ψ x( )|3ψ x( ) − δ x( )ψ x( )
� 0,

(21)
where α = 2], β = 2g1, γ = 2g2, and δ(x) � 2D(x). D(x) is the
cnoidal potential. At this point, interactions MF and BMF are
considered repulsive in nature. However, their exact
characteristics can be understood by analyzing the exact solution.

4.1.1 “cn” Solution
Due to the change of the variable to z = ζx and because ζ is the
inverse of coherence length, Eq. 21 modifies to [63]

ζ2
d2ψ z( )
dz2

+ αψ z( ) − β|ψ z( )|2ψ z( ) − γ|ψ z( )|3ψ z( ) − δ z( )ψ z( )
� 0,

(22)
Reference [63] takes the ansatz of the form ψ(z) = A + B cn(z,

q) with the external potential as δ(z) =V0 cn
3(z, q), whereV0 is the

strength of the external potential. The competition between the
external potential and the non-linearity allows the system to
stabilize. In experiment, one can create such an atmosphere by

means to multiple lasers. The solution parameters are ζ � B
�
β

√
2
�
q

√

and B � ± β���
4−2

q

√
γ
. Thus, the strength of optical potential is

evaluated as V0 � ∓ β3

2
�
2

√ (−1+2qq )3/2γ2. Hence, the solution can be
written as

ψ z( ) � − β

2γ
1 ∓

��
2q

√�����
2q − 1

√ cn z, q( )( ), (23)

However, the solution is acceptable if and only if β3 – 8αγ2

= 0. It must be noted that the MF interaction has to be
repulsive to avoid complex coherence length. However,
there is no such restriction for BMF interaction; it can be
repulsive and attractive. This counter-intuitive situation is
supported solely by external potential. The solution does not
exist for q = ½ and leads to a constant solution for q = 0.
Hence, a sinusoidal solution cannot be obtained in this
framework. It is possible to obtain a localized solution
corresponding to q = 1.

4.1.2 Localized Solution
As mentioned earlier, one can land up to localized modes from
the cnoidal “cn” solution for q = 1. In that case, Eq. 23 reduces to
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ψ z( ) � − β

2γ
1 ∓ �

2
√

sech z( )( ), (24)

The existence of the solution is also constrained by the form of
the external potential and we find that the potential is
δ(z) � − β3

2
�
2

√
γ2
sech3(z). Figure 5 describes the solution along

with the potential profile. It is important to acknowledge that
the Pöschl–Teller-like potential supports the formation of the
localized mode. B � − β�

2
√

γ
leads to bright soliton-like profile,

though, contrary to the common perception, the background
density remains nonzero. The constant background density in the
asymptotic limit turns out as β2/4γ2. Because β and γ are related to
α (the scaled chemical potential) via β3 = 8αγ2, the constant
background density is the function of the chemical potential, as
noted in [50,55].

Similarly, we find w-soliton for B � β�
2

√
γ
where the background

density is β2/4γ2. The existence of w-soliton implies the existence
of a deep contest between the interactions and its association with
the confinement geometry. Nevertheless, while calculating the
particle number from the normalization condition
(∫∞

−∞ |ψ(z)|2dz � N), we realize that the value of N turns out
as negative and thus we ignore the w-soliton. Naturally, the
stability analysis via VK criterion (calculating zN

zα ) points to the
bright soliton as the stable solution. Figures 5A,B describe the
bright and w-soliton, respectively.

