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The simultaneous presence of normal (Brownian) diffusion and non-Gaussian statistics of
particle displacements has been identified as a recurring motif for a broad spectrum of
physical and biological systems. While not yet fully understood, it is generally accepted that
a key ingredient for observing this Brownian yet non-Gaussian (BNG) diffusion is that the
environment hosting the particles appears stationary and homogenous on the small length
and time scales, while displaying significant fluctuations on larger distances and/or longer
time scales. To date, most of the experimental studies on systems displaying BNG
diffusion have been performed in direct space, usually via a combination of optical
microscopy and particle tracking to quantify the particle’s self-diffusion. Here, we
demonstrate that a reciprocal space analysis of the density fluctuations caused by the
particle motion as a function of the wave vector enables the investigation of BNG diffusion
in situations where single-particle tracking is impossible. To accomplish this aim, we use
confocal differential dynamic microscopy (ConDDM) to study the BNG dynamics of diluted
sub-resolution tracers diffusing in a glassy matrix of larger hard spheres. We first elucidate
the nontrivial connection between the tracer self-diffusion and collective relaxation of the
resulting density fluctuations. We find that the experimentally determined intermediate
scattering functions are in excellent agreement with the recent predictions of a “diffusing
diffusivity” model of BNG diffusion, whose analytical predictions are available only in
reciprocal space. Our results show that studying BNG diffusion in reciprocal space can be
an invaluable strategy to access the fast, anomalous dynamics occurring at very small
scales in crowded environments.

Keywords: non-Gaussian diffusion, differential dynamic microscopy, colloidal glasses, diffusion in crowded
environments, quantitative microscopy, diffusing diffusivity

1 INTRODUCTION

According to Einstein’s celebrated theory of diffusion, the Fickian relaxation of a concentration
profile is the macroscopic manifestation of the random Brownian motion performed by solute
particles. The trajectory of each particle, which is the result of a large number of “kicks” from the
solvent molecules, can be thought of as a sequence of random independent steps, extracted from
some probability distribution with finite variance. Under these hypotheses, the mean square
displacement (MSD) of the particles increases linearly with the number of steps (and thus with
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the delay time), and the probability distribution function (PDF)
of particle displacements is a Gaussian function, in agreement
with the central limit theorem. Any significant violation of one or
more of the abovementioned hypotheses leads to some form of
anomalous diffusion, characterized by a nonlinear scaling of the
MSD with time and/or by a non-Gaussian PDF of particle
displacements [1, 2]. Various examples of nonlinear MSD
scaling can be found in literature, the typical cases being
subdiffusion in a crowded environment [3], in the cell
cytoplasm [1], in viscoelastic fluids [4], or in fluids with
memory and superdiffusion in active [5], driven, [6], or aging
[7] systems.

The observation that it is possible to have a linear scaling of the
MSD while simultaneously escaping the central limit theorem
(i.e., without Gaussian statistics of particle displacements) is
relatively recent [8]. After these first reports of Brownian yet
non-Gaussian (BNG) diffusion, the same pattern has been
recognized for a variety of soft and biological systems [9–12],
with ongoing efforts to provide some kind of universal
explanation. An early idea [8], later formalized within the
general concept of superstatistics [13], is that each particle
performs a simple Brownian motion, with the MSD linearly
scaling with time and a Gaussian distribution of the
displacements. However, if different particles have different
diffusivities D distributed according to a certain
“superstatistical” probability distribution P(D), the resulting
ensemble-averaged MSD remains linear, while the PDF of
particle displacements is no longer Gaussian. This can be
easily understood as a straightforward mathematical
consequence of the fact that the weighted average of linear
functions of time remains linear, whereas weighting Gaussian
functions with different widths does not result in a Gaussian
function. One of the simplest implementations of this concept
could be a collection of highly polydisperse particles embedded in
a Newtonian fluid [14]. An alternative compatible scenario entails
a heterogenous environment comprising locally homogenous
regions of different effective viscosity, explored by identical
particles. Within this framework, the PDF of particle
displacements is a weighted average of Gaussian functions
whose variances increase linearly with the delay time Δt. As a
consequence, the functional form of the PDF is fixed, and
considering different delay times Δt simply corresponds to a
different scaling of the same master curve. This prediction is not
compatible with the frequently reported observation of a
systematic change in the PDF of particle displacements, which
typically becomes closer and closer to a Gaussian function as the
delay time Δt increases [8].

To account for this behavior, the elegant idea of diffusing
diffusivity has been proposed by Chubynsky and Slater [15].
According to the diffusing diffusivity scheme, the diffusion
coefficient characterizing the motion of each particle is a
stochastic process evolving in time to account for an
underlying slow dynamics that may be due, for instance, to a
slowly restructuringmatrix or to the fact that each tracer moves in
a heterogenous environment, across patches with different
physical properties. The previously described superstatistics
scenario is recovered in the short-delay time limit [16, 17] of

the diffusing diffusivity framework, whichmakes the latter a more
general model for describing the BNG diffusion. After the seminal
work of Chubynsky and Slater, various implementations of the
diffusing diffusivity scenario have been proposed, some of them
leading to exact, closed-form expressions [16, 18, 19].
Intriguingly, the predictions of the aforementioned models
take their simplest form in reciprocal space, that is, when
expressed in terms of the spatial Fourier transform of the PDF
of particle displacements.

