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The relative flow of the Schwarzschild vs. the proper time during the classical evolution of a
collapsing shell in the Schwarzschild coordinates practically forces us to interpret black
hole formation as a highly non-local quantum process in which a shell/anti-shell pair is
created within the incipient horizon, thus canceling out the original collapsing shell exactly
at the horizon. By studying quantum fields in the black hole background, we reveal similar
non-local effects. Among other things, the outgoing member of the Hawking pair very
quickly becomes entangled with the black hole geometry (and not its partner), which is in
contrast with the usual assumption that the Hawking pair is maximally entangled according
to the local geometry near the horizon. Also, an infalling wave affects the black hole
geometry even before it crosses the horizon. Finally, we find that a particle takes a finite
amount of time to tunnel in and out of the black hole horizon, and thus avoids infinite blue
and redshift in processes happening exactly at the horizon. These findings strongly
support the picture of a black hole as a macroscopic quantum object.
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1 INTRODUCTION AND OVERVIEW

Black holes are among the most fascinating objects in physics and astronomy [1]. They are also
believed to hold some of the most important secrets of quantum gravity, perhaps the most
outstanding problem in theoretical physics. In this letter we offer a new perspective of the
nature of black holes. Our main point is that even though black holes are undoubtedly classical
solutions of general relativity, they can be also understood as macroscopic quantum objects. We
present explicit and concrete calcuations that support this, perhaps surprising, point of view.

2 “CLASSICAL” BLACK HOLE FORMATION VIEWED AS A
MACROSCOPIC QUANTUM PROCESS

We consider the gravitational collapse of a massive shell of radius R(t). According to Birkhoff’s
theorem, the metric inside the shell, for r < R(t), is the Minkowski metric

ds2 � −dT2 + dr2 + r2dΩ2, (1)
while outside, for r > R(t), is the Schwarzschild metric

ds2 � − 1 − 2M
r

( )dt2 + 1 − 2M
r

( )−1
dr2 + r2dΩ2, (2)
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where for simplicity we set G = 1.
The explicit motion of the shell can be found (see e.g.

Lightman et al. [2], Problems 21.10 and 21.11) from the
conserved quantity, M, which is just the total energy of the shell

M � μ

�����
1 + _R

2
√

− μ2

2R
(3)

where _R � dR/dτ, τ is the proper time of an observer sitting on
the shell, and μ is the rest mass of the shell. While the evolution in
terms of the proper time τ is uneventful (the shell shrinks to R = 0
in finite time), it is instructive to see what happens in the
Schwarzschild time. The relative flow of the proper and
Schwarzschild times during the motion of the shell can be
found from the time component of the four-velocity ut (see
detailed derivation in the Appendix)

ut � dt

dτ
�

1 − 2M
R

+ _R
2( )1/2

1 − 2M
R

, if R> μ2

2M

−
1 − 2M

R
+ _R

2( )1/2

1 − 2M
R

, if R< μ2

2M
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

This relation is crucial for our discussion. For R > 2M, ut > 0,
which means that the Schwarzschild and proper infalling time
coordinates are of the same sign. The shell propagating according

to the Schwarzschild coordinate time behaves as a normal positive
energy particle. However, for 2M>R> μ2

2M, u
t < 0. Thus, time is

reversed and the shell behaves as a negative energy particle. Time
reverses once again for μ2

2M>R, where ut > 0. The shell again
behaves as a positive energy particle. This behavior can be
interpreted as a shell/anti-shell pair creation with the radius
R � μ2

2M. The positive energy member of the pair travels to r =
0, and presumably forms a singularity there. The negative energy
member travels to the horizon and cancels the incoming positive
mass shell. The region between the created shells is not flat
anymore, and time is re-synchronized into the Schwarzschild
time. Eventually, the whole spacetime becomes Schwarzschild-
like, and an outside observer does not see the infalling shell
anymore. The schematics is shown in Figure 1.