4.1.3 “sn” Solution
Next, we are interested in exploring other kinds of cnoidal
solution and thus we consider ψ(z) = A + B sn(z, q) as ansatz.
We modify the cnoidal trap suitably and assume δ(z) = V0 sn

3(z,
q) in Eq. 21. After some trivial algebra, this yields A = −β/2γ,

α � β3

8γ2, ζ �
iB

�
β

√
2
�
q

√ , B � ± β
�
q

√
2

���
q+1√

γ
, and V0 � β3q3/2

8(q+1)3/2γ2. The solutions
clearly indicate that, for q = 0, the coherence length will be zero
(as ζ → ∞). Hence, there is no scope for sinusoidal modes under
this scheme. Furthermore, one can observe that it is necessary to
impose a condition of β < 0 so that the coherence length remains
real. Hence, the cnoidal wave solution reads [63]

ψ z( ) � − β

2γ
1 ∓

�
q

√����
q + 1

√ sn z, q( )( ), (25)

Contrary to the “cn” solution that “sn” solution yields
nontrivial result for all values of q except q = 0 where the
solution assimilates in the constant background. Figure 6A
describes the behavior of the two solutions for q = ½. The
blue solid line corresponds to 1 −

�
q

√���
q+1√ sn(z, q) and the red

dashed line depicts 1 +
�
q

√���
q+1√ sn(z, q). We note these two

solutions as ψ−(z) and ψ+(z), respectively.

4.1.4 Kink–Antikink Solution
The “sn” solution at q = 1 yields kink–antikink pairs depicted
in Figure 6B. Kink and antikink solitons are well-known for
the Sine-Gordon (SG) equation. A kink solution can be
observed in a ferromagnet where the different spin
domains are separated by the domain walls. In these
systems, under the influence of external magnetic fields, the
Bloch wall can propagate following the dynamical rules
governed by the Sine-Gordon equation, and thus the Bloch
walls take the shape of kink [63].

4.2 Droplet Solution in Homogeneous
System
In the experimental setup of cigar-shaped (Q1D) BEC, ω⊥ is
typically more than 10 times stronger thanω0. The suitable choice
of the transverse (ω⊥) and longitudinal (ω0) trapping frequency
ensures the interaction energy of the atoms is much less than the
kinetic energy in the transverse direction. Since the trapping
frequencies can be controlled quite efficiently, it is also possible to
tune the transverse confinement much stronger than the
longitudinal counterpart (ω0 ≪ ω⊥), resulting in K → 0. The
system can now be viewed as quasi-homogeneous. Here, we brief
the obtained analytical solution for Eq. 20, assuming K = 0.

Using ϕ(x, t) � ρ(x, t) exp[i(χ(x, t) + ]t)] where ρ(x, t) leads
to the amplitude contribution and χ(x, t) is the non-trivial phase,
] is the chemical potential, and with the required assumptions
mentioned in [62], we finally end up with the solution [62]

ρ ζ( ) � 1 + 12]g
1 + ����

12]g
√

cosh
����−|g|√

ζ( ) for |g| � 3g′. (26)

FIGURE 5 | (Color Online) Density profiles of Eq. 24 and their potential landscape. (A) Red dashed line depicts the bright soliton-like profile. (B) Red dashed line
represents w-soliton. In both the figures, blue solid line represents their potential landscape δ(z)/δ0. The figure is normalized by ψ0 = β/2γ, and we find that δ0 � −β3

γ2.
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Here, ]g = ]/g which implies that the localized structures can only
be sustained iff g< 0 or the effectiveMF interaction is attractive and for
real solution, ]g > 0. Hence, the chemical potential must be negative.

We define the relationship between normalization N and
chemical potential ] as [62]

N � 1 + ]I( )2��
g

√
1 − ]I( ) ln 1 − 2

]I

�����
1 − ]I

√ + 1( )[ ] − 2[ ]. (27)

We have denoted 12]g = ]I.N can also be noted as the number of
particles associated with the formation of localized wave and scaled
by N0 where N0 defines the particle number obtained from the
constant background density solution such that
N0 � 2aB(15πa⊥64 )2( δa

δa′)2. Solving Eq. 27 numerically for ], we can
create the density profile following Eq. 26. The density profile is
presented in Figure 7. It clearly suggests that, for the very low
particle number, the system tends to produce localized modes,
whereas, for the reasonably large number, we observe the density
is constant over a finite spatial dimension, thereby suggesting the
formation of a liquid-like state.