This contrasts with the observation that most of the
experimental work on BNG diffusion has been performed in
direct space by optical microscopy in combination with the
particle tracking analysis. The direct space approach is very
powerful: it provides direct access to the particle trajectories
and derived quantities such as the PDF of particle
displacements; moreover, it is often time- and space-resolved,
which allows spotting potential spatial heterogeneity and/or non-
stationarity of the particle dynamics [11]. On the other hand,
ensemble-averaging techniques, such as dynamic light scattering,
fluorescence correlation spectroscopy, or differential dynamic
microscopy (DDM), can study systems for which the optical
signal of a single particle is too weak to be reliably determined in a
space- and time-resolved fashion [20, 21]. In particular, DDM
works by acquiring and analyzing microscope movies that have
been obtained with a variety of contrast mechanisms, including
light scattering (similar to dynamic light scattering) and
fluorescent emission (similar to fluorescence correlation
spectroscopy) [22, 23]. However, while fluorescence correlation
spectroscopy probes the particle dynamics on a fixed scale or on a
limited selection of different length scales [24, 25] that are small
enough to provide a sizeable number of fluctuations in the
observed volume, dynamic light scattering and DDM probe
the sample dynamics by measuring the relaxation of collective
concentration fluctuations at different wave vectors q via the
study of the intermediate scattering function (ISF) f(q,Δt). As a
matter of fact, measuring the self-ISF fself(q,Δt) over a suitably
large wave-vector range is in principle equivalent to a direct
determination of the PDF P(Δx,Δt) of particle displacements as
the two functions are linked by a spatial Fourier transform
operation: fself(q,Δt) � P̂(Δx,Δt). DDM, thus, combines the
use of an imaging setup, the freedom to choose among
different contrast mechanisms and the intrinsic access to
multiscale information to open up exciting possibilities with a
variety of different systems [26, 27]. In recent years, the potential
of DDM to study transport phenomena in complex media has
been explored in different directions. Notable examples include
the microrheological characterization of viscoelastic fluids
[28–30] and the investigation of anomalous transport and
relaxation dynamics of crowded biopolymeric networks both
in vivo [31, 32] and in vitro [33–35].

In this study, we use confocal DDM (ConDDM) [36] to
characterize the dynamics of small diluted tracers diffusing in
a dense matrix of larger colloidal hard spheres with volume
fractions above the glass transition. While the same system
has been studied previously [37–39], we present here for the
first time a fully quantitative analysis of the data in the framework
of BNG diffusion, inspired by a previous study [10]. In Ref. [10],
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the motion of highly diluted tracers in a matrix of suspended
larger hard-sphere particles at different concentrations (up to
about ϕ = 0.55) was characterized by particle tracking and shown
to exhibit BNG diffusion. In contrast, here, we consider much
larger volume fractions (above the glass transition), a binary
mixture of colloidal particles with a smaller but still significant
size disparity (here 0.18 vs. previously [10] 0.13), and we explore a
wider time window. Binary mixtures of hard spheres represent a
simple model system. Studies on concentrated mixtures revealed
interesting dynamical behavior [40–48]. For example, for size
ratios 0.1 and 0.2, different glass and gel states occur, in which
either both species are dynamically arrested or only the large
particles are arrested while the small particles remain mobile
within the glass of large particles [43, 45, 49, 50]. In this study, we
focus our attention on this last regime (which is sometimes
referred to as a “single-glass” [39] state), where small particles
behave like diluted tracers exploring a complex, heterogenous,
albeit dynamically quasi-arrested environment, which represents
a very promising setting for the observation of BNG diffusion.

Indeed, our results confirm that the investigated samples
exhibit BNG diffusion, for which we show that the functional
form and the scaling properties of the measured ISF are in
excellent agreement with those of a recently proposed
analytical expression obtained within a “diffusing diffusivity”
model [16, 19]. We also build on an approach originally
proposed in Refs. [5, 32] to study intracellular and
intercellular motility, which we extend here to extract the
MSD and the non-Gaussian parameter directly from the
experimentally determined ISFs. Finally, we propose a simple
model to elucidate the nontrivial connection between self-
diffusion of tracer particles—typically probed in real
space—and the collective relaxation of the associated density
fluctuations, as probed by the ConDDM reciprocal space analysis.

2 MATERIALS AND METHODS

2.1 Samples
The samples were prepared as in Ref. [37]. Shortly, sterically
stabilized polymethylmethacrylate (PMMA) spheres of diameters
σl = 3.10 μm (polydispersity 0.07) and σs = 0.56 μm
(polydispersity 0.13) are dispersed in a refractive index and
density-matching mixture of cis-decalin/cycloheptylbromide to
form binary mixtures with different mixing ratios and total
volume fractions. The use of a density-matching solvent
avoids sedimentation effects on the time- and length-scales
probed in our experiments [37]. The smaller particles are
fluorescently labeled with nitrobenzoxadiazole. Upon salt
(tetrabutylammoniumchloride) addition, this system presents
hard-sphere–like interactions [51, 52].

2.2 Confocal Microscopy
Confocal microscopy experiments were performed by using a
Nikon A1R-MP confocal scanning unit mounted on a Nikon Ti-
U inverted microscope with a 60× Nikon Plan Apo oil immersion
objective (NA = 1.40). We acquired 104 images with 512 × 512
pixels (corresponding to 107.5 × 107.5 μm2) at 30 fps by focusing

on a plane at a depth of approximately 30 μm from the coverslip.
The confocal images were acquired with the maximum pinhole
diameter allowed by the microscope, 255 μm. The experiments
were performed at a temperature of T = 293 ± 2 K.