To corroborate this description, we calculate the detailed
trajectory of the shell in the Schwarzschild coordinates by
integrating

t � ∫ ut

_R
dR, (5)

where _R is given by Eq. 3, and ut by Eq. 4. In order to make the
relevant plots we setM � μ � 1

2. Since bothM and μ are conserved
quantities, this choice corresponds to the shell which starts from
rest at infinity. The explicit trajectory in Schwarzschild
coordinates is

t �
−R + 2

3

������
8R + 1

√ − ln

������
8R + 1

√ − 3������
8R + 1

√ + 3
( ) if R> 1

−R + 2
3

������
8R + 1

√ − ln
3 − ������

8R + 1
√������

8R + 1
√ + 3

( ) if 1>R.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (6)

FIGURE 1 | (A). The schematic representation of a collapsing spherical
shell. The metric is Schwarzschild outside, and Minkowski inside. (B). The
shell/anti-shell pair is created with the radius R � μ2

2M. The positive energy shell
falls to r = 0, while the negative energy one propagates outward to the
incipient horizon. (C). The region between the created shells (black ring) is
growing, and it is not a flat space anymore. Its time coordinate is re-
synchronized into the Schwarzschild time. (D). Eventually, the negative energy
shell cancels out the original collapsing shell. A black hole is formed and the
whole spacetime becomes Schwarzschild.

FIGURE 2 | The trajectory of a collapsing shell in the Schwarzschild
coordinates (t, r). We set the rest mass of the shell, μ, and its total energy,M, to
be equal to 1/2. The incipient black hole horizon is at r = 1. The collapsing shell
takes infinite time to arrive to the horizon (solid line). However, a shell/
anti-shell pair is created with the radius R = 0.25. The positive energy shell
shrinks to R = 0 (dotted line), while the negative energy one propagates
outward (the dashed line), where finally it cancels the original collapsing shell at
the horizon at t → ∞.
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As Figure 2 shows, there is only one mass shell in the
beginning. When the shell reaches R ≈ 1.16rh, where rh is the
horizon radius, the shell/anti-shell pair is created with the radius
R = 0.5μ. The positive energy shell keeps falling into r = 0, while
the negative energy shell proceeds toward the incipient horizon.
Eventually, the outgoing negative energy shell reaches the horizon
where it cancels out the original infalling shell. The regions above
these curves are Schwarzschild-like, while below, they are flat.

This result is remarkable for two reasons. First, we work in the
framework of classical general relativity. Yet, we are practically
forced to interpret the process of the collapse in quantum
mechanical terms as a shell/anti-shell creation. Second, while
the original collapsing shell is still outside its own Schwarzschild
radius, the region inside is already affected in a highly non-local
way. We emphasize that this is the description of the collapse in
the Schwarzschild coordinates. An infalling observer on the shell
who measures the proper time τ will hit the singularity in finite
time according to his clock.

3 QUANTUM FIELDS IN THE
BACKGROUND OF A BLACK HOLE

We will now introduce a quantum field in the background of a
black hole, and study what happens to the infalling and outgoing
waves. In this case, the black hole is already formed, and the
metric is given by Eq. 2. To make the relevant plots we set 2M = 1.
To remove the coordinate singularity at the horizon, r = 1, we

introduce the Kruskal-Szekeres coordinates (T, X). For r > 1, we
have.

T � r − 1( )1/2er/2 sinh t/2( ) (7)
X � r − 1( )1/2er/2 cosh t/2( ), (8)

while for r < 1,

T � 1 − r( )1/2er/2 cosh t/2( ) (9)
X � 1 − r( )1/2er/2 sinh t/2( ). (10)

Note that Eqs 7, 8 are written for the quarter I in Figure 3,
while Eqs 9, 10 are written for the quarter II in Figure 3. There is
an extra negative sign in these expression for the quarters III and
IV. We can also replace (T, X) with the lightcone coordinates U
and V as U = T − X and V = T + X. The metric in Eq. 2 is now
written as

ds2 � 4
r
e−rdUdV + r2dΩ2. (11)

For simplicity, we can omit the angular part of the metric and
consider the 1 + 1 dimensional space

ds2 � 4
r
e−rdUdV. (12)

A massless scalar field propagating in this background must
satisfy the 1 + 1-dimensional Klein-Gordon equation

zUzVΦ � 0. (13)
The solution of this equation can be written as a linear

combination of two functions, f(U) and g(V), Φ = Af(U) + Bg(V),

FIGURE 3 | A Schwarzschild black hole in the Kruskal-Szekeres
coordinates: Region I is outside, while region II is inside the horizon. Regions III
and IV are copies of regions I and II. The U and V axes are along the horizon.
The dashed and solid arrow lines represent constant U and V
trajectories. The other lines represent constant r and t trajectories.

