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Kinematic algebras can be realised on geometric spaces and constrain the physical
models that can live on these spaces. Different types of kinematic algebras exist and we
consider the interplay of these algebras for non-relativistic limits of a relativistic system,
including both the Galilei and the Carroll limit. We develop a framework that captures
systematically the corrections to the strict non-relativistic limit by introducing new infinite-
dimensional algebras, with emphasis on the Carroll case. One of our results is to highlight a
new type of duality between Galilei and Carroll limits that extends to corrections as well. We
realise these algebras in terms of particle models. Other applications include curvature
corrections and particles in a background electro-magnetic field.

Keywords: free Lie algebras, Carrollian dynamics, Kac-Moody algebras, particle actions, non-relativistic
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1 INTRODUCTION

Relativistic and non-relativistic systems are usually distinguished by their kinematic algebras.
Classifications of possible kinematic algebras (for point particles) have been obtained in four
space-time dimensions in Refs. 1, 2 and in different dimensions for instance in Refs. 3, 4. The
Poincaré algebra constrains relativistic systems in flat space, while non-relativistic systems of
particles are subjected for example to Galilean or Carrollian algebras.1 In a given system, there
is typically a physical quantity that can be combined with the speed of light c to form a dimensionless
quantity whose limit to zero (or to infinity) defines the non-relativistic limit of the system. The
prototypical example is the speed of a particle v and then the dimensionless quantity can be taken as
v/c. In gravitational systems there is additionally the Newton constant to form dimensionless
parameters and multiple limits can be considered in such cases [5, 6]. Similarly, for extended objects
one can consider non-relativistic limits, but the extended nature of the world-volume allows for a
variety of different limits [7–10].

The kinematic algebras do not contain the dimensionful quantity of a given physical system but
only fundamental constants, for example c in the case of the Poincaré algebra although it is usually
not explicit since it is absorbed in the definition of the generators. One can still consider non-
relativistic limits of the algebras by formally scaling the parameters. This process, first performed for
obtaining the Galilei algebra from the Poincaré algebra, is known as a (Inönü–Wigner) contraction of
a Lie algebra [11]. The limit c→∞ considered there implicitly assumes that all particle velocities that
can arise are small compared to the speed of light. The similar contraction c → 0 giving the Carroll
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algebra [12, 13] makes the assumption that all particle velocities
are large compared to the speed of light. We shall review these
cases in detail in Section 2.1.

The non-relativistic symmetries obtained by Inönü–Wigner
contractions are the strict limits of the scaling parameter, e.g.,
c→∞ or c→ 0. However, the inclusion of relativistic corrections is
desirable for many systems such as their contributions to the fine
structure of atoms. While many relativistic equations can be
expanded in the small parameters, the resulting equations do
not exhibit symmetries beyond the contracted algebra. It is one
of the aims of this contribution to explain how to formulate a
framework of kinematic algebras for these corrections. The main
method we will use is to enlarge the space on which the symmetry
acts and thereby allow for extensions of the contracted algebra.

One can construct systematically kinematic algebras that
include perturbative corrections in a parameter (like 1/c) by
deforming the contracted algebra, in this way performing
something like the inverse of a Lie algebra contraction. This
process adds new generators to the original algebra and thus
enlarges it. Considering all-order expansions in the small
parameter we obtain infinite-dimensional algebras and there
are different ways of arriving at them.

One is to view the deformation problem as a cohomology
problem such that one is asking for the most general non-trivial
commutator of generators that commute in the contracted
algebra. For instance, in the Galilei algebra one has famously
that spatial translations Pi and Galilean boosts Bj commute while
their most general commutator would be [Pi, Bj] � Zi,j + 1

2Bij,
containing both a symmetric (Zi,j = Zj,i) and an anti-symmetric
(Bij = −Bji) part and all these generators can be considered as
new.2 Adding these generators to the original algebra one can
repeat the question of what is now the most general commutator
of the elements of this new algebra, for instance of Pi with Bjk, and
introduce new elements in this way. The algebra obtained in this
way typically involves a free Lie algebra where all possible
commutators are present; in this case the Galilean free Lie
algebra of Ref. 16.3 Free Lie algebras are characterised by
containing all possible commutators of a basic set of elements
such that the Jacobi identity is satisfied. They are infinite-
dimensional and possess many interesting quotient Lie
algebras whose physical interpretation can differ as we shall
show in many examples.

A second way of obtaining a systematic perturbative extension
of a kinematic algebra is the method of Lie algebra expansion
[17–22]. This method can be described in its simplest form by
starting with an algebra and tensoring it with a commutative
semigroup. An example of a commutative semigroup is given by
S(N)
E � {λn | 0≤ n≤N} ∪ {0} such that λnλm = λm+n for m + n ≤ N
and the product is zero otherwise. Clearly, there is a relation of

this structure to the expansion up to orderN in a small parameter
λ, thinking of 0 as O(λN+1). Typically, one uses refinements of
this construction that we shall discuss in more detail in the main
body of the paper and a full perturbative treatment including all
terms up to N → ∞ then relies on formal power series in λ.

The two constructions are not unrelated. This can be seen in
the Galilean example with free Lie algebra commutator [Pi, Bj] �
Zi,j + 1

2Bij as follows. Maintaining spatial rotation invariance, we
can separate out the trace of the symmetric generator Z = δijZi,j and
from the structure of the Poincaré algebra we would expect this
term to be related to temporal relativistic translation P0. However,
it is more useful to consider Z as the first relativistic correction to
the non-relativistic Hamiltonian and thus as something of order
c−2. The relation to a Lie algebra expansion is thus achieved by
considering Z as P0 ⊗ c−2 and Pi and Bi as Pi ⊗ c−1 andMi0 ⊗ c−1. If
one quotients the free Lie algebra by the tracefree part ofZi,j and the
anti-symmetric Bij, the commutator [Pi, Bj] = δijZ agrees exactly
with that of the expanded algebra to order c−2.4 Therefore the Lie
algebra expansion is a special case of a free Lie algebra construction.
The Carrollian limit is obtained by exchanging P0↔ Pi [10, 24], see
the next section for more details. We generalise this duality to the
infinite-dimensional case where corrections are included in the
kinematic algebra.

There is furthermore a connection of the two constructions to
(Borel subalgebras of) affine Kac–Moody algebras. Affine
Kac–Moody algebras are obtained by tensoring a finite-
dimensional algebra g with Laurent polynomial rings in a
variable, say λ, possibly additionally twisted by an outer
automorphism. Restricting to ordinary polynomials rather than
Laurent polynomials one describes the subalgebra of non-negative
levels of the Kac–Moody algebra and clearly this agrees with a
specific Lie algebra expansion of g. At the same time, the
subalgebra of positive levels is the quotient algebra of a free Lie
algebra [25], so that also the viewpoint of the free Lie algebra enters
in this relation. We shall describe this connection in more detail.

There are many variations of these constructions one can
consider, depending on the algebra one starts with and the precise
expansion or quotient of a free Lie algebra one takes. The physical
interpretation of the parameter λ depends on the context one
considers and is by no means restricted to non-relativistic limits.
It can also be viewed as a curvature parameter when one wants to
describe deviations from flat space isometries as we shall review.
Another arena is where higher powers of λ correspond to more
and more complicated electro-magnetic backgrounds in
Minkowski space, where the kinematic algebra becomes a
generalisation of the Maxwell algebra [26–29].

The abovemethods provide a plethora of kinematic algebras of
finite or even infinite dimension. Our next aim will be to describe
a space on which they can act in the same way that the Poincaré
algebra acts on flat Minkowski space. Such a space is not hard to
find using a non-linear realisation [30–35] approach with a
suitable coset. It is of higher dimension than usual space-time
and we present many examples with different physical

2The trace δijZi,j is proportional to the Bargmann extension associated with massive
representations of the Galilei algebra. The general symmetric Zi,j can be thought of
as the anisotropic mass mij of a particle [14, 15].
3In our construction, it will be the semi-direct product of a manifest covariance
algebra (e.g., spatial rotations) with a free Lie algebra. This is why we only say
“includes”.

4The algebra with [Pi, Bj] = δijZ is known as the Bargmann central extension of the
Galilei algebra [23].
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interpretations. Once a generalised space is defined we strive to
probe it using a physical model. The simplest instance is that of a
free particle moving in it and there are canonical constructions of
associated particle models that we shall go through.5 One could
also consider using higher-dimensional objects as probes but we
shall not pursue this here.

As we shall demonstrate, these particle models give rise
systematically to relativistic (or similar) corrections to the
dynamics associated with the truncated algebra. Particular
emphasis will be put on the case of Carroll particles, both of
ordinary [38, 39] and of tachyonic [40] type. The reason for this is
that they have featured prominently in recent studies, including
applications to cosmology [40–44]. Formally, the Carroll limit is
also related to the Belinsky–Khalatnikov–Lifshitz limit [45, 46]
where temporal derivatives dominate over spatial derivatives zt≫
czx and so formally c → 0. We shall also exhibit a new type of
duality between (corrections to) Galilei and Carroll particle
actions in Section 4.3.

The structure of this contribution is as follows.We first explain
the basic algebraic constructions of kinematic algebras and their
interrelations in Section 2. Then we present generalised space-
times on which the kinematic algebras can act in Section 3. To
probe the set-up we then consider free particle actions in Section
4 where we deduce non-relativistic and similar corrections. Some
concluding comments are given in Section 5.

2 ALGEBRAIC CONSTRUCTIONS

We present various methods for constructing kinematic algebras
and how they are related to one another.

2.1 Contractions and Extensions of
Kinematic Algebras
As an illustrative starting point we choose the Poincaré algebra in
D = d + 1 space-time dimensions

Mab,Mcd[ ] � ηbcMad − ηacMbd − ηbdMac + ηadMbc ,
Mab, Pc[ ] � ηbcPa − ηacPb,
Pa, Pb[ ] � 0 ,

(2.1)

where small Roman indices from the beginning of the alphabet
are fundamental so(1, d) indices, e.g., a = 0, 1, . . . , d, and ηab is
the flat Minkowski metric of signature (− + +/ +). When
separating the time and space indices according to a = (0, i)
with i = 1, . . . , d, we let [12]

Jij � Mij , Bi � λ1/2Mi0 ,

Ti � λ1/2Pi , H � P0

(2.2)

which is an invertible change of basis for any λ > 0 and the algebra
becomes

Jij, Jkl[ ] � δjkJil − δijJik − δjlJik + δilJjk ,

Jij, Bk[ ] � δjkBi − δikBj ,

Jij, Tk[ ] � δjkTi − δikTj ,

Jij, H[ ] � 0 ,

Bi, Bj[ ] � λJij ,

Bi, Tj[ ] � −λδijH ,
Bi,H[ ] � −Ti ,
Ti, Tj[ ] � Ti,H[ ] � 0.