2.3 ConDDM Analysis
A DDM analysis of the confocal images was performed as
described in Refs. [20, 36]. In brief, we calculated the image
structure function D(q,Δt) � 〈|Î(q,t + Δt) − Î(q,t)|2〉, where
Î(q,t) is the spatial Fourier transform of the image intensity
distribution I(x,Δt) at time t and the symbol 〈·〉 indicates a time
average over the initial time t. The image structure function is
connected to the collective ISF f(q,Δt) through the relation:

D q,Δt( ) � A q( ) 1 −R f q,Δt( )[ ]{ } + B q( ), (1)
whereR[·] is the real part, B(q) is an additive term accounting for
the noise in the detection chain, and A(q) accounts for the static
scattering amplitude [20, 22]. In most cases, including this study,
ISF is a real quantity, that is,R[f(q,Δt)] � f(q,Δt). In addition,
if the dynamics is isotropic, the image structure function is
expected to exhibit circular symmetry, and one can consider
its azimuthal average D(q,Δt), where q = |q|. Reliably extracting
f(q,Δt) from D(q,Δt) requires properly estimating A(q) and B(q).
In principle, one could use the fact that f(q,Δt→ 0)→ 1 and obtain
the camera noise contribution B(q) as the limit forΔt→ 0 ofD(q,Δt).
In practice, this procedure is prevented by the fact that Δt is bounded
frombelow by the inverse of the frame rate.We, thus, fit a polynomial
function of the second degree to D(q,Δt) over a narrow time interval
including the smallest accessible lag-times (typically the first five) and
estimate B(q) as the intercept of the best fitting curve [53]. Once B(q)
is estimated, we could, in principle, obtainA(q) as the long-time limit
ofD(q,Δt)−B(q) since f(q,Δt→∞)→ 0. Unfortunately, the complete
decorrelation of f(q,Δt) cannot be observed for all q -values within the
acquisition time interval. To overcome this limitation, we used the
procedure introduced in Ref. [54]. We first compute a background
image I0(x) as the minimum projection of each pixel of the entire
stack in time I0(x) = min{I(x,t)}t. Considering the lowest intensity
value for each pixel during the acquisition time allows to efficiently
remove the contribution of the rapidly moving small particles and
hence a fairly accurate reconstruction of the background intensity,
which in the case of glassy samples is mostly given by the auto-
fluorescence of the large spheres (see Figure 5). We then estimate
A(q) as the time-averaged power-spectrum of the individual
images after the subtraction of the background image
A(q) � 〈|Î(q,t) − Î0(q)|2〉 − B(q). Once A(q) and B(q) are
computed, we obtain the collective ISF f(q,Δt) by inverting Eq. 1.

2.4 Model-Free Determination of the Mean
Square Displacement and of the
Non-Gaussian Parameter with ConDDM
As shown explicitly in Section 3.4, the collective ISF f(q,Δt) can
be written as the sum of its self-part fself(q,Δt) and its distinct part
fdist(q,Δt). In particular, fself(q,Δt) coincides with the Fourier-
transform of the self-van Hove function, that is, the PDF P(Δx,Δt)
of particle displacements [55]
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fself q,Δt( ) � ∫ d2Δx P Δx,Δt( ) e−jq·Δx . (2)

As long as P(Δx,Δt) is isotropic, fself(q,Δt) depends only on
q = |q| and can be expanded in cumulants for q → 0 [28, 56].

−log fself q,Δt( )( ) � 〈|Δx Δt( )|2〉
4

q2

+1
2
α2 Δt( ) 〈|Δx Δt( )|2〉

4
q2[ ]2

+/ , (3)

where MSD(Δt) = 〈|Δx(Δt)|2〉 is the 2D mean square
displacement and α2 (Δt) is the 2D non-Gaussian parameter

α2 Δt( ) � 1
2
〈|Δx Δt( )|4〉
〈|Δx Δt( )|2〉2 − 1. (4)

Inspection of Eq. 3 suggests a strategy to simultaneously access
MSD and the non-Gaussian parameter by focusing on the low-q
behavior of the self ISF for a fixed time delay Δt, which we
implement in our ConDDM analysis. We consider only the q-
values and time delays Δt, for which fself(q,Δt) has relaxed by
less than 25% (see Figure 1). For each time delay Δt, this
condition identifies as an upper bound qu for q. The lower
bound qc ≃ 0.9 μm−1 is a cutoff wave vector which is introduced
to avoid the artifacts related to the confocal optical sectioning,
as described in detail in Section 3.1. If the interval [qc,qu]
contains at least fifteen data points, we fit a function of the
form a + cq2 + dq4 to log(fself(q,Δt)), obtaining the parameters
a, c, and d of the best fitting curve. Finally, we estimate the 2D
MSD and non-Gaussian parameter for the considered time delay as
MSD = −4c and α2 = 2d/c2, respectively. This procedure can be
considered a generalization of the one proposed in Ref. [5].

3 RESULTS AND DISCUSSION

3.1 Brownian and Gaussian Diffusion of
Freely Moving Tracer Particles
We first consider a one-component sample, where only the small
particles (of diameter σs = 0.56 μm) are present, suspended at a
very low volume fraction (ϕs < 0.001) in a density-matching
solvent. In this condition, the particles essentially do not interact,
and each of them performs an independent Brownian motion.
Importantly, in the absence of interactions, one has f(q,Δt) = fself
(q,Δt). Supplementary Movie SM1 shows a 10-s-long portion of
a longer image acquisition: the fluorescent signal of a single
particle is too low compared to the background noise to
enable reliable tracking and subsequent reconstruction of the
particle trajectories in real space; in contrast, the excellent
stability of the fluorescence signal over time and the absence
of appreciable bleaching allow for a quantitative analysis with
ConDDM [20, 22, 36].