FIGURE 4 | An ingoing wave toward the black hole. The curve
represents V = C=const trajectory expressed in the Schwarzschild
coordinates. Here we set C = 4. In the beginning, there is only one solid line
that goes from r = ∞ inward to the horizon, r = 1. Then at t = 2 lnC a
dotted line appears propagating from r = 0 to the horizon r = 1. The solid and
dotted lines represent the positive and negative energy components
respectively.
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where A and B are constants. The solution can be transformed to
Schwarzschild coordinates by substituting the explicit forms forT(t, r)
and X(t, r) obtained from Eqs 7–10.

If we want to study a wave falling into a black hole, then there
is only an incoming mode, so we can set A = 0. This is represented
by the solid arrow line in Figure 3. Now, let us track a particular
point of the wave, labeled by V = C =const. In these coordinates,
this is a straight line going from the outside region (labeled I) to
the inner region (labeled II). The horizon does not represent an
obstacle. Now let us plot the same trajectory V = C in the
Schwarzschild coordinates (t, r). The trajectory is given by.

r − 1( )1/2er/2et/2 � C, for r> 1 (14)
1 − r( )1/2er/2et/2 � C, for r< 1. (15)

From Figure 4, we can see that the wave goes from infinity
toward the horizon (the solid line). However, at the moment t =
2 lnC (we set C = 4 in this concrete example), an extra component
appears at r = 0 and propagates all the way to the horizon (the
dotted line). Since energy must be conserved, the dotted line
should represent a negative energy flow emerging from r = 0 and
ultimately canceling out the incoming wave at the horizon. Thus,
in the Schwarzschild coordinates, the wave never crosses the
horizon. It is however interesting that this negative energy flow
appears when an incoming wave is at r ≈ 1.28, which implies that
an infalling particle affects the black hole before it actually crosses
the horizon in a highly non-local way.

We now study how a wave leaves the horizon, which is
represented by the dashed arrow line in Figure 3. This is a

generalization of the Hawking effect. We recall that the Hawking
effect [3–10] boils down to the fact that the Kruskal-Szekeres
vacuum mode exp(iωU) is represented by real particles in the
Schwarzschild coordinates (t, r). Here, instead of exp(iωU), we
consider how a general wave f(U) propagates in (t, r) coordinates.
Again we single out a point U = C =const. The trajectory is
given by.

− r − 1( )1/2er/2e−t/2 � C, for r> 1 (16)
− 1 − r( )1/2er/2e−t/2 � C, for r< 1. (17)

Note that the coordinates (T,X) in region IV have an extra
negative sign, which is different from Eqs. 9, 10. From Figure 5,
we can see that there are two components at the beginning (t →
−∞). One component goes from the horizon outward to infinity
(the solid line). The other component goes from the horizon to
the singularity, r = 0, and disappears at t = 2 ln(−C) (we set C = −4
in this concrete example). So one single wave in the Kruskal-
Szekeres coordinates becomes two waves in the Schwarzschild
coordinates. Since there was nothing at the horizon at the initial
moment, and energy must be conserved, the external wave will
have positive energy, while the inner component must have
negative energy. This negative energy mode disappears when
the outgoing mode reaches r ≈ 1.28. This can be interpreted as a
particle pair which is created at the horizon, with one member of
the pair falling into the singularity, while the other one escaping
to infinity, as in the Hawking radiation. However, it is very
important that the negative energy component falls into the
singularity in finite time, before its partner reaches infinity.
This means that the outgoing particle is entangled with the
black hole (and not its partner) after a very short time period
(as argued in [11]), since its partner has already been absorbed at
the singularity. This is in strong contrast with the usual
assumption that the virtual Hawking pair is maximally
entangled according to the local geometry near the
horizon [5–10].

This fact that the positive and negative energy components
originate exactly at the horizon agrees with the fact that the
macroscopic negative energy flow in a static background can
survive only inside the horizon, where the timelike Killing vector
for the Schwarzschild spacetime becomes spacelike. This implies
that the Hawking pair has to be created exactly at the horizon,
with one member of the pair inside and the other outside.
However, this leaves a question how an outside observer can
even observe such an effect, since anything emitted exactly from
the horizon becomes infinitely redshifted. One can expect though
that the uncertainty principle might shed more light on this
question.