(2.3)

We see that we can take the limit λ → 0 smoothly and
obtain a new algebra in that limit. This so-called contracted
algebra is the non-relativistic Galilei algebra (c → ∞) where
now Galilean boosts commute among themselves and with
translations. This is the most famous example of an
Inönü–Wigner contraction of a Lie algebra [11]. As is
usual, the contracted algebra is no longer isomorphic to
the algebra with λ > 0. The square root in Eq. 2.2 arises
since we think of λ as 1/c2.6 For future reference we write the
resulting contracted Galilei algebra

Jij, Jkl[ ] � δjkJil − δijJik − δjlJik + δilJjk ,

Jij, Bk[ ] � δjkBi − δikBj ,

Jij, Tk[ ] � δjkTi − δikTj ,

Jij, H[ ] � 0 ,

Bi, Bj[ ] � 0 ,

Bi, Tj[ ] � 0 ,
Bi, H[ ] � −Ti ,
Ti, Tj[ ] � Ti,H[ ] � 0.

(2.4)

An alternative contraction of the algebra is obtained by
formally interchanging the roles of time and space directions
for the translation generators, i.e., letting [12]

Jij � Mij , Ki � λ1/2Mi0 ,
Ti � Pi , K � λ1/2P0

(2.5)

and contracting again λ → 0. This leads to the Carroll algebra

Jij, Jkl[ ] � δjkJil − δijJik − δjlJik + δilJjk ,

Jij, Kk[ ] � δjkKi − δikKj ,

Jij, Tk[ ] � δjkTi − δikTj ,

Jij, K[ ] � 0 ,

Ki, Kj[ ] � 0 ,

Ki, Tj[ ] � −δijK ,
Ki, K[ ] � 0 ,
Ti, Tj[ ] � Ti, K[ ] � 0.

(2.6)

This contraction of the Poincaré algebra is also known as
the Carroll limit in which the speed of light tends to zero (c→ 0).

5In the case of gravity, 1/c2 corrections have been considered already for example in
Refs. 36 and 37.

6The same contraction can also be achieved when replacing the second line of Eq.
2.2 by Ti = Pi and H = λ−1/2P0. The two choices are related by an overall scaling of
the translation generators Pa↔ λ1/2Pa in the Poincaré algebra which, for λ > 0 is an
invertible basis redefinition. For λ1/2 = c−1 this includes changing the dimension of
the translation generators.
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We see from Eqs 2.2 and 2.5 that there is a duality between
the Galilean and the Carrollian contraction that simply
exchanges the role of space and time translations in the
contraction. Thinking of the time direction as the
longitudinal direction of the world-line of a (massive)
particle and the space directions as the transverse
directions, makes it clear that a similar duality between
longitudinal and transverse directions will be present for
contractions related to extended objects as was discussed
in more detail in Ref. 10.

Let us now formalise the contraction process. We start from
an algebra g with generators tα and structures constants fαβ

γ.
Then for each λ > 0 we define a Lie algebra isomorphism
cλ: g → gλ to another algebra gλ. If the limit λ → 0 is well-
defined, we call the limiting algebra g0 the contracted algebra.
Note that at λ = 0 we no longer necessarily have a Lie algebra
isomorphism. In the examples above, the isomorphisms for λ >
0 were given in Eqs 2.2 and 2.5, respectively. Contractions
preserve the number of generators but the resulting algebra is
not necessarily isomorphic to the starting one. Moreover, it is
not generally possible to reverse the contraction process
directly.

One approach to undoing the contraction perturbatively
requires the knowledge of the original algebra g. Writing its
generators multiplied by a formal power series in λ

tα → ∑
n≥0

tα ⊗ λn0 α( )+n �∑
n≥0

t n( )
α , (2.7)

where the offset n0(α) can depend on the generator, we
construct an infinite-dimensional algebra of the generators
t(n)α . We refer to the generator t(n)α as “level n” and think of it
as the nth order perturbative expansion in the parameter λ.
The offset should be chosen in such a way that the
commutators of level m with level n only contain
generators of level ≥m + n, where the commutator is
defined in using the associative product of power series
together with the Lie bracket on g. The lowest order
commutators involving only the t(0)α then correspond to
the contracted algebra, but the higher terms capture the
perturbative expansion of the original of the original
algebra g. We denote by g(N) the algebra obtained by
keeping terms up to level N. In this way, g(0) � g0, the
contraction of g. When we keep all levels, we shall use the
notation g(∞).7

Let us exemplify this in the case of the Galilei algebra Eq. 2.4.
We define for n ≥ 0

J n( )
ij � Mij ⊗ λn , B n( )

i � Mi0 ⊗ λ1/2+n ,
T n( )
i � Pi ⊗ λ1/2+n , H n( ) � P0 ⊗ λn,

(2.8)

where the offsets are taken in accordance with Eq. 2.2. The
associated Lie algebra is

J m( )
ij , J n( )

kl[ ] � δjkJ
m+n( )
il − δijJ

m+n( )
ik − δjlJ

m+n( )
ik + δilJ

m+n( )
jk ,

J m( )
ij , B n( )

k[ ] � δjkB
m+n( )
i − δikB

m+n( )
j ,

J m( )
ij , T n( )

k[ ] � δjkT
m+n( )

i − δikT
m+n( )
j ,

J m( )
ij , H n( )[ ] � 0 ,

B m( )
i , B n( )

j[ ] � J m+n+1( )
ij ,

B m( )
i , T n( )

j[ ] � −δijH m+n+1( ) ,
B m( )
i , H n( )[ ] � −T m+n( )

i ,

T m( )
i , T n( )

j[ ] � T m( )
i , H n( )[ ] � 0.

(2.9)

Since all commutators of generators at levels m and n
generate only terms of level at leastm + n, we can consistently
quotient out all generators above a fixed level N. This leads to
a finite-dimensional algebra. Retaining only the generators of
level 0 leads to the Galilei algebra that is obtained by
contraction. Keeping all generators up to level N then
gives a perturbative approximation to the Poincaré algebra
up to that order. The algebra Eq. 2.9 was given in Ref. 48, see
also Refs. 49–52.

Repeating the same construction for the Carroll contraction
Eq. 2.5 one can start with

J n( )
ij � Mij ⊗ λn , K n( )

i � Mi0 ⊗ λ1/2+n ,
T n( )
i � Pi ⊗ λn , K n( ) � P0 ⊗ λ1/2+n

(2.10)

We note that, when comparing Eq. 2.8 for the
expanded Galilei algebra with Eq. 2.10 for the Carroll
algebra, there is a duality between the two algebras
where the λ1/2 is changed from P0 to Pi. This is a
generalisation of the type of duality that has been noted
before in Refs. 10, 24, 53.

The definition Eq. 2.10 leads to the infinite-dimensional
algebra

J m( )
ij , J n( )

kl[ ] � δjkJ
m+n( )

il − δijJ
m+n( )
ik − δjlJ

m+n( )
ik + δilJ

m+n( )
jk ,

J m( )
ij , K n( )

k[ ] � δjkK
m+n( )
i − δikK

m+n( )
j ,

J m( )
ij , T n( )

k[ ] � δjkT
m+n( )
i − δikT

m+n( )
j ,

J m( )
ij , K n( )[ ] � 0 , K m( )

i , K n( )
j[ ] � J m+n+1( )

ij ,

K m( )
i , T n( )

j[ ] � −δijK m+n( ) ,

K m( )
i , K n( )[ ] � −T m+n+1( )

i ,

T m( )
i , T n( )

j[ ] � T m( )
i , K n( )[ ] � 0.

(2.11)

We note that comparing this formula to Eq. 2.9, there are
subtle but important differences in the shifts of the indices by + 1
on the right-hand sides which are due to the placements of λ1/2 in
the definitions of the algebra, and so ultimately to the physical
meaning of the contractions.

The above procedure can also be viewed as a variant of
the method of Lie algebra expansions that was originally
introduced in Refs. 17–22. For a Lie algebra expansion
in its formulation given in Ref. 20 one requires an
abelian semi-group S whose elements we call λi and the
S-expanded Lie algebra g × S has a basis tα ⊗ λi and the
Lie bracket

7In the construction, we are assuming for simplicity that we have a basis of g in
which the contraction works by simply rescaling the basis generators. There are
also contractions where this assumption is not satisfied, see for example the
contraction of Poincaré ⊕ gl(1) to the Bargmann algebra in Ref. 47.
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tα ⊗ λi, tβ ⊗ λj[ ] � fγ
αβtγ ⊗ λiλj (2.12)

and commutativity of the product on S ensures the Jacobi
identity of the expanded algebra. A simple example of a semi-group
is given by S(N)

E � {λ0, . . . , λN, λN+1} with abelian product

λiλj � λi+j if i + j≤N
λN+1 otherwise

{ (2.13)

The element λN+1 serves as a substitute for zero in the
multiplication. Tensoring this semi-group with the real
numbers corresponds to taking the quotient of the
polynomial rings R[λ]/(λN+1R[λ]), i.e., working
perturbatively in λ up to order N. In this identification we
have simply λi = λi, i.e., the ith basis of the semi-group should be
identified with the ith power of the expansion parameter λ. One
can also take the limit N → ∞ and work with formal power
series.

A more refined version of the Lie algebra expansion method
can be obtained when the original Lie algebra has a
decomposition. We here restrict to the case when8

g�V0 ⊕V1 with V0,V0[ ]⊂V0 , V0,V1[ ]⊂V1 , V1,V1[ ]⊂V0.

(2.14)
(We use different letters here for the graded pieces in order

to avoid confusion with the contracted algebra g0 studied

above.) A resonant expansion of g with S(N)
E is then given

by the space

⊕N
i�0

Vi mod 2 ⊗ λi (2.15)

with the obvious Lie brackets. It is this refined version of a Lie
algebra expansion that makes direct contact with Eq. 2.7. A
simple example of the refined expansion would be to take the
Poincaré algebra Eq. 2.1 and write it as

iso 1, d( ) � 〈Mij, P0〉︸����︷︷����︸
V0

⊕ 〈M0i, Pi〉︸����︷︷����︸
V1

. (2.16)

The expansion with S(2)E then would have the basis elements

Mij ⊗ λ0 , P0 ⊗ λ0 , M0i ⊗ λ1 , Pi ⊗ λ1 , Mij ⊗ λ2 , P0 ⊗ λ2

(2.17)
with new non-trivial commutators

M0i ⊗ λ1,M0j ⊗ λ1[ ] � Mij ⊗ λ2 ,

M0i ⊗ λ1, Pj ⊗ λ1[ ] � δijP0 ⊗ λ2 ,

Pi ⊗ λ1, Pj ⊗ λ1[ ] � 0

(2.18)

in the expanded algebra.
The algebra obtained by expanding with S(1)E gives the Galilei

algebra Eq. 2.4. The algebra above is a quotient of Eq. 2.9. A

more general discussion of the expansion method can be found
in Ref. 20. We shall apply this method to several more cases in
this paper.

2.2 Free Algebras, Cohomology and
Quotients
We now turn to the discussion of free Lie algebras. General
references for this are Refs. 54 and 55 and we follow the
exposition in Refs. 16 and 29.