Representative normalized ISFs obtained from the ConDDM
analysis are shown in Figure 2A. Rescaling the horizontal
axis with q2 (Figure 2B) shows that a simple exponential
model f(q,Δt) = e−Γ(q)Δt provides an excellent fit to the data
over a wide range of wave vectors. In particular, the obtained
relaxation rate Γ(q) displays a quadratic dependence on q for
q ≳ 0.9 μm−1, whereas for lower values of q, it deviates
significantly from this behavior and tends to saturate to a
constant value Γc ≃ 0.1 s−1. As discussed in Ref. [36], this is
due to the fact that the thickness lc of the optical section of the
confocal microscope sets a characteristic wave vector qc = 1/lc
below which, similar to fluorescence correlation spectroscopy, the
relaxation of the ISF is dominated by the fluctuation in the number
of particles within the optical section; such relaxation occurs with

FIGURE 1 | Model-free determination of the mean square displacement and non-Gaussian parameter with ConDDM. (A) Representative normalized ISFs as a
function of the delay time Δt for different values of the magnitude of the wave vector q (increasing from blue to red). The gray shaded area marks the region lying below the
threshold value of 0.75 of the ISFs that we considered for the determination of the MSD. Large circles correspond to the allowed q values, which are found as the
intersection of the ISFs and some representative delay timesΔt (colored vertical lines) together with the condition on themaximum relaxation. (B) Log–log plot of the
ISFs as a function of the magnitude of the wave vector for the same representative delay times Δt of the panel (A). (C)MSD estimated for each delay time as the best fit to
the logarithm of the self-ISFs log (fself (q,Δt)) withEq. 3. Large circles correspond toΔt shown with the same colors in panels (A) and (B). The representative data shown in
this figure have been obtained on a diluted (φs < 0.001) suspension of colloidal particles of diameter σ = 0.56 µm, as described in the main text.
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a q-independent characteristic rate Γc ≃ D0/lc
2, corresponding to

the inverse of the diffusion time across the optical section. Since, at
least as far as the particle motion is isotropic, the value of qc (≃
1 μm−1 in our experiments) is determined only by the properties of
the optical system, we will restrict our attention to a q-range that is
bounded from below by qc.

In this q-range, the experimentally determined relaxation
rate Γ(q) can be fitted by a homogenous quadratic function
D0,aq

2, which provides the estimate D0,a = 0.28 ± 0.03 μm2/s for
the diffusion coefficient of the particles (Figure 2B, inset). This
value can be compared with the result obtained from a linear fit
4D0,bΔt of the MSD (see Methods), which provides the estimate
D0,b = 0.29 ± 0.02 μm2/s (Figure 2C). The non-Gaussian
parameter α2(Δt), shown in Figure 2D, points to essentially
Gaussian dynamics with deviations occurring only for very
small time delays. Such deviations are not to be interpreted
as non-Gaussian dynamics as they probably originate from the
large uncertainty associated with the fact that α2(Δt) is obtained
as the ratio of two quantities that become indistinguishably
small for Δt → 0 (see Section 2.4).

3.2 Brownian Yet Non-Gaussian Diffusion of
Tracer Particles in a Glassy Environment
Once the dynamics of a dilute suspension of small particles
diffusing freely is known, we proceed to study these small
particles in a dense matrix of larger particles (of diameter σl ≃
5σs and volume fraction ϕ = 0.60, see Supplementary Movie
SM2). The volume fraction of the small particles is ϕs = 0.006. The
ISFs obtained with ConDDM at different q-values are shown in
Figure 3A. Some curves display a nonzero plateau for t → ∞,
which suggests non-ergodicity arising from the inability of the
system to fully explore the configuration space during the
observation time. As proposed in Ref. [37], this can be easily
understood as a consequence of the fact that the small particles
can freely move only in the voids left by the large particles, which
are almost completely frozen in their positions. Here, we
substantiate this picture with a simple model (see Section 3.4)
according to which the expression

f q,Δt( ) � 1 − α q( )[ ]fself q,Δt( ) + α q( ) (5)

FIGURE 2 | ConDDM analysis of small non-interacting colloidal particles. (A) Representative collective ISFs. Gray lines represent ISFs for wave vectors
q < qc = 0.9 μm−1 that we exclude from further analysis (see main text for more details); colored lines represent ISFs for different wave vectors q ranging from
qc (red) to 7.5 μm−1 (black). (B) Same data of (A) plotted as a function of the rescaled time delay q2Δt. The green dashed line is a simple exponential function
e−D0,aq2Δt with D0,a obtained by fitting an homogenous quadratic function D0,aq

2 to the relaxation rate Γ(q) (inset) for q > ql (black dashed line). Γ(q) is
estimated by fitting an exponential model e−Γ(q)Δt to the ISFs shown in panel (A). (C)Mean square displacementMSD (Δt) and (D) non-Gaussian parameter α2
(Δt) extracted from the ISFs in the low wave-vector limit along with the condition q > qc. The black dotted line in (C) is the best fitting curve to the MSD with a
linear model MSD (Δt) = 4D0,bΔt, whereas the one in (D) corresponds to the mean value α2(Δt) ≃ 0.08.
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holds. α(q) is a time-independent non-ergodicity parameter,
which reflects the matrix structure (see Eq. 21 for an
approximate analytical expression of α(q)). Eq. 5 shows that
1) the collective ISF f (q,Δt) is fully determined by its self-part fself
(q,Δt) and 2) the presence of a kinetically arrested matrix
introduces a q-dependent plateau α(q).

The situation in which small particles can diffuse in the void
space of a slowly evolving glassy matrix is compatible with the
diffusing diffusivity scenario, in which particles can change their
diffusivity by exploring different local environment and whose
analytical predictions [16, 18, 19] can be cast in reciprocal space
for a diffusion coefficient D that fluctuates with a characteristic
correlation time τ0. By introducing Γ(q) = Dq2 and
β � ����������

1 + 2Γ(q)τ0
√

, the self-ISF can be expressed as

fself q,Δt( ) � 4βe− β−1( )Δt/τ0
1 + β( )2 − 1 − β( )2e−2βΔt/τ0[ ]n/2

(6)

where n is a free parameter defining the dimensionality of the
stochastic process of D. The mean square displacement MSD can
be then evaluated as follows

MSD Δt( ) � −2 z2fself q,Δt( )
zq2

[ ]
q�0

� 2nDΔt, (7)

showing a linear dependence with time Δt. Inserting Eq. 6 with
n = 2 in Eq. 5 provides a model that can be fit to our
experimental collective ISF. The fit is performed at fixed q,
the fitting parameters being Γ, τ0, and α. The results show that
the ISFs are well-described by the model (Supplementary
Figure S2A) but point out that our experiments were too
short to capture the characteristic time τ0 of the fluctuating
diffusive coefficient (Supplementary Figure S2B), which is
expected to be a q-independent quantity.