The droplet formation results from mutual competition
between the MF and BMF interaction. It has been argued
that, at a lower particle number, the system supports the bright
soliton-like modes. In the region where the effective
interaction energy (Eeff = EMF + EBMF) is negative, the
transition from localized to droplet state happens when the
effective pressure is nullified (i.e., P � Eeff − n

dEeff

dn ). The
corresponding density is known as equilibrium density. The
droplets can sustain below the critical density defined by Eeff =
0. Beyond this point, Eeff > 0 yields gradual evolution of the
localized modes. The chemical potential in equilibrium turns
out to be −0.02, which is even true for a weakly trapped system,
as observed in the following section.

4.3 Droplet to Soliton Transition in
Inhomogeneous System
The analytical solution of the CQNLSE motivates us now to
examine and validate the result numerically. For that purpose, we

FIGURE 6 | (Color Online) The behavior of “sn” solution according to Eq. 25 for different q. (A) The periodic spatial density variation for q = 1/2. (B) Kink and antikink
type profiles are reported for q = 1. In both figures, the red dashed line depicts ψ+(z) solution and the blue solid line corresponds to the ψ−(z) solution. The density
distribution is again normalized by |ψ0|

2.

FIGURE 7 | (Color online) Spatial variation of the density profile for
different particle numbers. The blue dashed-dotted line describes N = 0.1,
whereas the orange solid line is prepared for N = 1. The green dotted line and
red dashed line depict the density profile for N = 10 and 20, respectively.
The density is normalized by the peak density n0, where n0 = n(ζ)|ζ=0.

FIGURE 8 | (Color online) The density profile of the numerical solution for
different K values is depicted here. The blue dashed-dotted line describes the
density for K = 0.00001, the red dotted line describes K = 0.001, and the grey
dashed-double-dotted line is prepared for K = 0.1. Here, κ = g′/|g| = 0.1
and g is set at 1. The density is normalized by n0 where n0 is n(x)|x = 0.
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implement the imaginary time propagation of the split-step
Crank–Nicolson (CN) method [64] over small time steps (5 ×
10−6) for a total of 20,000 steps and solve the homogeneous
CQNLSE [62]. Then, we consider K ≠ 0 for several trap
frequencies and different BMF interaction strengths κ, where κ
is defined as g′/|g|. We use three arbitrary values of κ, as 0.1, 0.5,
and 0.9 [65]. Figure 8 depicts the density distribution for K =
0.00001 (blue dashed-dotted line), K = 0.001 (red dotted line),
and K = 0.1 (grey dashed-double-dotted line), respectively. The
density profile suggests a transition from a droplet-like state to a
localized density distribution as we increase the trap frequency.
At K = 0.00001, the flat top density distribution is distinctly
visible, indicating the droplet-like state, whereas tighter
confinement leads to the generation of a bright soliton-like
state as described by the grey dashed-double-dotted line. In
the intermediate region with moderate trap frequency (say at
K = 0.001), a bell-like structure emerges. Though Figure 8 is
prepared for κ = 0.1, we do not observe any significant deviation
in nature for larger κ values.

To understand the possible droplet-soliton transition, we
examine the chemical potential. Assuming ϕ(x, t) = ϕ(x)e−i]t

and applying in Eq. 20, we obtain

]ψ x( ) � −1
2

d2

dx2
+ 1
2
Kx2 + gψ2 x( ) + g′ψ3 x( )[ ]ψ x( ). (28)

Further incorporating the normalization condition∫∞

−∞ ψ2(x)dx � 1, we yield

] � ∫∞

−∞
1
2

dψ

dx
( )2

+ ψ2 x( ) 1
2
Kx2 + gψ2 x( ) + g′ψ3 x( )( )[ ]dx.