A free Lie algebra on a (finite) set of D = d + 1 generators

f1 � 〈Pa | a � 0, 1, . . . d〉 (2.19)
is obtained by considering all possible multi-commutators of the
generators Pa only subject to anti-symmetry and the Jacobi
identity. There is a natural grading of the free Lie algebra by
the number of times the generators Pa appear in the multi-
commutator.9 The infinite-dimensional free Lie algebra f is
therefore

f �⊕∞
ℓ�1

f
ℓ

(2.20)

with for example

f2 � 〈 Pa, Pb[ ] | a, b � 0, 1, . . . , d〉 � ∧2f1 (2.21)
being of dimension D(D−1)

2 because of the anti-symmetry of
the commutator. We use the symbol ∧kV to denote the kth
anti-symmetric tensor power of a vector space V. The
element [Pa, Pb] is an independent element in the free Lie
algebra.

The full structure of f can be summarised elegantly by a
generating series in a formal parameter t as [56, 57]

⊕∞
ℓ�1
⊕∞
ℓ�1

−1( )ktkℓ∧kf
ℓ[ ] � 1 − tf1 (2.22)

that leads for example to

f2 � ∧2f1 ,
f3 � f1 ⊗ f2 ⊖ ∧3f1 ,
f3 � f1 ⊗ f3 ⊕ ∧2f2( ) ⊖ f2 ⊗ ∧2f1 ⊕ ∧4f2.

(2.23)

With ⊖ we mean the removal of a vector space from the tensor
product, so that for f3 the formula states that one takes all
commutators of Pa from f1 with the anti-symmetric [Pb, Pc]
from f2 but has to remove the completely anti-symmetric Jacobi
identity in all three elements.

Free Lie algebras as defined above are graded consistently with
Eq. 2.20, i.e., they satisfy

f
ℓ
, fm[ ] ⊂ f

ℓ+m. (2.24)
The elements in fℓ can be represented by Young diagrams with

ℓ boxes that represent the irreducible action of the symmetric

8More general cases can be found in Refs. 20 and 21.

9In later applications we shall also consider a refined doubleZ-grading (ℓ,m) where
the second label will be used to distinguish among the elements within f1, see for
instance Section 2.2.2.
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group SD on the elements in a set of multicommutator. In this
way we write

The free Lie algebra can also be viewed as a successive
extension of the real commutative Lie algebra f1 using the
method of Chevalley–Eilenberg Lie algebra cohomology [29].
The second cohomology of f1 with values in R is non-trivial and
of dimension D(D−1)

2 and therefore the Lie algebra f1 can be
extended by introducing anti-symmetric generators Zab = Z[ab]
with the new commutator

Pa, Pb[ ] � Zab, (2.26)
but the Zab are central in this extended algebra. Thus one has
obtained a graded Lie algebra f1 ⊕ f2 by considering the
cohomology of f1. The process can now be repeated by
studying the cohomology of f1 ⊕ f2 which leads to f1 ⊕ f2 ⊕ f3
and so on. In this way, the free Lie algebra f is the maximal
cohomological extension of f1.

As suggested by the notation (Eq. 2.19), we wish to think of
the elements of f1 for instance as the translation generators of some
kinematic algebra. Typically, there is also a set of rotation generators,
such as the Lorentz generators Mab, under which the translation
generators form amodule.We call the space of the rotation generators
f0 as then we have a graded structure

f0 ⊕ f1 (2.27)
to begin with. As a Lie algebra this is a semi-direct sum since f0
acts on its representation space f1. The free Lie algebra based on f1
then inherits an action of f0 on each fℓ and the expressions in Eq.
2.23 can be viewed as products and sums of f0 modules.
Extensions to super-algebras are discussed for example in Refs.
56, 57.

Free Lie algebras f admit many different quotients. We list a
few important and representative examples and consider the
case when there are also rotations f0 acting on the algebra, see
also Ref. 29.

1. Level truncation: Due to the grading (Eq. 2.24), the space

iℓ � ⊕
m>ℓ

fm (2.28)

is a Lie algebra ideal inside f for any integer ℓ > 0. The
corresponding quotient

q
ℓ
� f/iℓ �⊕ℓ

m�0
fm (2.29)

consists of all elements up to level ℓ (as a vector space) and
commutators going beyond the truncation are set to zero.

2. Row truncation: Referring back to the representation (Eq. 2.25)
of elements of f as Young diagrams, we can define the space

sr � 〈Young tableauxwithmore than r rows〉, (2.30)

which is an ideal of f since commutation only adds boxes but
never removes them. The corresponding quotient rr � f/sr then
consists of all elements of f with at most r rows in their Young
diagram.

3. Derivative truncation: The row truncation above can be
refined by considering the ideal

u �〈 Young tableauxwithmore than 2 rows
ormore than 2 boxes in the second row〉. (2.31)

The corresponding quotient

d � f/u (2.32)
then consists only of those generators of f whose Young diagrams
have the shape

with an arbitrary number of boxes in the first row. Why we refer
to this quotient as the derivative truncation will become clear in
Section 4.6 below.

Yet another common quotient is described by Serre relations
and this arises for Kac–Moody algebras [25, 58] as we shall review
in Section 2.3 below.

2.2.1 Maxwell Free Lie algebra
Let us illustrate the free Lie algebra construction in the simplest
case where f0 is the Lorentz algebra and f1 are the translations Pa of
the Poincaré algebra (Eq. 2.1). In this case, we obtain the algebra

Pa, Pb[ ] � Zab , Zab, Pc[ ] � Yab,c, (2.34)
where Zab = Z[ab] is a basis of f2 and Yab,c a basis of f3. The
symmetries of Yab,c are those of the (2,1) hook:

Yab,c � Y ab[ ],c , Y ab,c[ ] � 0. (2.35)
Under the Lorentz generators Mab all elements transform as

tensors in the way that their indices dictate.
The antisymmetric element Zab arose first in studies of the

extension of the Poincaré algebra in the presence of a
constant electro-magnetic field [1, 26, 27] when one co-
rotates the constant field Fab under Lorentz [27, 28]. The
extension including the generators Yab,c was also considered
in Ref. 28 where it was linked to linearly varying electro-
magnetic backgrounds: Fab ~ Yab,cx

c (in Cartesian
coordinates) and the Young irreducibility (Eq. 2.35) is
equivalent to the Bianchi identity z[cFab] ~ Y[ab,c] � 0. The
extension to the full free Lie algebra was considered in Ref. 29,
see also Section 4.6 below for a corresponding particle model.

We note that one can also consider non-relativistic limits of
the relativistic Maxwell algebra and there are different limits that
arise depending on the scaling of the electric and magnetic fields.
The corresponding algebras can be called electric, magnetic and
pulse Maxwell algebras [16, 59].
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2.2.2 Galilean Free Lie algebra
A second instance of the free Lie algebra construction can be
obtained by starting from the Galilei algebra (Eq. 2.4) and
letting [16]

f0 � 〈Jij〉 , f1 � 〈Bi,H〉. (2.36)
Note that this assignment of generators to levels is different

from that that would be inherited directly from the Poincaré case in
the previous section. However, this assignment is consistent with
the grading due to the contracted commutation relations (Eq. 2.4).
A consequence of Eq. 2.36 is that the translation generator Ti
occurs at level two in the free Lie algebra via the commutator

Ti � H,Bi[ ]. (2.37)
The free Lie algebra generated from Eq. 2.36 was called the

magnetic Galilei algebra in Ref. 16 and it is the only case we
consider here. Due to the presence of the rotation-invariant H
inside f1, the structure of Young diagrams gets a bit more
involved. The resulting structure actually admits a double-
grading by assigning the level (ℓ, m) = (0, 0) to the spatial
rotations Jij, the level (1, 0) to the Galilean boosts Bi and level
(1, 1) to the Hamiltonian H. The first few terms in the resulting
free Lie algebra are then shown in Table 1.

The notation in the table is such that indices that are separated
with commas are in separate columns of a Young diagram while
unseparated ones are in the same column. For instance, the
commutator between the Galilean boost Bi and translation Ti is

The symmetric tensor Zi,j can be traced using the Euclidean
metric δij and the corresponding scalar M under rotations is
nothing but the Bargmann central extension [Bi, Tj] ∝ δijM.

However, the free Lie algebra methods provides many further
extensions of interest that are discussed in more detail in Ref. 16.

2.2.3 Carrollian Free Lie algebra
In the same way as for the Galilei algebra above one can also
construct a free Lie extension of the Carroll algebra (Eq. 2.6). By
applying the duality P0 ↔ Pi between the Carroll and Maxwell
case discussed in Section 2.1 one is led to starting from

f0 � 〈Jij〉 , f1 � 〈Ki, Ti〉 (2.39)
that should be compared to Eq. 2.36.

Running the free Lie algebra construction (Eq. 2.23) then
produces as next generators the result shown inTable 2, where we
also introduced a second grading m to distinguish the generators
Ki and Ti. Some commutators defining the elements in the table
are written explicitly as

Ki, Kj[ ] � Sij , Ti, Tj[ ] � Tij , Ti, Kj[ ] � Bij + Zi,j, (2.40)
where Zi,j is symmetric while all the other rank two tensors Sij, Bij
and Tij are anti-symmetric. The Carroll Hamiltonian K (see Eq.
2.6) is obtained as the trace of the symmetric tensor:

δij Ti, Kj[ ] � δijZi,j � dK, (2.41)
where we recall that d is the number of spatial dimensions.

We can recover the infinite Carroll algebra (Eq. 2.11) from the free
Lie algebra construction by following steps similar to Ref. 16. By
restricting to anti-diagonal lines (of fixed ℓ −m) inTable 2, restricting
further tom ∈ {0, 1} and keeping only generators of vector and scalar
type under rotations, we obtain an infinity of generators J(n)ij , K(n)

i ,
T(n)
i and K(n) whose commutation relations are those of Eq. 2.11.

Besides K(0) ~ δijZi,j we also have for example J(1)ij ~ Sij and
K(1)

i ~ δjkYij,k. As the infinite Carroll algebra (Eq. 2.11) is an
expansion of the Poincaré algebra, we see that the Carrollian free
Lie algebra contains this particular expansion as a quotient.

2.3 Connection to Kac–Moody Algebras
In this final section on algebraic constructions we would like to
make a brief comment on the relation to (affine) Kac–Moody
algebras. For any finite-dimensional Lie algebra g it is well-
known that one can construct the (untwisted) loop algebra by
letting

ĝ � g λ, λ−1[ ] (2.42)

of Laurent polynomials in λ with values in g. It is also possible to

add a central term and a derivation element to this construction

to obtain a proper Kac–Moody algebra [25].
The relation to the constructions above becomes transparent

by restricting to the parabolic subalgebra of polynomials g[λ]
whose elements can be written in terms of the basis tα ⊗ λn for n =
0, 1, . . .. Clearly, this can be seen as a version of the method (Eq.
2.7) when setting all offsets n0(α) to zero. Setting some of the
offsets to a non-zero value can result in twisted in affine algebras,
see Ref. 16 for examples.