For our particular experiments, it is, thus, useful to focus on
the two limiting regimes (for n = 2):

• Γ(q)τ0 ≫ 1, in which the density fluctuations relax faster
than the characteristic fluctuation time of the diffusion
coefficient, and one has

fself q,Δt( ) ≃ 1
1 + Γ q( )Δt; (8)

FIGURE 3 | ConDDM analysis of small particles exploring a glassy environment (ϕ = 0.60) (A) Representative collective ISFs for different q-values: gray lines
represent the ISFs for wave vectors q < qc, whereas ISFs from cyan to black correspond to wave vectors in the range [0.9–7.5] μm−1. (B) Representative self-ISFs for the
same q-range of panel (A) plotted as a function of the rescaled time delay q2Δt. The red dashed line corresponds to the Lorentzian-like model fself � [1 + D60,aq2Δt]−1,
whereas the green dashed line represents a simple exponential model for the ISFs f(q,Δt) � e−D60,aq2Δt. In the inset, Γ(q) obtained by fitting to the experimental data
the one parameter model f (q,Δt) = [1 + Γ(q)Δt]−1 is shown. The black dashed line corresponds to the best fit to the rate with a quadratic form Γ(q) = D60,aq

2, from which
D60,a = (11 ± 1) × 10–2 μm2/s is estimated. (C)MSD (Δt) and (D) non-Gaussian parameter α2 (Δt) obtained from the ISFs in the low q limit together with the condition
q > qc. The black dotted line in (C) corresponds to the best linear fit to the MSD (Δt) = 4D60,bΔt, with D60,b = (10.5 ± 0.5) × 10–2 μm2/s. The black dashed line in (D)
shows the mean value �α2 estimated for the diluted particles.
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• Γ(q)τ0 ≪ 1, in which the diffusion coefficient evolves faster
than the relaxation of the density fluctuations

fself q,Δt( ) ≃ e−Γ q( )Δt. (9)
In these two regimes, the self-ISF exhibits the same scaling
properties fself(q,Δt) = g (q2Δt) but distinct functional forms.

Wenote that the second regime corresponds to ordinary diffusion,
where the PDF of 2D particle displacements corresponding to the
exponentially relaxing ISF in Eq. 9 is a Gaussian function

P Δx,Δt( ) � 1
4πDΔt exp − |Δx|

2

4DΔt( ). (10)

On the other hand, the PDF corresponding to the first regime,
which can be obtained as the 2D Fourier transform of the self-ISF
in Eq. 8, is

P Δx,Δt( ) � 1
2πDΔtK0

|Δx|����
DΔt

√( ), (11)

where K0 is the modified Bessel function of the second kind of
order 0 [57]. As it can be appreciated from Supplementary
Figure S1 in ESI, where representative curves are shown, in
this case, the PDF displays strongly non-Gaussian, exponential-
like tails.

The results shown in ESI Supplementary Figure S2, suggest
adopting Eq. 8 as a model for the self-ISF. Such a model is in
excellent agreementwith our experiments (Figure 3). In particular, the
collective ISFs (Figure 3A) collapsewell on a singlemaster curvewhen
converted to the self-ISF and plotted as a function of the rescaled time
q2Δt (Figure 3B). The inset of Figure 3B shows the extracted q-
dependent relaxation rate, which can be fitted by Γ(q) = D60,aq

2 to
provide a diffusion coefficient D60,a = (11 ± 1) × 10–2 μm2/s.
This diffusive scaling along with the Lorentzian-like fitting
model fself(q,Δt) = [1 + Γ(q)Δt]−1 indicates that although the
small particles exhibit Brownian diffusion, the probability
distribution of the displacements is no longer Gaussian.

To further support our findings, we show in Figures 3C,D the
particle MSD and the non-Gaussian parameter extracted from the
self-ISFs, respectively. The MSD displays a linear scaling with a
diffusion coefficient D60,b = (10.5 ± 0.5) × 10–2 μm2/s, which is in
agreement withD60,a.Moreover, the non-Gaussian parameter α2 now
is significantly different from zero and hence points to non-Gaussian
dynamics. α2 was obtained, according to Eq. 3, by considering the
first two terms of the cumulant expansion of the ISF. In principle, the
expansion could be extended to the calculation of cumulants (or
moments) of arbitrary order, which can then be used to retrieve the
full PDF of particle displacements. In practice, the noise on the data
rapidly makes this procedure numerically extremely unstable,
rendering the determination of higher-order cumulants very
challenging. An alternative strategy to retrieving direct-space
information consists in adopting a suitable analytical model for
the ISFs (like the ones in Eqs 6–8), determining the free
parameters via a fitting procedure, and estimating the PDF as the
(analytically or numerically evaluated) Fourier transform of this
model function. According to the aforementioned discussion, the
application of this procedure to our data results in a prediction for the

PDF of particle displacements in the form of Eq. 11, which is
characterized by exponential-like tails (see Supplementary Figure
S1). This result is in slight disagreement with the findings of Ref. [10],
where themotion of diluted small particles diffusing in suspensions of
larger spheres is investigated. In that case, the PFDs of particle
displacements were found to show consistent deviations from
Gaussianity and robust diffusive scaling but without a clear
indication of an exponential tail. On the one hand, this
discrepancy can originate from the fact that in Ref. [10] the large
particles were always in a fluid-like state, and thus a clear-cut
separation of the time scales associated with tracer diffusion and
structural rearrangement of the matrix was not present. Moreover,
compared to Ref. [10], in our experiments, the unbalance between the
size of the small and large particles is less pronounced. As a
consequence, in the present case, the small particles move within
the relatively narrower “voids” formed by the large spheres, and this is
expected to enhance hydrodynamic coupling and sensitivity to the
local environment.