4 TUNNELING IN AND OUT OF A BLACK
HOLE

The idea of Hawking radiation can be seen as quantum
tunneling is not new (see e.g. [27, 28]). Here we argue that
a similar tunneling effect can be encoded in the coordinate
transform. For example, we can employ the uncertainty

FIGURE 5 | An outgoing wave from the black hole. The curve represents
U = C=const trajectory expressed in the Schwarzschild coordinates, with C =
−4. In the beginning, there are two components. The solid line goes from the
horizon, r = 1, outward to infinity, r = ∞, while the dotted line appears
from the horizon and propagates to the singularity r = 0. At t = 2 ln(−C), the
dotted line reaches the singularity. This is a generalization of the standard
Hawking (pair creation) effect. This result implies that the outgoing particle is
entangled with the black hole (and not its partner) after a very short time
period, since its partner has already been absorbed at the singularity.
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principle to estimate how a quantum particle tunnels from a
point (t, r1) outside of the horizon to a point (t, r2) inside the
horizon, and vice versa. The tunneling condition is T1 ± X1 =
T2 ± X2, where the upper sign corresponds to an infalling and
lower to an outgoing particle. With Eqs 7 and 8, 9 and 10, this
implies

r1 − 1( )1/2er1/2 � 1 − r2( )1/2er2/2. (18)
This relation can be satisfied only if 1 < r1 < 1.28 and 0 < r2 < 1.

It is interesting that we again obtain r = 1.28 as a relevant scale for
a non-local behavior.

A particle in the Kruskal-Szekeres coordinates can be
represented as a combination of different incoming or
outgoing modes, i.e., ∑ωA(ω) exp[iω(T ± X)]. The uncertainty
relationship in the Kruskal-Szekeres coordinates is ΔPXΔX ≈ 1,
where PX is the momentum in the Kruskal-Szekeres coordinates
(we do not use ΔPr in the Schwarzschild coordinates because the
tortoise coordinate can describe only events outside horizon and
cannot describe how a wave-packet goes through the horizon).
From Eq. 8, the outer point is X1 � (r1 − 1)1/2er1/2 cosh(t/2),
while Eq. 10 gives the inner point after we apply Eq. 18 as
X2 � (r2 − 1)1/2er2/2 sinh(t/2) � (r1 − 1)1/2er1/2 sinh(t/2). Then,
we have

ΔX � X1 −X2 � r1 − 1( )1/2er1/2 exp −t/2( ). (19)
Then, we can use ΔPXΔX ≈ 1 to find the moment when a

particle tunnels into or out of the horizon according to the
Schwarzschild clock as a function of ΔPX

tintunnel � −touttunnel � 2 ln ΔPX( ) + ln r1 − 1( ) + r1. (20)

As can be seen from Figure 6, for an infalling particle smaller
ΔPX implies easier (and quicker) tunneling through the horizon.
Also, particles are easier to tunnel if they are closer to the horizon.
For an outgoing particle, Figure 7 describes the opposite
situation. Particles with larger ΔX are created further away
from the horizon, and thus take less time to propagate to
some fixed distant point. Therefore they are generated later.

5 CONCLUSION AND OUTLOOK

We studied here the classical evolution of a collapsing shell in the
Schwarzschild coordinates. A careful examination of the relative
flow of the proper and Schwarzschild times during the motion of
a collapsing shell revealed interesting subtleties and we were
forced to interpret the black hole formation as a highly non-local
quantum process in which a shell/anti-shell pair is created within
the incipient horizon, thus canceling out the original collapsing
shell exactly at the horizon. We also studied quantum fields in the
black hole background, which revealed similar non-local effects.
We found that the outgoing member of the Hawking pair very
quickly becomes entangled with the black hole geometry instead
of its partner, which is in contrast with the usual assumption that
the Hawking pair is maximally entangled according to the local
geometry near the horizon. Also, an infalling wave affects the
black hole geometry even before it crosses the horizon. Finally, we
found that particle takes a finite amount of time to tunnel in/from
the black hole horizon, which avoids infinite blue and redshifts
associated with the processes happening exactly at the horizon.
These findings strongly support the picture of a black hole as a
macroscopic quantum object.

FIGURE 6 | A falling particle tunnels through the horizon at moment
tintunnel . The tunneling time depends on the wave packet’s momentum
uncertainty, ΔPX. The momentum uncertainty of the solid line, dashed line,
dotted line and dashed-dotted line are ΔPX = 0.01, 0.05, 0.02, 0.1
respectively. If the particle is close to the horizon, it can tunnel easier through
the horizon. If the momentum uncertainty is smaller, the tunneling is, again,
easier.