(29)
The variation of chemical potential while trap frequency is tuned

is noted in Figure 9A. We repeat this calculation for different
interaction strengths (κ = 0.1, 0.5, and 0.9). For a quite loos trap, the
system can be treated as quasi-homogeneous, leading to the

formation of droplets signified by the negative value of the
chemical potential. Furthermore, we note that, in this situation,
the chemical potential converges to ~ − 0.02 for different interaction
strengths. It must be noted that a similar result has already been
reported for κ = 0.33 in the previous section, where we discussed the
analytical calculation for a homogeneous system [62].Figure 9A also
reveals that the stronger confinement leads to the solitonic state with
] > 0 (right side of the grey shaded region of Figure 9A). Curiously,
we observe a non-monotonic behavior of the chemical potential in
the shaded region where the confining potential strength is in the
regions 0.001 and 0.1. A comparison with Figure 8 encourages us to
consider this frequency window as the transition region.

Now, it is important to understand the nature of the transition.
The pertaining question is whether the transition is a quantum
phase transition (QPT) or a crossover. In QPT, one can identify
an abrupt change in the ground state of the system when a
Hamiltonian parameter crosses a critical value [66,67]. Here, we
recognize K or the square of the longitudinal trapping frequency
as the Hamiltonian parameter. Because we do not observe any
abrupt change in ], we calculate the first derivative of the chemical
potential with respect to K but again fail to identify any abrupt
change. Thus, we conclude the transition to be a crossover rather
than a QPT, and we recognize a loose crossover boundary as
0.0001 ≲ K ≲ 0.1 (described in the light-magenta shaded region in
the figures).

To verify our analysis, we also calculate the total energy

E � ∫∞

−∞
1
2

dψ

dx
( )2

+ ψ2 x( ) 1
2
Kx2 + 1

2
gψ2 x( ) + 2

5
g′ψ3 x( )( )[ ]dx,

(30)
and capture its variation in Figure 9B. The energy description
also supports our assertion as we observe negative energy for
weak confinement leading to the accumulation of droplet-like
bound pairs. The energy crosses the zero line in the vicinity of K =
0.001, which might point to the breakdown of droplet-like bound
pairs. However, the energy flattens in the shaded area might be

FIGURE 9 | (Color online) (A) The variation of chemical potential, while the trapping potential is tuned, is depicted here for different κ values. The grey dashed-
double-dotted line corresponds to κ = 0.9, the red dotted and blue dashed-dotted lines describe the variation of chemical potential with trap frequency for κ = 0.5 and
0.1, respectively. The black dashed line indicates ] = 0. The shaded area describes the crossover regime. (B) Change in energy with variation in the trap frequency is
plotted here for different BMF interaction strengths. The colors and line styles have the same meaning as previous. The black dashed line indicates E = 0. The light
magenta area corresponds to the region of transition from droplet to soliton.

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 88733810

Khan and Debnath Quantum Droplet

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


suggestive of an equilibrium of the dropleton-soliton mixture.
Further increase in the trapping potential destroys the bound
pairs, and soliton-like state emerges.

We also observe a very smooth transition of root-mean-square
(rms) ( ����

〈x2〉
√ ) size of the condensate, which is depicted in

Figure 10. The rms size is normalized by the rms size

(
����
〈x2

0〉
√

) for K = 0, and we introduce 〈X2〉 �
���
〈x2〉

√���
〈x20〉

√ .

According to Figure 10fig10, we can conclude that the weak
trapping potential allows the larger pair size, suggesting the
droplet formation. However, gradually and smoothly, the pair
size falls off as we increase the longitudinal frequency. We also
observe that the pair size drops much faster in the shaded region,
defined as the crossover region. The rms curve flattens thereafter
and asymptotically reaches 1/10 of the droplet size for a tightly
confined one-dimensional geometry.

The role of particle number in the transition is also a matter of
deep interest. We calculate the energy and chemical potential for
different particle numbers (from 25 to 100). We draw a contour
phase diagram based on our findings depicted in Figure 11. The
bluish region corresponds to the negative energy region, thereby
suggesting the existence of the bound pairs and droplet
formation. The red region describes the unbound solitonic
region, and the greenish region corresponds to the region of
crossover where the droplets are breaking down into solitons.
Moreover, one can also conclude that the larger particle number
hinders the droplet formation even if the confinement is very
weak. It is similar to the fact mentioned in the previous section
regarding the existence of a critical density beyond which droplets
cannot form in a homogeneous system.