TABLE 1 | The first few levels of the free Lie algebra generated by the (magnetic)
Galilean choice (Eq. 2.36). The double-grading (ℓ,m) is explained in the text. A
similar table has appeared in Ref. 16.

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3

m = 0 Jij Bi Sij Yij,k
m = 1 H Ti Bij, Zi,j
m = 2 Zi

TABLE 2 | The first few levels of the free Lie algebra generated by Carroll. The
double-grading (ℓ,m) is explained in the text, as is the relation between Young
diagrams and comma-separated index notation.

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3

m = 0 Jij Ki Sij Yij,k

m = 1 Ti Bij, Zi,j

m = 2 Tij

m = 3 Tij,k
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The parabolic subalgebra g[λ] is also closely related to free Lie
algebras. Indeed it is known that the Borel subalgebra of a
Kac–Moody algebra can be described as the quotient of a free
Lie algebra on the simple Chevalley generators (often denoted
ei) subject to the Serre relations that are encoded in the
generalised Cartan matrix of the Kac–Moody algebra [58].
This is in particular true for affine algebras. Since we are
dealing with a parabolic subalgebra rather than a Borel
subalgebra in that the starting finite-dimensional Lie
algebra g is not the abelian Cartan subalgebra, the Serre
relations have to be adapted slightly but one can still
describe g[λ] as a quotient of the free Lie algebra with f1 �
g that is acted upon by f0 � g. Again, refinements of this
constructions are available when g is decomposed already
into V0 ⊕ V1, see Ref. 16 for examples.10 This shows that all
the various algebraic constructions in this section are
interrelated.

3 GEOMETRIC REALISATIONS

Suppose we have a kinematic algebra g that has an action on some
space-timeM. For a given contraction g0 of g with corresponding
perturbative expansion g(∞) as introduced in Section 2.1, we now
want to construct a spaceM(∞) on which this algebra acts.11 Since
g(∞) is interpreted as the perturbative expansion of the kinematic
algebra in the parameter λ, this will provide the arena to describe
perturbatively corrected dynamics.

Let xa denote a set of local coordinates ofM on which there is a
faithful action of g. This set of coordinates is assumed to be
compatible with the contraction to g0 in the sense that one can
define an associated contraction on the coordinates such that g0
acts faithfully on the contracted coordinates.

With this we mean that

xa
n( ) � xa ⊗ λ−n a( )−n (3.1)

with an appropriate offset n(a) depending on the coordinate and
restricted to n = 0 carries a faithful action of g0 � g(0). The space
M(∞) on which g(∞) acts is then given by considering all values of
n ≥ 0. The opposite sign of n on the coordinates compared the
generators in Eq. 2.7 is due to the fact that we would like formal
Lie algebra elements

∑
n≥0

xa
n( )P

n( )
a (3.2)

to be dimensionless which means that the scaling of xa
(n) with

λ must be opposite to that of P(n)
a (whose precise definition

depends on the context). The Lie algebra element above can
then be exponentiated and used in a non-linear realisation.
We now exemplify these considerations in various cases. We

shall also construct a case of a generalised space-time related
to a full free Lie algebra rather than to an expanded algebra.

3.1 Post-Galilean Space-Time
For the Poincaré algebra (Eq. 2.1) the spaceM is Minkowski space in
D dimensions with coordinates xa of dimension L = length. The
faithful action of the Poincaré algebra can described as follows. Let

1
2
ωabMab + αaPa (3.3)

be an arbitrary element of the Poincaré algebra. Its action on the
coordinate xa is given by

δxa � −ωabηbcx
c + αa. (3.4)

For the Lorentz part so(1, d) this is nothing but the fundamental
representation on which the Pa act as translations.

For the Galilean contraction (Eq. 2.2) we split space and time
a = (0, i) and let

t n( ) � x0 ⊗ λ−n , xi
n( ) � xi ⊗ λ−n−1/2. (3.5)

Here, the dimensions of t(n) and xi(n) are fixed by the dimension of
x0 and xi (that we always maintain at dimension length) and that
of λwhich for the Galilean case follows from λ = c−2. In particular,
even though we use the notation t(m), the lowest element t(0) does
not have the dimension of time (T) but of length (L) and xi

(0) does
not have the dimension of length but of L2/T. We note also that in
our conventions the Poincaré generators Pa in Eq. 2.1 have
dimension of L−1 while the Mab are dimensionless.

The action of an element

∑
m≥0

1
2
ωij

m( )J
m( )
ij + vi m( )B

m( )
i + αi m( )T

m( )
i + ϵ m( )H m( )[ ] (3.6)

of the algebra (Eq. 2.9) on a (dimensionless) coordinate element

∑
n≥0

xi
n( )T

n( )
i + t n( )H n( )[ ] (3.7)

is then given by the commutator of the two elements, leading to

δt n( ) � ϵ n( ) + ∑n−1
m�0

δijv
i
m( )x

j
n−1−m( ), (3.8)

δxi
n( ) � αi

n( ) + ∑n
m�0

−ωij
m( )δjkx

k
n−m( ) + vi m( )t n−m( )( ). (3.9)

We see that restricting to only level 0 this becomes the usual
action on the Galilean coordinates (t, zi) with t = t(0) and zi � xi

(0).
In particular, the Galilean boost with only vi(0) ≠ 0 yields

δt � 0 , δzi � vi 0( )t, (3.10)
which is the lowest order term of the Lorentz boost. Note that in
our conventions the parameter v(0) has dimension of L/T as a
velocity, but we recall that [xi

(0)] � L2/T and [t(0)] = L.
In order to see the systematic higher order expansion of the

Lorentz boost encoded in Eq. 3.5, we follow [48] and define
collective coordinates formally by

10In this case a relation of the Galilean construction to theBN algebras introduced
in Ref. 60 has been noticed in Ref. 16.
11Our considerations will be purely local and leave out questions of topology of the
spaces.
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X0 �∑
n≥0

t n( )λ
n , Xi �∑

n≥0
xi

n( )λ
n+1/2, (3.11)

as well as the collective boost parameter

Θi �∑
n≥0

vi n( )λ
n+1/2. (3.12)

The transformation of the collective coordinates (Eq. 3.11)
under such a collective boost then works out as

δX0 � δijΘiXj , δXi � ΘiX0, (3.13)
the usual expression for an infinitesimal relativistic Lorentz boost
with rapidity Θi. However, the difference is that now the boost
parameter and the coordinate are collective.

If one imposes that

vi n( ) �
1

2n + 1
v2n+1ni (3.14)

for some scalar v and spatial unit vector ni, i.e., δijn
inj = 1, then the

transformations (Eq. 3.13) become for λ = c−2

δX0 �∑
n≥0

1
2n + 1

v

c
( )2n+1δijniXj , δXi �∑

n≥0

1
2n + 1

v

c
( )2n+1niX0,

(3.15)
which are the expansions of the infinitesimal Lorentz boost with
parameter θi = θni, where tanh θ = v/c for v/c ≪ 1.

At this point we should comment on the geometrical
meaning of the collective coordinates (Eq. 3.11). These
define a hyperspace of co-dimension D within the infinite-
dimensional generalised Minkowski space with coordinates
(Eq. 3.5). Since the sums are infinite and we are not making
any assumptions about convergence here, the expressions are
formal but the formal expansion parameter λ is introduced in
such a way as to render meaningful expressions at any finite
order in the expansion. What the transformation (Eq. 3.13)
then describes is a transformation from one hyperspace to
another one, so we obtain a description of ordinary
Minkowski space as a family of hyperspaces inside
generalised Minkowski space. We shall see that a similar
picture applies to all other expansions considered in
this paper.

3.2 Post-Carrollian Space-Time
For the case of the Carroll algebra, we use “Carroll time” s = Cx0

introduced in Refs. 12, 39. The contraction limit in these variables
is C → ∞. Morally, we can think of C as being related to the
inverse of the speed of light, so that the speed of light goes to zero.
However, the dimension of C is that of a velocity. The expansion
parameter λ = C−2, so that s(0) = x0 ⊗ C is the Carroll time of Refs.
12, 39.

For the Carrollian contraction (Eq. 2.5) we proceed
analogously to the generalised Galilei space-time and define

s n( ) � x0 ⊗ λ−n−1/2 , xi
n( ) � xi ⊗ λ−n. (3.16)

where the difference to Eq. 3.5 that the constant shift has moved
from the space to the time translations. The dimensions of the
coordinates implied by these definitions are [s(n)] = L2n+2/T2n+1

and [xi
(n)] � L2n+1/T2n.

A dimensionless element

∑
m≥0

1
2
ωij

m( )J
m( )

ij + vi m( )K
m( )
i + αi m( )T

m( )
i + ϵ m( )K m( )[ ] (3.17)

of the expanded Carroll algebra (Eq. 2.11) then acts on the
coordinates by

δs n( ) � ϵ n( ) + ∑n
m�0

δijv
i
m( )x

j
n−m( ), (3.18)

δxi
n( ) � αi

n( ) − ∑n
m�0

ωij
m( )δjkx

k
n−m( ) + ∑n−1

m�0
vi m( )s n−1−m( ). (3.19)

Especially, restricting to lowest order we obtain for the
Carrollian time coordinate s = s(0) and zi � xi

(0) that the
Carrollian boost (only vi(0) ≠ 0) acts by

δs � δijv
i
0( )z

j , δzi � 0, (3.20)
the well-known expression for this boost, see, e.g., Refs. 12,
39. In particular, an ordinary particle at rest cannot be Carroll
boosted to one in motion: it is effectively stationary in
any frame.

We now turn to corrections to this classical statement as
contained in the infinite-dimensional algebra (Eq. 2.11). We
introduce the collective coordinates

X0 �∑
n≥0

s n( )λ
n+1/2 , Xi �∑

n≥0
xi

n( )λ
n (3.21)

as well as the collective boost parameter

Θi �∑
n≥0

vi n( )λ
n+1/2. (3.22)

The transformation then becomes

δX0 � δijΘiXj , δXi � ΘiX0 (3.23)
just as in Eq. 3.13 and thus formally resembles the usual
infinitesimal Lorentz boost with parameter Θi. With λ = C−2

we can now specialise to

vi n( ) �
1

2n + 1
b2n+1ni (3.24)

to arrive at

δX0 �∑
n≥0

1
2n + 1

b

C
( )2n+1

δijn
iXj ,

δXi �∑
n≥0

1
2n + 1

b

C
( )2n+1

niX0. (3.25)

This is the correct expansion of a Lorentz boost in Carroll
parametrisation where b � C v

c is fixed in the limit C → ∞ [39].
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3.3 Conformal Post-Galilean Space-Time
The relativistic conformal algebra inD > 2 dimensions is so(D, 2)
that contains, besides the Poincaré generators (Eq. 2.1), the
special conformal generators Sa and the dilatation generator D
with additional commutators

Mab, Sc[ ] � ηbcSa − ηacSb , D, Pa[ ] � Pa , D, Sa[ ] � −Sa ,
Sa, Pb[ ] � 2Mab − 2ηabD.