FIGURE 7 | A particle escapes from the horizon at moment touttunnel . The
tunneling time depends on the wave packet’s momentum uncertainty, ΔPX.
The momentum uncertainty of the solid line, dashed line, dotted line and
dashed-dotted line are ΔPX = 0.01, 0.05, 0.02, 0.1 respectively. The
larger ΔX wavepackets are generated farther away from the horizon, so they
can be generated later.
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At the end, we would like to emphasis some subtle issues. In
Section 2 we analyzed the classical evolution of a collapsing shell
in the Schwarzschild coordinates. The black hole has not been
formed yet. The horizon we talk about is the incipient horizon
that will be formed at t→∞. Using Eq. 6 we found a trajectory of
the shell in terms of the Schwarzschild time. This can be clearly
seen in Figures 1, 2. The shell/antishell pair is created when the
original collapsing shell is still outside of its own Schwarzschild
radius. More specifically, dt/dτ becomes negative for 2M > R > μ2/
2M. But R in this formula refers to the radius of the created shell/
antishell pair, not of the original collapsing shell. The radius of the
original collapsing shell is still greater than 2M at that point of
creation. The interior of the collapsing shell is Minkowski, so the
pair of shells is created inside Minkowski space. Then the
evolution continues. As Figure 1 shows, the space between the
newly created shells is Schwarzschild. As the outer shell grows
and inner one shrinks, the spacetime is getting converted into
Schwarzschild. At the end of the process when the original
collapsing shell reaches its own Schwarzschild radius (after
infinite amount of time), the whole spacetime becomes
Schwarzschild, with timelike time in the exterior and spacelike
in the interior.

Thus, our analysis actually clarifies how the whole space-
time gets converted into Schwarzschild as the black hole is
formed. However, we still have to address an apparent
discrepancy with an infalling observer who registers an
uneventful shrinking of the collapsing shell all the way
down to zero radius. As we argued, a static outside observer
would notice a shell/antishell creation. But imagine that we
place an observer inside the original collapsing shell. Will he
get hit by a newly created shell/anti shell pair at some moment?
Yes, but that will happen simultaneously with the original
collapsing shell arriving at his position. The antishell
annihilates the original shell right at the moment of its own
creation, and the shell continues its collapse toward the center.
This indicates that in Schwarzschild coordinates the events of
creation and annihilation are separated, while in infalling
coordinates they are merged. This reconciles two seemingly
different pictures.

In Section 3 we considered a black hole which is already
formed. However, there we use Kruskal-Szekeres coordinates to
describe the full spacetime (including the interior). Then we
considered incoming (toward the horizon) and outgoing (from
the horizon) waves. We mapped the Kruskal coordinates into the
Schwarzschild time coordinate (because the observer is located
there). As it can be seen from Figures 4, 5, the whole evolution is
given in terms of the Schwarzschild time.

Finally, when we consider tunneling through the horizon, we
use the uncertainty relation in Kruskal-Szekeres coordinates,
precisely because of the singularity of the Schwarzschild
coordinates there.

We note that work in [12–24] also argues that black holes are
macroscopic quantum objects, though the arguments are
different. In [12–24], a black hole is represented by a coherent
multiparticle quantum state. In this case the geometry inside a
black hole cannot be described by the Kruskal-Szekeres
coordinates, so our analysis cannot apply to such description.
In [12–24], a classical description of the black hole fails after it
emits about one half of its mass, while we argue that emission (or
absorption) of even a single particle requires a black hole to be
considered as a fully quantum object. In that sense, our
arguments are closer to a GR = QM proposal [25, 26]. In
Section 3, when we consider an outgoing wave, we see that a
single outgoing wave in Kruskal-Szekeres coordinates
corresponds to an outgoing positive energy wave and an
ingoing negative energy wave which are created exactly at the
horizon in Schwarzschild coordinates. We track both of these
trajectories and infer that the ingoing wave hits the singularity
when the outgoing wave reaches r = 1.28 in horizon units. At that
point an outgoing wave losses the partner it was entangled with,
and the only remaining option is that it becomes entangled with
the whole geometry of a black hole. Assuming that waves travel
with the speed of light, this happens very quickly for any
reasonable black hole.

As a concluding remark, it is perhaps possible that what we are
describing here are some peculiar coordinate artifacts. However,
independent pieces of evidence we presented here coming from
gravitational collapse and pre-existing black holes match nicely
together and point in the same direction.
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APPENDIX:

The relation shown in Eq. 4 in the main text is crucial for our
discussion. Its correct derivation involves some easily overlooked
details, and so we go over them here.