5 SUPERSOLIDITY

As quantum liquid remains in its infancy, it is fascinating with
new attributes. One such exciting phenomenon is the quantum

ferrofluids. It is recently shown that the quantum ferrofluids born
from ultracold atomic gases have exhibited supersolid properties
[44–46,68]. The investigation has further been extended toward
the supersolid to superglass transition [69]. This section covers a
couple of theoretical descriptions leading to supersolid formation.
The flow of the content will follow the same pattern as the
previous; first, we will discuss the 1D system and then we will
elaborate on Q1D geometry.

5.1 Supersolidity in 1D
A recent analytical study has highlighted the generation of
supersolid-like phase in a self-trapped 1D system [70]. The
analysis comes up with several analytical solutions by
considering a propagating Bloch function type solutions [71].
The self-trapped dynamical system can be described as

iZ
zΦ1D

zt
� − Z2

2m
Φ1D

xx + δg|Φ1D|2Φ1D −
���
2m

√
πZ

g3/2|Φ1D|Φ1D, (31)

Here,Φ1D defines the wavefunction in a strictly 1D system. For
notational convenience let us replace Φ1D as ϕ, and we assume ϕ
represents a propagating Bloch function such that

ϕ � ϕ0

x − vt

ξ
( )exp ikx − i

]
Z
t( ), (32)

Here, ϕ0 is taken as a conoidal function with modulus
parameter q. We have already noted that, for q = 0, the
cnoidal function manifests sinusoidal nature:

ϕ0 � A + Bsn
x − vt

ξ
, q( ), (33)

where A �
��
2m

√
3πZ

g3/2

δg , B � ±
���
2q
q+1

√
A, ξ � 3Z2π

2m

�����(q+1)δg
g3

√
, and 0 < q < 1.

It is evident that the existence of the Bloch type solutions with
a superfluid background crucially depends upon the MF term,
BMF correction, and dispersion. Here, ϕmin/max � A ± B �
A(1 ±

���
2q
q+1

√
)> 0 shows that the quantum supersolid immersed

FIGURE 10 | (Color online) The variation of the rms size of the droplets
with the modulation of the trapping potential. The solid blue line, the red solid
squares, and the black solid circles denote κ = 0.1, 0.5, and 0.9, respectively.
The shaded region describes the crossover area.

FIGURE 11 | (Color online) The contour plot described the energy
variation as a function of trap frequency (in log scale) and norm (norm =

��
N

√
). It

clearly illustrates the phase boundaries between the droplet-like state (bluish
section, mainly bottom and bottom left), soliton-like state (reddish region,
in the top), and an intermediate droplet-soliton mixture (greenish region, in the
middle).
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in a residual BEC [44,46,68]. The density of the residual BEC,

nres � A2(1 −
���
2q
q+1

√
)2 > 0. This diffused matter-wave density rules

out the scenario of one atom per site thereby overtaking the
Penrose and Onsager criterion [72–74].

The density of the supersolid phase is shown in Figure 12
in the comoving frame. With increasing repulsive intra-
component interaction g, the number of droplets increases
and their size decreases to a fixed value of x/ξ. Furthermore,
keeping all the physical parameters constant, an increase in
the modulus parameter increases the interdroplet
spacing [70].

5.2 Supersolidity in Q1D
Moving toward the Q1D geometry, we recognize that it is
impossible to yield any analytical solution from a self-trapped
system. Hence, we employ a bi-chromatic lattice in CQNLSE. The
application of bi-chromatic lattice was motivated by the recent
observations of supersolid-like features in a spin-orbit coupled
BEC, where the experiment was performed in the presence of two
optical lattices of different frequencies in the same spatial
dimension where the effective lattice potential was described
as a superlattice [75]. However, the manifestation of
supersolidity emerges naturally in a spin-orbit or dipolar BEC.
To mimic these additional contributions, we add a driving force
that is periodic in nature to compete with the two-body mean-
field interaction. The use of external driving force in ultracold
atomic systems is not alien [76,77]. There are suggestions for
generating and controlling the transport of BEC atoms from a
reservoir to the waveguide via a source/driving force [76–79].