(3.26)
A non-relativistic Galilean version of this algebra can be obtained
by considering the contraction (λ = c−2)

Jij � Mij , D � D , H � P0 , S � S0 ,
Bi � λ1/2Mi0 , Ti � λ1/2Pi , Gi � λ1/2Si

(3.27)

that extends the Galilean contraction (Eq. 2.2) from Poincaré to
the conformal algebra. The resulting contracted algebra is known
as the Galilei conformal algebra and has been studied for example
in Refs. 61–65, see also Refs. 66, 67 for a recent extension to higher
spin algebras.

The two lines of Eq. 3.27 also define spaces V0 and V1

satisfying (Eq. 2.14), so that an infinite expanded algebra
undoing the contraction can be defined, exactly in the same
way as for the previous cases. An infinite generalised space-time
on which the infinite expanded Galilei conformal algebra can act
is then defined by introducing coordinates

t n( ) � x0 ⊗ λ−n , xi
n( ) � xi ⊗ λ−n−1/2. (3.28)

The action of the algebra on these coordinates can be worked
out in the same way as in the previous cases, with the
additional feature that the action of the special conformal
transformation is non-linear in the coordinates due to the
relativistic expressions

δσDx
a � σxa , δβbSbx

a � 2 x · β( )xa − x · x( )βa, (3.29)
extending the Poincaré transformations (Eq. 3.4).

Collectives coordinates are defined by

Xi �∑
n≥0

xi
n( )λ

n+1/2 , X0 �∑
n≥0

t n( )λ
n (3.30)

exactly as for the non-conformal Galilei case (Eq. 3.11). Under
special conformal transformations (Eq. 3.29), the lowest order
coordinates transform as

δt 0( ) � −b 0( )t20( ) ,
δt 1( ) � −2b 0( )t 0( )t 1( ) − b 1( )t20( ) + 2δijβ

i
0( )x

j
0( )t 0( ) − δijx

i
0( )x

j
0( )b 0( ) ,

δxi
0( ) � −2b 0( )t 0( )xi

0( ) + t20( )β
i
0( ),

(3.31)
where we have expanded the parameter of the transformation as

β0 �∑
n≥0

b n( )λ
n , βi �∑

n≥0
βi n( )λ

n+1/2. (3.32)

3.4 Post-Minkowski Space-Time
The small parameter can also be taken to be the curvature of
space-time in appropriate dimensions. This was considered in

Ref. 68 and leads to corrections to Minkowski space-time towards
(Anti-)de Sitter space when the starting point is the (A)dS algebra
that differs from the Poincaré algebra (Eq. 2.1) by the non-trivial
commutator

Pa, Pb[ ] � σMab (3.33)
among the translations. The sign σ = +1 is the AdS algebra
so(D − 1, 2) and σ = −1 is the dS algebra so(D, 1).12 Here, and in
contrast to the Poincaré algebra (Eq. 2.1), we have rescaled all
generators to be dimensionless.13

Following our usual expansion method we define the
generators

M n( )
ab � Mab ⊗ λn , P n( )

a � Pa ⊗ λ1/2+n, (3.34)
where now λ = R−2 is to be thought of as the curvature scale of
the (A)dS space-time. For R → ∞ we obtain the Poincaré
algebra (Eq. 2.1) as a contraction of the (A)dS algebra similar
to the non-relativistic cases in Section 2.1.

One can now similarly consider an extended space-time with
coordinates

xa
n( ) � xa ⊗ λ−1/2−n. (3.35)

The transformations formula for these coordinates is now
more complicated since the underlying translations no longer
commute due to Eq. 3.33. Since we do not rely on them in the
following, we refer the reader to Ref. 68. In Section 4.5 we
shall study a particle model based on this generalised space-
time.

3.5 Minkowski–Maxwell Space-Time
In the case of the Maxwell extension of Poincaré we also deal with
non-commuting translations Pa, the basic commutator is Eq.
2.26, where Zab is a new generator unlike in the case of the (A)dS
algebra.

The most general algebra that we can construct when
starting from the Poincaré algebra is the Maxwell free Lie
algebra that was introduced in Section 2.2.1. An associated
generalised space-time can be defined by considering the Pa
and all their free commutators as translation generators.
This means that one has coordinates for each of them
[28, 29]

Pa ↔ xa , Zab ↔ θab , Yab,c ↔ ξab,c etc. (3.36)
The generalised space-time defined by these coordinates has non-
abelian translations

12The AdS algebra in D dimensions is famously isomorphic to the conformal
algebra in D − 1 dimensions. Since we use the indices a to run over the space-time
dimension, the range of indices in this section and Section 3.3 is different although
they are based on the same types of algebra. However, they also address different
contractions and expansions.
13If one wanted to keep the dimensions of Pa at L

−1 this would require keeping an
explicit 1/R2 on the right-hand side of the commutator (Eq. 3.33), where R is the
(A)dS radius.
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δxa � ϵa ,
δθa � ϵab − 1

2
xaϵb − xbϵa( ),

δξab,c � ϵab,c + 1
3

2ϵabxc − ϵbcxa − ϵcaxb( ) + 1
3

ϵaxbxc − ϵbxaxc( ) ,
(3.37)

where the higher-level coordinates are also affected by the
translations of all lower levels.

In Section 4.6, we consider a particle model on the associated
space-time and how it relates to the motion of charged particle in
an electro-magnetic background field. We also note that one can
consider various non-relativistic limits of Maxwell algebras and
space-times [16, 59, 69].

4 FREE ACTIONS

In this section, we consider particle actions for free spinless
particles in the various generalised space-times constructed in
the previous section. We shall discuss in particular how they can
be used to reproduce the corrections to the usual relativistic free
particles. The case of the Carrollian generalisation will be
discussed in most detail since it is less well-covered in the
literature but has recently attracted attention in the context of
cosmology and gravity [40–44]. We shall consider both tachyonic
and ordinary particles and the resulting corrections in the case of
Carroll are new to the best of our knowledge. In general, we shall
parametrise the world-lines of particles using a parameter τ and
denote derivatives with respect to this parameter by dots. The
dimension of this parameter will be that of time (T) for Galilei but
that of Carroll time (L2/T) for Carroll.

4.1 Particle in Post-Galilean Space-Time
The starting point for all actions comes from the expansion of the
relativistic invariant metric using the collective coordinates
(Eq. 3.11)

ds2 � ηabdX
adXb � ∑

m,n≥0
λm+n −dt m( )dt n( ) + λδij dx

i
m( )dx

j
n( )( ),
(4.1)

where the factor of λ in front of the spatial metric is crucial.
We shall first consider the usual massive relativistic particle,

corresponding to a time-like norm of the velocity vector, and its
Galilean limit. Then we shall consider the same procedure for a
relativistic tachyon whose velocity vector is space-like and whose
Galilean limit is a massless Galilean particle. The intuitive reason
for this is that massless propagation in Newtonian physics is
instantaneous which corresponds to space-like trajectories in
Minkowski space. Galilean limits of relativistic light-like
particles will not be considered in the context of post-Galilean
space-time but in its conformal extension in Section 4.4.

4.1.1 Massive Galilean Particle
Perturbative actions for a massive particle can be obtained by
expanding the reparametrisation invariant configuration space
action

S � −mλ−1/2 ∫ dτ
���������
−ηab _Xa _X

b
√

� S 0( ) + S 1( ) + S 2( ) +/ (4.2)

in powers of λ = c−2 with the result

S 0( ) � −mλ−1/2 ∫ dτ _t 0( ) ,

S 1( ) � mλ1/2 ∫ dτ − _t 1( ) +
δij _x

i
0( ) _x

j
0( )

2 _t 0( )
⎛⎝ ⎞⎠ ,

S 2( ) � mλ3/2 ∫ dτ − _t 2( ) +
δij _x

i
0( ) _x

j
1( )

_t 0( )
− _t 1( )

δij _x
i
0( ) _x

j
0( )

2 _t
2
0( )

+ δij _x
i
0( ) _x

j
0( )( )2

8 _t
3
0( )

⎛⎝ ⎞⎠
(4.3)

This was given in Ref. 48 up to the fact that the dimensions of the
variables here differ from there by a factor of c.

The actions written in Eq. 4.3 have global symmetries associated
with the expanded algebras from Section 2.1 up to the order in the
expansion. In particular, the action S(2) has more symmetries than
the usual Galilei (or Bargmann) invariance. In addition, the actions
have gauge symmetries generated by first-class constraints [48].
Gauge-fixing these symmetries one still retains enhanced global
symmetries that are realised non-linearly. As we shall describe next,
we will also identify the space coordinates xi

(m) to a single x
i through

what we refer to as “choosing a slice”. This step makes it possible to
connect to the usual non-relativistic expansions at the price of
breaking the global symmetries.

The first action S(0) is a total derivative and does not describe
any non-trivial local dynamics. The existence of this term is
nevertheless significant and related to the possibility of centrally
extending the Galilei algebra to the Bargmann algebra [70].

The next action S(1) becomes the usual non-relativistic 1
2m _x2

after gauge-fixing t(0) = cτ and dropping a total derivative.
Moreover, we identify as a slice condition

xi
0( ) � cxi (4.4)

in order to obtain conventional dimensions, but we emphasise
that this step is not fixing a gauge symmetry but breaks
symmetries [48].

For the next order term S(2), we similarly gauge-fix

t 0( ) � cτ and t 1( ) � c3τ (4.5)
and choose a slice as

xi
0( ) � cxi and xi

1( ) � c3xi. (4.6)
This choice of slice is dictated by the relation (Eq. 3.5) between

Minkowski and generalised Minkowski space. Plugging this into
Eq. 4.3 leads to (using vector notation for the spatial components
for simplicity)

~S 2( ) � ∫ dτ −mc2 + 1
2
m _�x

2 + m

8c2
_�x
2( )2( ). (4.7)

Working out the energy of the particle associated with this action
leads to
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E � mc2 + 1
2
m _�x

2 + 3m
8c2

_�x
2( )2 (4.8)

which agrees with the expansion of the relativistic energy

E � mc2�����
1 − _�x

2

c2

√ (4.9)

to the order given. Such an analysis can be performed to any
desired order. Similarly, the momentum can be worked out as

�P � m _�x + m

2c2
_�x
2( ) _�x, (4.10)

which are the first two terms in the large-c expansion of

�P � m _�x/
��������
1 − _�x

2
/c2

√
. Note that in order to get the desired

expansion to order n − 1 we only have to consider the action
S(n) that comprises all corrections to that order. The action (Eq.
4.7) has no global symmetries but our procedure allowed us to
systematically arrive at it through a formalism with enhanced
symmetry.