3.3 Tuning the Properties of the Glassy
Matrix
When the volume fraction ϕ of the large particles is increased, we
expect the dynamics of the small particles to change. This
expectation is only partially confirmed by a ConDDM analysis of
the movies acquired for ϕ = 0.60, ϕ = 0.61, and ϕ = 0.62 (Figure 4).
The relative volume fraction of the small particles is xs = ϕs/ϕ = 0.01
for all cases, meaning that ϕs is slightly different for the three
samples. Most of the features outlined in the previous section for
ϕ = 0.60 are also observed for the higher volume fractions. In
particular, the self-ISFs for ϕ= 0.61 and 0.62 show a scaling similar to
the one of ϕ = 0.60 when plotted as a function of the rescaled time
q2Δt (Figure 4A). The relaxation rates obtained from the best fitting
curves using the model in Eqs 5, 8 for the three different
concentrations are shown in Figure 4B, in which we observe a
modest change of the diffusion coefficient for this narrow range of
volume fractions. This result is confirmed byMSDs (Figure 4D) and
non-Gaussian parameters (Figure 4E), which also show minor
changes as a function of the volume fraction.

The most evident difference between the experiments performed
at different ϕ is found in the magnitude of α(q) which for ϕ = 0.61
and ϕ = 0.62 is significantly larger than for ϕ = 0.60 (Figure 4C). The
fact that α(q) is significantly different from zero even in the high-q
limit implies that the small particles are not free to diffuse, even not
over small distances. As discussed in more detail in Section 3.4, this
suggests the presence of an immobile fraction (of about 6% and 10%
for ϕ = 0.61 and ϕ = 0.62, respectively) of small particles stuck in the
voids of the matrix. The appearance of an immobile fraction of
particles upon increasing the volume fraction can be qualitatively
appreciated in Figure 5, where we show the minimum projection of
the image sequence for ϕ = [0.60, 0.61, 0.62] and in which the stuck
small particles appear as bright spots. This effect was not observed in
previously published molecular dynamics simulations [37], which
indicated that small-particle localization is not to be expected for size
ratio δ < δc ≃ 0.35, for all the investigated volume fractions.
Therefore, the observed increase in the number of stuck particles
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may be attributed to system aging or particle aggregation, which
would both prevent particles from freely exploring the matrix.

3.4 Approximate Calculation of the
Non-Ergodicity Factor
As demonstrated in Refs. [37, 39], the binary mixtures considered in
Section 3.2 are in a “single-glass” state, that is, the dynamics of the
large particles is kinetically arrested, whereas the small particles are
not arrested and remain free to diffuse over arbitrarily large
distances. Therefore, the self-dynamics of the small particles is
expected to be ergodic. In this condition, the glassy nature of the
matrix formed by the large particles induces a decoupling between
the self and the collective ISF of the small particles: while fself(q,Δt)

can completely relax to zero for Δt → ∞; the f(q,Δt) displays a
nonzero plateau, usually referred to as the non-ergodicity
factor α(q), which reflects the spatial modulations in the
collective dynamics imposed by the partially frozen
structure of the large spheres [39].

While a detailed theoretical discussion of these aspects is
beyond the scope of this study (see, e.g., Refs. [39, 49] for a
thorough treatment), we present here a simplified calculation
aimed at 1) providing a simple physical picture for the emergence
of a finite non-ergodicity factor, 2) providing a prediction for the
q-dependent non-ergodicity factor to be compared, at least
qualitatively, to the experimental results, and 3) showing that,
at least for highly diluted tracers, the self-part of the ISF can be
reliably extracted from the collective ISF.

FIGURE 4 |Changes in the dynamics of the small particles upon increasing the volume fraction of the glassy matrix from ϕ = 0.60 (blue), to ϕ = 0.61 (red), and
ϕ = 0.62 (green). (A) Representative self-ISFs plotted as a function of the rescaled time q2Δt. The red dashed lines represent the model fself � [1 + Dϕ,aq2Δt]−1,
whereas the green dashed lines correspond to fself � e−Dϕ,aq2Δt. For each concentration, Dϕ,a is estimated from a quadratic fit to the q-dependent relaxation rates
Γ(q) obtained by fitting the model given in Eqs 5, 8 to the ISF (D60,a = (11 ± 1) × 10–2 μm2/s, D61,a = (9.0 ± 0.8) × 10–2 μm2/s and D62,a = (9.8 ± 0.5) × 10–2 μm2/s).
(B) Relaxation rate for the three different concentrations obtained by fitting the model in Eqs 5, 8 to the ISF, as explained in Section 3.2. (C) Non-ergodicity factor
α(q). (D)MSD and (E) the non-Gaussian parameter α2 (Δt) estimated using the model-free procedure (seeMethods). The dotted lines are the best fitting curves to
the MSDs with a linear model MSD (Δt) = 4Dϕ,bΔt, with D60,b = (10.5 ± 0.5) × 10–2 μm2/s, D61,b = (8.2 ± 0.4) × 10–2 μm2/s and D62,b = (8.9 ± 0.4) × 10–2 μm2/s.
The black dashed line in (E) shows the mean value α2 estimated for the diluted particles.
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We start with the definition of the (unnormalized) collective
ISF F(q,Δt) of the small particles