The knowledge of Eq. 20 allows us to write a generic time-
dependent DCQNLSE as [80]

−1
2
z2Φ
zx2

+ V2 sin ζx − V1 sin
3 ζx( )Φ + g1|Φ|2Φ + g2|Φ|3Φ

− i
zΦ
zt

� F′ x, t( ). (34)

Focusing on the static solution we assume, Φ(x, t) = ϕ(x)e−i]t,
where ] is the chemical potential. To extract the static behavior, it is
also necessary to lock the temporal phase part of the driving force
with the solution ansatz. Also, we assume the spatial variation in

sinusoidal in nature. Hence, we denote F′(x, t) = F e−i]t sin ζx. The
resulting time independent DCQNLSE reduces to [80]

−1
2
d2ϕ

dx2
+ V2 sin ζx − V1 sin

3 ζx( )ϕ + g1|ϕ|2ϕ + g2|ϕ|3ϕ − ]ϕ

� F sin ζx.

(35)
Here, the strength of odd (cubic) and even (quartic) exponents is

described via g1 and g2, respectively. The coherence length can be
recognized as 1/ζ. The bi-chromatic lattice potential depths are
described via V1 and V2. A suitable modulation of the lattice
depth can create a superlattice [75]. As the cubic exponent of the
potential can be written in terms of triple angle representation, the
wavenumber of one laser is required to be thrice the second laser. F
is the amplitude of the external force. To obtain a sinusoidal mode,
we assume an ansatz such that ϕ(x) = A + B sin ζx. From the recent
investigation described in [46], we learn that the density distribution
of the supersolid phase can be described adequately via the
sinusoidal function similar to the ansatz. Applying the ansatz in
Eq. 35, we encounter a set of consistency conditions as noted in [80].

The solutions parameters such as A and B can be solved, and
we can write the final solution as

ϕ x( ) � ϕQ1D x( ) � − g1

3g2
+ V1

g2
( )1/3

sin ζx. (36)

Here, A = −g1/3g2 and B � (V1/g2)1/3. The coherence length
shows a function of external driving force as ζ � ±

���
2F√

B. The
expression forB suggests thatB ∈ R, thus avoiding the occurrence of
the nonphysical situation such as complex coherence length. This
also implies that if V1 > 0 then g2 > 0 or vice versa. However, g1 does
not have any such constraints. Therefore, the MF interaction
strength can be attractive and repulsive, whereas the nature of
BMF will depend on the nature of optical lattice potential
amplitude. We also note that it is necessary to apply the driving
force in the same direction as the displacement.

Figure 13 depicts the spatial variation of density (|ϕ(x)|2) via a red
dashed line. The blue solid line describes the spatial variation of the
BOL.As shown inFigure 13, the existence of the densitywave is quite
evident, with density maxima coinciding with the potential minima.

FIGURE 12 | (Color Online) Density profiles corresponding to Eq. 33 for different values of g and q. In both the panels, blue solid line and red dashed line are for q =
0.2 and q = 0.5, respectively. (A,B) are prepared for g = 10 and g = 12, respectively. In both figures, δg = 0.1 and |ϕ|2 is scaled to 10−3.
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The stability of these modes can be discussed in the light of the
VK criterion [54]. Here, calculating the particle number (N) in a
unit cell of length L we find that zN/z] � L/g1. Hence, for a
stable solution, the MF interaction should be positive, which
physically implies a repulsive nature.