There is an ambiguity in interpreting the actions (Eq. 4.3) in
terms of which space they are defined on. Since we started with an
action on Minkowski space it is natural to view the actions as
being defined on generalised Minkowski space to the same order
in λ for both time and space variables. This means for example
that we would like to view

S 0( ) � S 0( ) t 0( ), x 0( )( ) � −mλ−1/2 ∫ dτ _t 0( ) (4.11)

to depend also formally on x(0) although x(0) does not enter
the action at all. Taking this point of view implies that there
are two canonical constraints associated to the action S(0),
namely

E 0( ) � −zL 0( )
z _t 0( )

� mλ−1/2 , �p 0( ) �
zL 0( )
z _�x 0( )

� 0. (4.12)

The second constraint �p(0) � 0 can be viewed as somewhat
artificial mathematically but stems from the physical origin of
Minkowski space. In a similar way, the Nth order action S(N) will
always contain an extra constraint �p(N) � 0 by making S(N)
depend on the same number N + 1 of t(n) and �p(n).

4.1.2 Massless Galilean Particle
The massless Galilean particle [71] can be obtained as the non-
relativistic limit of the relativistic tachyon [72]. From the point
of view of the kinematic algebra the massless Galilean particle
has vanishing Bargmann central charge. We will work out the
first correction starting from a phase form of the action, starting
from

S � ∫ dτ −E _T + �P · _�X − e

2
−E

2

c2
+ �P

2 − k2( )[ ], (4.13)

where we have introduced the “colour” k2 =m2c2 [71]. The lowest
order term in the limit c→∞ removes the energy from the mass-
shell constraint, leading to the action [72]

S 0( ) � ∫ dτ −E 0( ) _t 0( ) + �p 0( ) · _�x 0( ) −
e 0( )
2

�p 2
0( ) − k2( )[ ]. (4.14)

Here, we have used the expansions (λ = c−2)

T �∑
n≥0

t n( )λ
n , Xi �∑

n≥0
xi

n( )λ
n ,

E �∑
n≥0

E n( )λ
n , Pi �∑

n≥0
pi

n( )λ
n , e �∑

n≥0
e n( )λ

n.
(4.15)

These expansions are consistent with Eq. 3.11 except for
an adjustment of dimensions. The variables
(t(0), xi(0), E(0), pi

(0)) appearing here have canonical
dimensions while the ones in Eq. 3.11 were rescaled by
factors of c. If one wanted to use the expansion (Eq. 3.11)
directly while keeping the collective symplectic term _X

i
Pi free

of factors of λ, this would also require rescaling Pi and
therefore introduce additional factors of λ into the
collective mass-shell constraint.

One thing we can immediately deduce from Eq. 4.14 is that
_t(0) � 0 and therefore t(0) is constant and the evolution is in this
sense instantaneous. Moreover, _E(0) � 0 and the pair of variables
(E(0), t(0)) is decoupled from the other variables. For the other
variables we find that �p(0) is a constant vector on the sphere with
radius k and we could take a Euclidean evolution by picking this
space-like direction.

The next order action in S = ∑n≥0S(n) with S(n) of order λ
n

then is

S 1( ) � λ∫ dτ −E 0( ) _t 1( ) − E 1( ) _t 0( ) + �p 0( ) · _�x 1( ) + �p 1( ) · _�x 0( )[
− 1
2
e 1( ) �p 2

0( ) − k2( ) − e 0( ) 2 �p 0( ) · �p 1( ) − E2
0( )( )].

(4.16)
We note that the expansion of the momenta and coordinates
always leads to a symplectic structure where the components
are paired from opposite ends. The action enforces the
constraints

ϕ1 � �p 2
0( ) − k2 , ϕ2 � 2 �p 0( ) · �p 1( ) − E2

0( ) (4.17)
Moreover, the action (Eq. 4.16) gives the constraint

_E 1( ) � 0, (4.18)
similar to the constraint _E(0) � 0 in the lowest order action (Eq.

4.14). An additional noteworthy point is that when starting from the
phase space action (Eq. 4.13) and expanding the phase space
variables according to Eq. 4.15 one naturally ends up with what
could be called an unconventional symplectic structure where, at
order λN, the variable xi

(n) is paired with pi
(N−n). This does not

happen when starting from configuration space as in the previous
Section 4.1.1 where the momentum pi

(n) was defined as being
conjugate to xi

(n).
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The expanded actions S(N) derived from phase space always
feature the same number N + 1 of t(n) and xi

(n) by construction.
This makes them a bit different from the configuration space
actions such as (Eq. 4.3), where there is a superficial imbalance.
As discussed at the end of the previous section, this imbalance
can be rectified by introducing one more seemingly spurious
variable into configuration space. This extra variable has a well-
justified physical origin from Minkowski space. A similar
phenomenon arises here since for all expanded S(N) from
Galilean phase space the final pair (E(N), t(0)) only enters the
canonical action through its symplectic term and is completely
decoupled from the rest. It carries no dynamics and leads to the
very simple canonical constraint _E(N) � 0, see for instance
(Eq. 4.18).

As we shall see later, there is an interesting connection of
this constraint structure to that of particles in Carroll space-
time and that we comment on in Section 4.3. The special role
played by the final pair of canonical variables as well as the
unconventional symplectic structure will be seen to enter in the
connection.

An important observation here is that we have now
transitioned to a phase space action. In the case of
configuration space actions we could recover corrections to
relativistic actions by combining a gauge choice with a choice
of a slice condition, see for instance Eqs 4.5 and 4.6. We are not
aware of a similar construction for phase space.

4.2 Particles in Post-Carrollian Space-Time
In this section we study the Carrollian limits of relativistic
particles, using the post-Carrollian space-time introduced in
Section 3.2.

4.2.1 Massive Carroll Particle
In order to obtain the Carrollian expansion of a time-like Carroll
particle we will start by considering the canonical action of a
time-like massive relativistic particle given by the Lagrangian

Lc � Pa
_X
a − e

2
P2 +m2c2( ). (4.19)

We also use the Carrollian expansion of the collective
coordinates (Eq. 3.21)

X0 �∑
n≥0

s n( )λ
n+1/2 , Xi �∑

n≥0
xi

n( )λ
n. (4.20)

The first few terms of these expansions are explicitly

X0 � λ1/2s 0( ) + λ3/2s 1( ) +/ , Xi � xi
0( ) + λxi

1( ) +/ (4.21)
The expansion for the space-time momenta is given by

P0 � −∑
n≥0

E n( )λ
n−1/2 , Pi �∑

n≥0
pi

n( )λ
n. (4.22)

In order to expand (Eq. 4.19) we also need the expansion of the
einbein

e �∑
n≥0

e n( )λ
n+1 (4.23)

and also the rescaling (recall λ = C−2)

mc � Mλ−1/2 (4.24)
that defines a new mass M. The relativistic action then becomes

Lc �∑
n≥0

L n( ) with L n( ) of order λ
n. (4.25)

The first terms of the expansion are

L 0( ) � −E 0( ) _s 0( ) + �p 0( )
_�x 0( ) −

e 0( )
2

−E2
0( ) +M2( ) (4.26)

which agrees with the one of Refs. 38, 39, and

L 1( ) � −E 1( ) _s 0( ) − E 0( ) _s 1( ) + �p 0( )
_�x 1( ) + �p 1( )

_�x 0( )
−e 1( )

2
−E2

0( ) +M2( ) − e 0( )
2

2E 0( )E 1( ) − �p 2
0( )( ). (4.27)

This action derived from phase space also has the unconventional
symplectic structure already encountered in Section 4.1.2. If we
integrate out the auxiliary variables (E(0), E(1), e(0), e(1)) from this
action we obtain

L 1( ) � �p 0( )
_�x 1( ) + �p 1( )

_�x 0( ) +M _s 1( ) + _s 0( )
2M

�p 2
0( ). (4.28)

The equations of motion obtained from this action by varying the
�p(i) are

_�x 0( ) � 0 , _�x 1( ) � − _s 0( )
M

�p 0( ). (4.29)

The �p(i) are constant and there are no further constraints by
varying the s(i) whose values can be fixed by gauge invariance.
One important consequence now is that while the lowest order
Carroll tachyon is well-known to be stationary at a fixed position,
we now see that the correction in principle allows for a non-trivial
motion. This is also what one would expect from a correction to
the strict Carroll limit c → 0 where the light-cone collapses to a
line: The correction should open the light-cone slightly and thus
allow for motion.

4.2.2 Tachyonic Carroll Particle
In the strict Carroll limit, where the speed of light tends to zero, all
moving particles have to be tachyonic as just argued. We
therefore consider the action of a tachyonic particle that is
constructed from the invariant metric

ds2 � ηabdX
adXb � ∑

m,n≥0
λm+n −λ ds m( )ds n( ) + δijdx

i
m( )dx

j
n( )( ),
(4.30)

where we used (Eq. 3.16). The tachyonic configuration space
action to be expanded is then

S � Mλ−1/2 ∫ dτ
�������
ηab _X

a _X
b

√
� S 0( ) + S 1( ) + S 2( ) +/ , (4.31)

where the difference to the massive Galilean particle (Eq. 4.2) is
that the sign inside the square-root has changed since we are now
dealing with a tachyon. Moreover, we express the mass of the
tachyon asmc � MC � ~M and recall that λ = C−2. The “mass” ~M
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does not have canonical dimensions, but this is compensated for
by declaring τ to be of the Carroll time dimension L2/T. The
individual terms in the expanded action are then

S 0( ) � ~M∫ dτ
��������
δij _x

i
0( ) _x

j
0( )

√
,

S 1( ) � ~MC−2 ∫ dτ
2δkl _x

k
0( ) _x

l
1( ) − _s20( )

2
��������
δij _x

i
0( ) _x

j
0( )

√ ,

S 2( ) � ~MC−4 ∫ dτ
δkl _x

k
1( ) _x

l
1( ) + 2δkl _x

k
0( ) _x

l
2( )

2
��������
δij _x

i
0( ) _x

j
0( )

√ − _s 0( ) _s 1( )��������
δij _x

i
0( ) _x

j
0( )

√⎡⎢⎢⎢⎢⎢⎢⎢⎣
− _s40( )
8 δij _x

i
0( ) _x

j
0( )( )3/2 + _s20( )δkl _x

k
0( ) _x

l
1( ) − δkl _x

k
0( ) _x

l
1( )( )2

2 δij _x
i
0( ) _x

j
0( )( )3/2 ⎤⎥⎥⎥⎥⎦

(4.32)
and higher order terms can be obtained easily. The action S(0) has
already been studied in Ref. 40.

In order to elucidate the nature of these further actions, we
now analyse them canonically.