We consider the gravitational collapse of a massive shell of radius
R(t). The metric inside the shell, for r < R(t), is Minkowski-like

ds2 � −dT2 + dr2 + r2dΩ2, (21)
while outside, for r > R(t), is Schwarzschild-like

ds2 � − 1 − 2M
r

( )dt2 + 1 − 2M
r

( )−1
dr2 + r2, dΩ2, (22)

where for simplicity we set G = 1.
The motion of the shell can be found in [2], Problems 21.10

and 21.11.
The presence of the mass shell causes a discontinuity in the

extrinsic curvature tensor, Kij. The discontinuity at the shell,
denoted by the square brackets, can be found to be

Kj
i[ ] � 8πσ ujui + 1

2
δji( ), (23)

where σ is the mass density of the shell such that 4πR2σ = μ is the
rest mass of the shell, while ui is the 4-velocity of the shell.
Considering only the radial motion of the shell we can find

Kθθ[ ] � 4πgθθσ � 4πR2σ � μ. (24)
We can also find the discontinuity by evaluating the extrinsic

curvature tensor inside and outside the shell and by taking the
difference,

Kj
i[ ] � Kj out( )

i −Kj in( )
i . (25)

Since

Kθθ � −nθ;θ � niΓiθθ � −1
2
nrgθθ, r � −rnr, (26)

we have

Kθθ[ ] � −r nr+ − nr−( ) � μ, (27)
where nr+ and nr− are the radial components of the normal vector
evaluated outside and inside the shell. We now impose niu

i = 0
and nin

i = uiu
i = 1, which exterior to the shell gives

n+r u
r + n+t u

t � 0, (28)
1 − 2M

r
( ) ut( )2 − 1 − 2M

r
( )−1

ur( )2 � 1, (29)

− 1 − 2M
r

( )−1
n+t( )2 + 1 − 2M

r
( ) n+r( )2 � 1. (30)

From here we can eliminate n+t and ut to obtain

n+r � ±
1 + ur( )2/ 1 − 2M

r( )
1 − 2M

r( )
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
1/2

. (31)

Note that both ± signs are possible. On the shell we have r = R(τ)
and ur � dR/dτ ≡ _R, where τ is the proper time of an observer
sitting on the shell. Thus,

nr+ � ± 1 − 2M
R

+ _R
2( )1/2

. (32)
For R > 2M the quantity under the square root never crosses

zero, and so nr+ is positive. But for R < 2M that may change, and
we will discuss that soon. Similarly,

nr− � 1 + _R
2( )1/2

, (33)

becauseM = 0 inside the shell. There is no ± in this case, because
1 + _R

2
never passes through zero, so nr− does not change sign

during the collapse. From Eq. 27, we get

μ � −R nr+ − nr−( ) � −R ±

�����������
1 − 2M

R
+ _R

2
√

−
�����
1 + _R

2
√( ). (34)

Since nr+ can be positive or negative we may remove this sign
ambiguity by reorganizing this equation as�����

1 + _R
2

√
− μ

R
� ±

�����������
1 − 2M

R
+ _R

2
√

. (35)

If we square Eq. 35, we can express M as

M � μ

�����
1 + _R

2
√

− μ2

2R
. (36)

The interpretation of the quantity M is straightforward. It is a
conserved quantity, and it just represents the total relativistic
energy of the shell. From this equation, among other things, we
can get that the shell shrinks to R = 0 in finite proper time.

A subtle issue arises when we express _R from Eq. 36 and
substitute it back in nr+ (obtained from Eqs 27, 33. We get

nr+ � M

μ
− μ

2R
. (37)

From this expression we see that nr+ varies smoothly as R
changes, as it should since there are no discontinuities in the
process of collapse. To reconcile Eqs 32, 37 we have to separate
nr+ in two regions when expressed in terms of _R. Since the normal
vector nr+ is positive for R> μ2

2M and negative for R< μ2

2M (as seen
from Eq. 37), nr+ can be expressed as

nr+ �
1 − 2M

R
+ _R

2( )1/2

, if R> μ2

2M

− 1 − 2M
R

+ _R
2( )1/2

, if R< μ2

2M
.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (38)

From Eq. 28, we see that if n+r changes sign then ut has to change
sign too, since ur and n+t do not change sign at R = 2μ2/M. We thus
conclude

ut � dt

dτ
�

1 − 2M
R

+ _R
2( )1/2

1 − 2M
R

, if R> μ2

2M

−
1 − 2M

R
+ _R

2( )1/2

1 − 2M
R

, if R< μ2

2M
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(39)

which is at the core of the highly non-trivial behavior we
discussed in this paper.
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