5.3 1D, Q1D, and Beyond
Till now, we have discussed the 1D and Q1D systems. The 1D and
Q1D systems have already been characterized by the one-dimensional
scattering length (~a) and density (~n). For a 1D system
Σ � 1/| ���

~n~a
√ |< 1, whereas Σ > 1 for Q1D geometry. Then, what

happens if Σ ~ 1 or at the dimensional crossover? From a
mathematical point of view, we understand that the even exponent
in the BMF contribution is two for 1D and four forQ1D.However, we
lack the clarity of the dynamical equation at the dimensional
crossover. We attempt the problem by assuming a mixture of
BMF contributions from 1D and Q1D, which implies that the
dynamical equation contains both the quadratic and quartic non-
linearities; thus, the NLSE can now be termed as quadratic-cubic-
quartic NLSE or QCQNLSE. We solve the dynamical equation
following the already described methodology and look for
sinusoidal solutions. For brevity, we do not explicate the detailed
calculation. Nevertheless, one can easily obtain the analytical results
following the same prescription of Section 5.2. If we denote ϕ1D, ϕQ1D
as analytically obtained sinusoidal wave functions and ϕQ1D−1D
describe the wave function in the crossover; then, we observe that
ϕQ1D = ϕQ1D−1D ≠ ϕ1D. Thus, the continuity of the wave function is
retained in the region Σ < 1 and Σ ~ 1. However, there is a clear
discontinuity in moving toward the 1D regime [80]. We have also
noted that, for Q1D and dimensional crossover, we require a super
lattice-like trapping geometry, whereas a 1D system can be analyzed in
a regular optical lattice.

6 CONCLUSION

This review summarizes the theoretical endeavors to examine the
newly observed liquid-like state in ultra-cold atomic gases at a

lower dimension. To be precise, we have confined ourselves to
Q1D and 1D geometries. It is a well-known fact that condensate
formation is not possible in the 1D Bose gas even though, using
the Bogoliubov theory, one can correctly predict the ground state
energy of a weakly interacting Bose gas. On the contrary, a Q1D
geometry is widely used in experiments to create a condensate
and study its dynamics.

In order to study the droplets in the lower dimension, it is
required to note that the exponent of BMF non-linearity is
different for 1D and Q1D. Though in both the cases, the
exponents are even. In 1D, it is two, and in Q1D, it is four.
Therefore, we attempt to review the recent theoretical advances in
1D systems with quadratic non-linearity (apart from the usual
cubic non-linearity, describing the two-body short-range
interaction). We summarize the recently reported cnoidal,
localized, and kink–antikink type solutions for this system and
discuss the interplay of MF and BMF interactions.

In the later half, we study the Q1D geometry and brief the
analytically obtained solution for a cubic-quartic NLSE (the
governing dynamical equation). In this section, first, we explore
the possibility of obtaining a cnoidal solution, and for that, we observe
the necessity of cnoidal trapping potential. Subsequently, we present
the analytical solution for droplets in a homogeneous CQNLSE, and
then we study the effect of harmonic trapping. It comes out that trap
modulation can even induce a droplet to soliton transition.

The penultimate chapter briefly discusses the very recent
developments related to the observation of the supersolid
phase, where one can notice superfluid behavior along with
lattice order. The experiments have shown that, in dipolar
BEC, there exists a transition from droplet to supersolid phase,
which can be characterized by the stripe phases and longer phase
coherence. Here, we look back at a very recent report where
theoreticians have predicted the existence of a self-trapped
supersolid phase in 1D. Apart from that, we also comment on
the existence of a supersolid phase through driven CQNLSE in a
super lattice. The phenomenological driving force mimics the
contribution of the dipolar interaction. At the very end, we
examine the dimensional crossover from Q1D to 1D by
studying the continuity of the wave function.

As this area of research is still new, we expect our effort in
summarizing the recent theoretical developments on the liquid-
like state at the lower dimension will be a subject of interest for a
wide audience. Moreover, this can stimulate more intense
experimental research in the lower dimension, which still
requires some grounds to cover.
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FIGURE 13 | (Color Online) The density profile calculated from Eq. 36 is
depicted here along with VBOL. The red dashed line and the blue solid line
describe the density variation and VBOL, respectively. Here, V1 = 1.0,
V2 � 1

3 (V1
g2
)1/3g21g2, g1 = 1.5, g2 = 0.3, and F= 0.5.
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