4.2.2.1 Lowest Order Carroll Tachyon
From the action S(0) in Eq. 4.32 one finds the canonical
momentum (using λ−1/2 = C)

p 0( )
i �

~M _xi
0( )

| _�x 0( )|
, (4.33)

where | _�x(0)| �
���������
δij _x

i
(0) _x

j
(0)

√
. The canonical momentum therefore

satisfies the primary (scalar) constraint

ϕ1 �
1
2

δijp 0( )
i p 0( )

j − ~M
2( ) � 0. (4.34)

This mass-shell constraint is first-class and generates the gauge
transformations

δxi
0( ) � ϵδijp 0( )

j , δp 0( )
i � 0 (4.35)

in phase space. If one considers the action to formally also depend
on the lowest order Carroll time s(0) we also get E(0) = 0 as a
constraint since the variable _s(0) does not appear in the action.
There are no further constraints.

The extended Hamiltonian action is

S 0( ) � ∫ dτ p 0( )
i _xi

0( ) − eϕ1[ ]
� ∫ dτ p 0( )

i _xi
0( ) −

e

2
δijp 0( )

i p 0( )
j − ~M

2( )[ ]. (4.36)

The gauge symmetry (Eq. 4.35) can be gauge-fixed by setting
for instance the first spatial component x1

(0) � C−1τ (assuming
p(0)
1 ≠ 0 without loss of generality). The reduced

phase space consists then of the transverse components
(xα

(0), p
(0)
α ) where α = 2, 3, . . . , d. The action on the

reduced phase space is

S 0( ) � ∫ dτ p 0( )
α _xα

0( ) ±
��������������
~M

2 − δαβp 0( )
α p 0( )

β

√[ ] (4.37)

There is a choice of square root when solving the constraint ϕ1
= 0. The Hamiltonian is no longer invariant under the full
rotation group SO(d) but only under an SO(d − 1) subgroup.
Moreover, the energy is not bounded from below or above. A
similar phenomenon has been observed for the Galilean
string [73].

4.2.2.2 First Correction to Carroll Tachyon
From the action S(1) in Eq. 4.32 we deduce the following
conjugate momenta (setting ~M � C � 1 for simplicity)

p 0( )
i � _xi

1( )
| _�x 0( )|

− 2 _�x 0( ) · _�x 1( ) − _s20( )
2| _�x 0( )|

_xi
0( ) ,

p 1( )
i � _xi

0( )
| _�x 0( )|

,

E 0( ) � −δS 1( )
δ _s 0( )

� _s 0( )
| _�x 0( )|

(4.38)

and the two primary, first-class constraints

ϕ1 � δijp
0( )
i p 1( )

j − 1
2
E 0( )E 0( ) � 0 ,

ϕ2 �
1
2

δijp 1( )
i p 1( )

j − 1( ) � 0.
(4.39)

Similar to the discussion at the end of Section 4.1.1 above, we
could complement this by

E 1( ) � 0 (4.40)
by thinking of the theory as depending on both space and
(Carroll) time coordinates to second order by including s(1).
There are no further constraints. The first-class constraints
(Eq. 4.39) generate the gauge transformations

δ1x
i
0( ) � ϵ1δijp 1( )

j , δ1p
0( )
i � 0 ,

δ1x
i
1( ) � ϵ1δijp 0( )

j , δ1p
1( )
i � 0 ,

δ1s 0( ) � ϵ1E 0( ) , δ1E
0( ) � 0

(4.41)

and

δ2x
i
0( ) � 0 , δ2p

0( )
i � 0 ,

δ2x
i
1( ) � ϵ2δijp 1( )

j , δ2p
1( )
i � 0 ,

δ2s 0( ) � 0 , δ2E
0( ) � 0.

(4.42)

The constraints can be gauge-fixed by setting s(0) = 0 (for ϕ1)
and x1(1) � C−1τ (for ϕ2). The reduced phase space then consists
of (xi(0), pi

(0), x
α
(1), p

(1)
α )where α = 2, 3, . . . , d labels the transverse

coordinates. The Hamiltonian action on this reduced phase
space is

S 1( ) � ∫ dτ p 0( )
i _xi

0( ) + p 1( )
α _xα

1( ) ±
������������
1 − δαβp 1( )

α p 1( )
β

√[ ]. (4.43)

The dynamics implied by this action is that xi(0) � const. and xα
(1)

moves with the Euclidean time τ from the gauge-fixing.

4.2.2.3 Configuration Space Actions and Choice of Slice
As for the Galilean particle in Eq. 4.5, we can now consider a
gauge-fixing in configuration space. Here, we use the freedom to
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think of the world-line parameter τ to be of the same dimension
as Carroll time, meaning it has dimension L2/T. Then the gauge
choice we make is

s n( ) � C2nτ. (4.44)
Moreover, and similar to Eq. 4.6, we make the choice of

slice

xi
n( ) � C2nxi. (4.45)

That this gauge choice is admissible can be checked using the
gauge symmetries exhibited above. Substituting these conditions
into Eq. 4.32 we obtain

~S 0( ) � ~M∫ dτ

���
_�x
2

√
,

~S 1( ) � ~M∫ dτ

���
_�x
2

√
− 1

2C2

���
_�x
2

√⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦,
~S 2( ) � ~M∫ dτ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ���
_�x
2

√
− 1

2C2

���
_�x
2

√ − 1

8C4 _�x
2( )3/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
(4.46)

This is to be compared to the large-C expansion of the
relativistic tachyon action (Eq. 4.31), now rewritten as (x0 =
s/C)

S � ~M∫ dτ

�������
_�x
2

− _s2

C2

√

� ~M∫ dτ

���
_�x
2

√
− _s2

2C2

���
_�x
2

√ − _s4

8 C4 _�x
2( )3/2 +O C−6( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(4.47)

whose gauge-fixed form with s = τ agrees with the actions above.

4.3 Relation Between the ExpandedGalilean
and Carrollian Particle Actions
There is a close relationship between the Galilean and Carrollian
particle actions discussed in Sections 4.1 and 4.2. This can be
seen by comparing for instance the constraints implied by the
various actions in canonical form and the connection is illustrated
in Figure 1. In the figure we have also illustrated whether or not
the particle was obtained starting from phase space or
configuration space in the preceding sections.

A special role is played by the conditions in parentheses. These
arise as constraints for configuration space from considering the
action to formally depend also on one more variable, namely �x(N)
for massive Galilei and s(N) for tachyonic Carroll at order λN.
These variables do not appear in the configuration space action
S(N) and therefore their conjugate momenta are constrained to
vanish. Similarly, the expanded phase space actions contain the
(unconventional) symplectic term − _t(0)E(N) for massless Galilei

FIGURE 1 | Diagram showing schematically the relation between the different non-relativistic limits for different types of particles. The focus is here on the
constraints obeyed by the canonical variables. We have used the letterm for all types of masses that appear. In the case of the massless Galilei particle this corresponds
to the colour k, see Eq. 4.14. The conditions shown in parentheses correspond to the ones that arise from using the same number of time and space variables as
explained in the text.
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and _�x(0) · �p(N) for massive Carroll with the canonical
variables appearing nowhere else in the action and thus
also decoupling completely. The associated equations of
motion from phase space in parentheses only imply
constancy of a “top” canonical variable �p(N) or E(N). The
variables appearing in the figure can also have different
dimensions due to the different scalings used, but since
we are exhibiting a similarity in structures we use the
same letters in all cases.

There is a known duality between Galilei and Carroll limits
[10] that acts horizontally in the diagram in each row. The duality
was mentioned in the algebraic context in Section 2.1 and it
exchanges morally the spatial and temporal translations.14 This
duality relates massive to tachyonic particles because of the
interchange of the associate physical quantities E ↔ �p in the
mass-shell condition E2 − �p

2 � m2 which implies a change of
sign of the squared mass.

On top of this, there is new relationship between Galilei and
Carroll limits that acts across the diagonals, with only small
differences. If one disregards the conditions in parentheses one
can construct maps between the other constraints across
diagonals as follows. At order λN for the NW-SE diagonal
(black arrow) one exchanges E(n) ↔ E(N−n) and p(n) ↔
p(N−1−n). The reason for treating the E(n) and p(n) slightly
differently is due to the fact that p(N) appears in the special
condition in parentheses. Since we only allow for positive energies
in the massive Galilei case by construction, the constraints there
contain a choice of square of the constraints in the massive
Carroll case.

Similarly, the SW-NE diagonal (red arrow) corresponds to the
map E(n) ↔ E(N−1−n) and p(n) ↔ p(N−n) where now E(N) is treated
in a special way since it enters the special constraints. The special
condition in parentheses at lowest order is related to the energy of
the particle. The zero energy condition was important in recent
cosmological applications [40]. For the massless Galilei the
condition follows from the equation of motion only requires
the energy to be a constant but does not determine this constant
and is thus weaker. Intriguingly, the dynamics in the reduced
phase space is identical in both cases.15

We have verified explicitly that the maps indicated above
also hold at the next order in λ and from the construction of
the actions it seems clear that this correspondence will to
any order.

We note that a feature of both types of dualities (horizontal
and across the diagonal) is that the number of degrees of freedom
is not preserved. As an example in D = 3 + 1, the order λ0 of
massive Galilei has no degrees of freedom as there are four first-
class constraints for eight phase space variables. By contrast, the
horizontally mapped tachyonic Carroll has only two first-class
constraints for eight variables and therefore four degrees of
freedom in phase space, corresponding to the direction of the

motion of the tachyon. Going across the diagonal to massive
Carroll at order λ0, one finds six degrees of freedom in phase
space that correspond the arbitrary position of the Carroll particle
and the components of �p (which are unrelated to velocity).

4.4 Particle in Conformal Galilean
Space-Time
Massless relativistic particles in Minkowski space enjoy more
symmetries than massive ones in that the global symmetry is
extended from the Poincaré algebra to the conformal algebra.
This can be seen by looking at the action

S � ∫ dτ
_X
a _Xa

2e
(4.48)

and checking invariance of the equations under the
transformations (Eq. 3.29). For this one has to also consider
the relativistic transformation δβaSae � 4βax

ae of the einbein
under special conformal transformations. Under dilatations,
the einbein scales as δσDe = 2σe.

Expanding this action expressed in terms of the collective
coordinates (Eq. 3.30) leads to S = S(0) + S(1) + / with

S 0( ) � ∫ dτ
− _t20( )
2e 0( )

,

S 1( ) � λ∫ dτ
−2e 0( ) _t 0( ) _t 1( ) + δije 0( ) _xi

0( ) _x
j
0( ) + e 1( ) _t

2
0( )

2e20( )

(4.49)

where we have also expanded the einbein according to e =∑n≥0e(n)λ
n. For the expanded components this implies the

following transformations under special conformal
transformations

δe 0( ) � −4b 0( )t 0( )e 0( ) ,

δe 1( ) � −4b 1( )t 0( )e 0( ) − 4b 0( )t 1( )e 0( ) − 4b 0( )t 0( )e 1( )

+ 4δijβ
i
0( )x

j
0( )e 0( ). (4.50)

One can verify that these transformations, together with Eq.
3.31, leave the actions S(0) and S(1) invariant.