F q,Δt( ) � 1
Ns

〈ρ̂s q,t + Δt( )ρ̂s q,t( )*〉, (12)

where ρs(x,t) � ∑nδ(x − x(s)n ) is the number density of small
particles and Ns = ∫dx ρs(x,t) is the total number of particles
within the considered volume. In general, the ISF can be
decomposed into its self and its distinct part [55]

F q,Δt( ) � fself q,Δt( ) + fdist q,Δt( ), (13)
where

fself q,Δt( ) � 1
Ns

〈∑
n

e−jq· x s( )
n t+Δt( )−x s( )

n t( )( )〉, (14)

and

fdist q,Δt( ) � 1
Ns

〈 ∑
n≠m

e−jq· x(s)n t+Δt( )−x s( )
m t( )( )〉. (15)

Under the hypotheses that 1) the motion of the small particles
takes place in the presence of a completely frozen matrix of
larger particles and 2) both the volume fraction ϕs of the small
particles and the ratio δ = σs/σl between the diameters of the
small and large particles are very small, the space accessible to
the small particles essentially coincides with the portion left free
by the large ones; since the effective volume fraction ϕs/(1 − ϕl)
of the small particles within the voids is very small, positional
correlations between distinct small particles are negligible. The
time-averaged density distribution �ρs(x) � 〈ρs(x,t)〉 of the
small particles can, thus, be assumed to be uniform over the
whole accessible region

�ρs x( ) � Ns

V0 1 − ϕl( ) 1 − pl x( ) *∑
n

δ x − x l( )
n( )⎡⎣ ⎤⎦. (16)

In this expression, V0 indicates the total volume, pl(x) is the
characteristic function of a sphere of diameter σl, the symbol *
indicates the convolution operation, and the prefactorNs/V0 (1 − ϕl)
is determined by imposing the normalization condition∫dx �ρs(x) � Ns. Since the motion of two small particles can be
assumed to be completely uncorrelated, the distinct part of the ISF

(Eq. 15) is expected to be time-independent and, up to an additive
term of order 1/Ns, it is given by

fdist q( ) ~ 1
Ns

〈∑
n

e−jq·x
s( )

n t+Δt( )〉〈∑
m

e+jq·x
s( )
m t( )〉 � 1

Ns
�̂ρs q( )�̂ρs q( )*

� 1
Ns

|�̂ρs q( )|2.
(17)

Using Eq. 16, the power spectrum |�̂ρs(q)|2 of the equilibrium
density distribution of the small particles can be expressed in
terms of the form factor Pl(q) � (1/V2

l )|p̂l(q)|2 and of the static
structure factor Sl(q) � (1/Nl)|ρ̂l(q)|2 of the large particles as
follows

|�̂ρs q( )|2 � Ns

V0 1 − ϕl( )( )2

V2
l Pl q( )NlSl q( ). (18)

Plugging this expression in Eq. 17 we finally get

fdist q( ) � xs

δ3
ϕl

1 − ϕl

( )2

Pl q( )Sl q( ), (19)

where δ is the previously introduced ratio between the radius
of the small and large particles (δ = 0.18 in the present case)
and xs = ϕs/ϕ is the previously introduced relative fraction of
the small particles (xs = 0.01 in our case). Combining Eq. 19
with Eq. 13, we obtain the following expression for the
normalized ISF f(q,Δt) = F(q,Δt)/F(q, 0)

f q,Δt( ) � 1 − α q( )( )fself q,Δt( ) + α q( ), (20)
where we have introduced the “non-ergodicity factor”

α q( ) � 1 + δ3

xs

1 − ϕl

ϕl

( )2
1

Pl q( )Sl q( )[ ]−1
. (21)

Eqs 20, 21 show that even in the absence of explicit interactions
between the moving particles, the presence of fixed obstacles
introduces a q-dependent, non-ergodicity factor in the
normalized ISF.

In order to compare the theoretical expression in Eq. 21 with
the experimentally determined α(q), we need an estimate for the
static structure factor Sl(q) of the large particles. To this end, we

FIGURE 5 | Highlighting the immobile particles. The minimum intensity projection of the image sequence for ϕ = 0.60 (A), ϕ = 0.61 (B), and ϕ = 0.62 (C) shows an
increasing number of bright spots, indicating that an increasing fraction of small particles becomes immobile for increasing ϕ. The scale bars correspond to 15 μm.
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have used the code described in Ref. [58] and freely available at
https://github.com/VasiliBaranov/packing-generation to generate
different configurations of randomly closed packed hard-spheres
from which we evaluated the three-dimensional (3D) static
structure factor. As a consistency check, we have also
calculated from the same data a two-dimensional (2D)
structure factor, obtained by considering the centers of the
particles included in slices of height Δz = 1 μm, similar to the
thickness lc of the optical section of our confocal microscope. This
function can be directly compared to the experimentally
determined 2D structure-function of the large spheres, which
was obtained by performing the minimum projection of the
image sequence (see Figure 6A) and by locating the positions
of the centers of the large particles using the particle-tracking
software freely available at https://github.com/dsseara/
microrheology [59]. As it can be appreciated from Figure 6B,
the experimental and the simulated 2D static structure functions
are in excellent agreement, confirming the reliability of our
simulation. In Figure 6C, the theoretical non-ergodicity factor
calculated inserting in Eq. 21 the simulated 3D Sl(q) and the
theoretical form factor Pl(q) for a sphere of radius σl is compared
with the one obtained by fitting Eq. 5 to the collective ISF. A
different estimate for α(q), obtained by evaluating the ISFs for the
large delay time Δt = 104 s (as carried out in Ref. [39]), is also
reported. We observe that despite the rather crude
approximations leading to Eq. 21, the overall agreement
between the theoretical prediction and experimental data is
qualitatively good, and only for qσl ≲ 4 (corresponding to q ≲
1.3 μm−1), a more systematic deviation is observed. This could be
due to the fact that while the simulated α(q) is computed
considering a fully three-dimensional matrix, for low q, the
experimentally estimated α(q) could be affected by the finite
thickness of the confocal optical section.