In order to see the physical degrees of freedom of S(0) and S(1)
we do the Hamiltonian analysis. The momenta are

πe 0( ) � 0 , E 0( ) � −zL 0( )
z _t 0( )

� _t 0( )
e 0( )

(4.51)
and the canonical Hamiltonian is

Hc � e 0( )
2
E2

0( ). (4.52)

We have two first-class constraints πe(0) � 0 , E2
(0) � 0; the

second constraint is irregular and we should consider E(0) = 0
as an effective constraint, see for example [75]. Since the
dimension of the phase space is four and we have two first-
class constraints there no physical degrees of freedom. In the case
of S(1) we have four constraints

14It is an exact duality in 1 + 1 dimensions, in higher dimensions it is only heuristic
since vector and scalar quantities are being interchanged.
15The massless Galilean particle has also appeared in the context of the optical Hall
effect [74] where the appropriate Galilean coadjoint orbits were used.
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πe 0( ) � 0 , πe 1( ) � 0 ,

ϕ 0( ) � 2E 0( )E 1( ) − �p
2

0( ) , E
2
1( ) � 0.

(4.53)

Again, there are irregular constraints the true effective
constraints are

πe 0( ) � 0 , πe 1( ) � 0 , �p 0( ) � 0 , E 1( ) � 0. (4.54)
The number of physical degrees of freedom is different from

zero this time, and we are left with two degrees in phase space,
namely t(0) and E(0). The fact that the number of degrees of
freedom changes with the order in the expansion also occurs in
the other cases prior to the choice of a slice. Once a slice
condition is applied the number of degrees of freedom is
unchanged.

4.5 Particle in Curved Background
We now study massive particle dynamics that are invariant under
the extended algebra with generators (Eq. 3.34). As shown in Ref.
68, expanding the usual (A)dS invariant particle metric using the
coordinates (Eq. 3.35) can be done in a way similar to non-
relativistic cases and leads at lowest orders to the following
actions

S 0( ) � m

2
∫ dτ _x2

0( ) ,

S 1( ) � m

2
∫ dτ _x 0( ) · _x 1( ) + σ

6
x2

0( ) _x
2
0( ) − x 0( ) · _x 0( )( )2( )[ ] , etc.

(4.55)
where m is the mass of the particle and all contractions are done
with the Minkowski metric ηab. The

Putting now together the equation of motion for the collective
coordinate

xa �∑
n>0

R−2m−1xa
m( ) (4.56)

we find from the individual equations of motion (when evaluated
at a given fixed order) that

€xa � 2σ
3R2

_x2xa − x · _x _xa( )
+ 2
45R4

x2 x · _x( ) _xa + 3x2 _x2xa − 4 x · _x( )2xa( ) +/

(4.57)
This equation can be checked to agree with the expansion of the
geodesic equation of a massive particle on an (A)dS background
for large radius of curvature R [68], written in appropriate
coordinates where the metric takes the form

ds2 � dxaηabdx
b + sinh2 r

r
− 1( )dxaPabdx

b (4.58)

where r = σxaηabx
b and Pab � ηab − xaxb

x2 . Therefore, we conclude
again that the infinite expansion of the symmetry allows us to
recover the expansion of dynamics in the desired limit of small
curvature.

4.6 Particle in Electro-Magnetic
Background
Particles in electric-magnetic backgrounds are subject to the
Lorentz force, where the relativistic equation of motion can be
written as

m€xa � Fab _x
b, (4.59)

where we have set the electric charge of the massive particle to
one. When the electro-magnetic field is constant, the Poincaré
symmetry is broken to translations Pa and FabMab as well as
εabcdFabMcd in D = 4 [1]. If one considers the space of all constant
electro-magnetic fields Fab with the obvious action of the Lorentz
algebra one can maintain the whole Poincaré algebra. One can
also consider constant shifts of Fab by introducing a new
generator Zab and the resulting system then is invariant under
the Maxwell algebra where Zab = [Pa, Pb] [27].

In order to describe varying electro-magnetic fields one has to
consider an even further extension of the Maxwell algebra as
shown originally in Ref. 28. Here, we recall how this works in a
free Lie algebra language [29], where we use the free Lie algebra
discussed in Section 2.2.1.

The starting point is a non-linear realisation of the Maxwell
free Lie algebra where the local symmetry is just the Lorentz
symmetry. This means that we are considering a coset element
whose gauge-fixed form is

g � ex
aPa e

1
2θ

abZab e
1
2ξ

ab,cYab,c/ , (4.60)
using the coordinates introduced in Eq. 3.36. The corresponding
Maurer–Cartan form

Ω � g−1dg � dxaPa + 1
2

dθab + dxaxb( )Zab

+ 1
2

dξab,c − θabdxc + 1
3
dxaxbxc( )Yab,c +/ �∑∞

ℓ�1
Ω ℓ( )

(4.61)

has an expansion in terms of the levels of the free Lie algebra
generated by the Pa.

We then consider the particle action given by the Lagrangian

Ldτ � m
������−ΩaΩa
√ + 1

2
fabΩab + 1

2
fab,cΩab,c +/ (4.62)

where the various Ωa, Ωab, Ωab,c are the pull-backs of the
components of the Maurer–Cartan form (Eq. 4.61) in an
obvious way. The fields fab, fab,c are new dynamical quantities
whose transformation under the Lorentz symmetry is dual to that
of the components of the Maurer–Cartan form. Note that the first
component Ωa has been treated differently, namely in such a way
that it would just give a free massive Poincaré particle.

The equations of motion implied by Eq. 4.62 are such that one
always has [29]

m€xa � fab _x
b, (4.63)

resembling the Lorentz force equation. While this equation is
universal, the dynamical field fab is obeying its own equation of
motion that needs to be solved. However, the Lagrangian also
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implies equations for the other fields that, in the truncation to
level ℓ ≤ 3 as shown in Eq. 4.62, lead to

_fab,c � 0 , _fab � −fab, c _x
c ,

_ξ
ab,c � 1

3
2θab _xc − θca _xb − θbc _xa( ) − 1

6
_xaxbxc − _xbxcxa( ) ,

_θ
ab � −1

2
_xaxb − _xbxa( ).

(4.64)
The evolution of the extra coordinates θab and ξab,c is therefore

determined16 by that of the lowest coordinate xa. The form of this
dependence resembles a multipole expansion of a system of particles
[76]. By contrast, the first line introduces other integration constants
for the dynamical f-fields. In the truncation shown we can solve the
corresponding equations and arrive at

fab � f0
ab + f0

ab,cx
c +/ , (4.65)

where the superscript 0 indicates an integration constant. In the
previous equation we recognise the beginning of a Taylor
expansion of an electro-magnetic field in Minkowski
coordinates. Therefore, the extended Maxwell space-time has
the potential to accommodate arbitrary electro-magnetic fields.

This can be made more precise by considering the next level in
the expansion [28, 29]. This reveals that the full free Maxwell Lie
algebra has too many generators compared to the Taylor expansion.
In particular, there are generators that result in non-integrable
contributions to fab, meaning that the field does not satisfy the
Bianchi identity z[afbc] � 0. To the level shown in Eq. 4.65 this is
guaranteed by the Young symmetry (Eq. 2.35) but it fails in general.

One can guarantee integrable field strengths by restricting the
Maxwell free Lie algebra consistently to a quotient, namely the
derivative quotient shown in Eq. 2.33 [29]. We note that this kind
of expansion is similar to what arises in unfolded dynamics [77,
78]. An open problem is the precise connection of the behaviour
of the higher coordinates θab, ξab,c and so on to multipole
moments [76]. Moreover, in the analysis above the electro-
magnetic field was a background field and it would be
interesting to extend the analysis such that it becomes
dynamical, i.e., such that the Maxwell equations also emerge.

5 CONCLUSION

In this paper, we have studied the algebraic structures of
corrections to kinematic algebras, using the methods of Lie
algebra expansions and free Lie algebras. This has allowed us
to describe several physically interesting situations starting from
generalised configuration spaces and by considering particle
actions associated with them. From these we could recover
systematically corrections to strict (non-relativistic, flat space,
field free) limits. We paid particular to attention Carroll limits
and their relation to Galilei. It would be interesting to exploit the

Galilei/Carroll dualities and relations put forward in Section 4.3
for applications such as gravity or hydrodynamics.

There are several avenues opened up by our approach. The
first one is to extend our construction of generalised
configuration spaces to that of generalised phase spaces and to
see which conditions are needed to recover systematically
corrections in phase space language. Besides particle actions
one could also consider extended objects as probes. There are
typically many more kinematic set-ups available due to the
extended nature of the object [7–10, 53]. We anticipate a
similar multitude of generalised configuration spaces.

The particle actions considered in this paper were obtained either
geometrically, using the invariant metrics of the expanded algebras,
or from their corresponding phase space versions. An alternative
approach to particle actions is given by non-linear realisations
[30–35] whose generalisation to our infinite-dimensional algebras
would be interesting to explore in detail. Non-linear realisations are
also tied closely to themethod of co-adjoint orbits that have not been
studied for expanded algebras to the best of our knowledge.17

Another interesting possibility to explore could be the possible
interaction among tachyonic Carroll particles. Let us first
consider two free tachyonic Carroll particles with spatial
positions �x1 and �x2 and whose action is given by

S � S10( ) + S20( ) � ∫ dτ
���������
~M

2

1
_�x1 · _�x1

√
+
���������
~M

2

2
_�x2 · _�x2

√[ ] (5.1)

where ~Mi are the masses of the two particles. Like in a model of
two interacting relativistic particles [81, 82] we introduce the

interaction among them by considering masses that depend on

the relative position r �
���������
( �x1 − �x2)2
√

of the coordinates

~M
2

i r( ) � ~M
2

i − V r( ), (5.2)
whereV is a scalar function under spatial rotations. The action for
the interacting model is given by Eq. 5.1 with the substitution
~M
2
i → ~M

2
i (r). The primary constraints of the model are

~ϕi � �p 2
i − ~M

2

i r( ) � 0. (5.3)
There is also the secondary constraint

( �p1 + �p2) · ( �x1 − �x2) � 0. The possible physical implications of
this model will be analysed elsewhere.

Our analysis was restricted to particle models and it would be
interesting to generalise it to field theory. A bridge in that direction
might be provided byworld-line descriptions of field theory processes,
see for instance [83–85]. Among other things this requires a
quantisation and generalisation of our considerations to interacting
systems.Different non-relativistic limits offield theories can be studied
by considering limits of the ratio between the “electric” and “magnetic”
contributions to a field’s Hamiltonian energy, see for instance [43].
The electric contribution is the one due to time derivatives of the field
while the magnetic one stems from space derivatives. As these two are
related by the speed of light, making one larger than the other can also

16up to integration constants that reflect the global Maxwell symmetry.

17For the case of affine algebras, studies of co-adjoint orbits can be found for
example in Refs. 79 and 80.
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be thought of as a limit in the speed of light and therefore
directly suggests to identify the electric limit as the Carroll
limit and the magnetic limit as the Galilei limit. Whether this
intuitive picture holds up to a more detailed study when
applying the world-line picture to field theory is left to
future work.
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