Based on Eq. 21, we expect that α(q → ∞) → 0 because
Pl(q → ∞) → 0. In Section 3.3, however, we have seen that, at
least for the samples with ϕ > 0.60, α(q) does not decay to zero.
This was attributed to the presence of a small fraction ϕs,i of
immobile small particles. The simplest way to account for these
particles is to introduce the change α(q)→ α(q) + (1 − α(q))ϕs,i.
This change captures the observed behavior of α(q) for large q

(see Figure 4C) but not for wave vectors smaller than the
structural peak of the large particles qσl < 6, suggesting that
further contributions should be incorporated in Eq. 16. This
case illustrates the need for extensions of Eq. 5, which is strictly
valid only in the idealized case of infinitely diluted and infinitely
small particles diffusing in a perfectly frozen matrix of immobile
large particles. For example, if the finite size of the particles
becomes relevant, the expression given in Eq. 16 must be
modified in order to account for the additional excluded
volume. Similar changes need to be introduced whenever the
positional fluctuations of the large particles or the interactions
between the small particles need to be taken into account.

4 CONCLUSION

In this study, we explored for the first time the possibility of probing
BNG dynamics directly in reciprocal space, without relying on
single-particle tracking analysis performed in direct space. We
used ConDDM to investigate the collective dynamics of diluted
tracer particles diffusing in dense glassy matrices of larger colloidal
spheres. The non-ergodicity of the collective dynamics of the small
particles, which is induced by the structure of the frozen matrix, is
accounted for by a simple model for the ISF (Eq. 5), enabling to
isolate the contribution of the self-diffusive dynamics. The q-
dependent relaxation rate of the obtained self-ISFs displays a
robust diffusive scaling Γ(q) ~ Dq2, while the decay of the self-
ISFs is well-captured by a Lorentzian model, in agreement with the
predictions of recent diffusing diffusivity theories in the limit where
the correlation time τ0 of diffusivity fluctuations is large1 [16, 19].

According to the diffusing diffusivity scheme, in a static
heterogenous environment, the evolution over time of the
diffusion coefficient characterizing the mobility of each particle
is caused by its random motion across regions with different

FIGURE 6 | Structure factor of the large particles and estimation of the non-ergodicity factor for ϕ = 0.60. (A)Minimum projection of the image sequence. The scale
bar corresponds to 15 μm. (B) Experimental 2D structure factor (blue), simulated 2D structure factor (red), and simulated 3D structure factor (dash-dotted black) of the
large spheres. (C) non-ergodicity factor, as obtained by the fit of the collective ISF using Eq. 6 for fself (q,Δt) (blue), by evaluating the ISF at a fixed time delay Δt = 104 s as
reported in [39] (magenta) and from simulated data using Eq. 21 (dashed-dotted black).

1We can safely exclude that the observed non-Gaussian behavior could be even
partially attributed to the size dispersity of the tracers as they display an almost
“ideal” behavior when freely diffusing in the solvent in the absence of obstacles (as
demonstrated in Section 3.1).
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physical properties [15]. In our system, this process would
correspond to the exploration by a tracer particle of different
“voids” between the large spheres, each of which with different
local hydrodynamics and in which the particle is expected to
display different mobility [10]. In this interpretation, the
correlation time τ0 would be the time needed by a particle to
visit a few different voids. In our experimental conditions, the
possibility of observing this relatively slow process appears
prevented by the finite thickness lc of the confocal optical
section, which imposes a cutoff τc ≃ l2c/D to the time spent by
a particle within the imaging volume. The BNG nature of particle
motion on short time scales was also confirmed by extracting the
MSD of the particles, and the corresponding non-Gaussian
parameter via the multi-q analysis of the self-ISF.

This behavior was consistently observed across the whole
range of investigated volume fractions 0.60 ≤ ϕ ≤ 0.62, which
should span the “single-glass” region of the phase diagram of our
binary mixture [37, 39]. By increasing ϕ, we observed a moderate
but significant increase of the non-ergodicity factor α(q),
indicating that an increasing fraction of small particles (up to
about 10% for ϕ = 0.62) is immobile or strongly localized. This
effect could be due to system aging or particle aggregation, which
would both inhibit the motion of the small particles through the
matrix.

Taken together, these results indicate that our reciprocal
space–based approach represents an effective strategy to probe
fast, anomalous dynamics in a crowded environment, overcoming
the limitations intrinsic to single-particle tracking and enabling
direct comparison with theoretical predictions. One of the most
promising applications of this method could be the investigation of
the crossover between non-Gaussian to Gaussian behavior as
predicted by diffusing diffusivity theories. For example, recent
results on periodically sheared yield-stress materials [53] showed
the presence of shear-induced diffusion along with a Lorentzian-like
relation for the ISF and non-Gaussian PDF of the particle
displacements, at least for a relatively short observation time.
Reciprocal space investigation of the long-time dynamics of
tracers embedded in yield stress-material, while subjected to
oscillatory shear deformation, may be a promising way to assess
and validate diffusing diffusivity models.

Another interesting application could be the investigation of the
conditions governing the transition between BNG diffusion and
(non-Gaussian) subdiffusion. Entangled actin networks, a widely

studied model system, could represent a promising candidate along
this line, as, by tuning the ratio betweenmesh size and tracer particle
size, and they enable exploring a variety of transport regimes [60]
from ordinary diffusion to BNG diffusion [8] and from fractional
Brownian motion to continuous time random walk [61].
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