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Lipid droplets are the major organelles for fat storage in a cell and analyzing lipid droplets in
Caenorhabditis elegans (C. elegans) can shed light on obesity-related diseases in humans.
In this work, we propose to use a label free scattering-based method, namely dark field
microscopy, to visualize the lipid droplets with high contrast, followed by deep learning to
perform automatic segmentation. Our method works through combining epi-illumination
dark field microscopy, which provides high spatial resolution, with asymmetric illumination,
which computationally rejects multiple scattering. Due to the raw data’s high quality, only
25 images are required to train a Convolutional Neural Network (CNN) to successfully
segment lipid droplets in dense regions of the worm. The performance is validated on both
healthy worms as well as those in starvation conditions, which alter the size and
abundance of lipid droplets. Asymmetric illumination substantially improves CNN
accuracy compared with standard dark field imaging from 70% to be 85%,
respectively. Meanwhile, standard segmentation methods such as watershed and DIC
object tracking (DICOT) failed to segment droplets due to the images’ complex label-free
background. By successfully analyzing lipid droplets in vivo and without staining, our
method liberates researchers from dependence on genetically modified strains. Further,
due to the “open top” of our epi-illumination microscope, our method can be naturally
integrated with microfluidic chips to perform large scale and automatic analysis.

Keywords: asymmetrical illumination, epi-illumination, dark field microscopy, lipid droplets, C. elegans,
segmentation

1 INTRODUCTION

As a model organism, Caenorhabditis elegans has the advantage of a short life span, easy
maintenance, and many shared genes with humans [1]. Thus, since its introduction to the
model organism research community, C. elegans has been under extensive study to gain
knowledge of neuroscience, behavior, and disease [2]. In particular, with the prevalence of
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obesity in the world, C. elegans has become a popular animal
model for studying the regulation of lipid metabolism and
obesity-related diseases. Further, many genes related to the
metabolic diseases are shared with humans [3]. The lipid
droplets, as the major fat storage organelles, exist mostly in
the intestine and epidermal layer of the animal. They are
generally round and their sizes range from a few hundred
nanometers to a few microns [4]. During the development and
growth of C. elegans, lipid droplets undergo morphological
changes according to the dietary regulation and gene mutation
[5]. Lipid droplet morphology can thus provide a vast amount of
information that can lead to detection of new genes and
pathways, through studying the diverse morphology and
chemical content of lipid droplets. Currently this is done
through exogenous or genetically-encoded staining of lipid
droplets and manual analysis, which is laborious and time-
consuming[6]. Therefore, large scale screening systems,
including both image acquisition and automatic analysis, will
be beneficial to the gene identification and life-timemonitoring of
C. elegans.

Current visualization of lipid droplets is still accomplished
through fluorescence microscopy and electron microscopy due to
the small and dense package of the lipid droplets [7,8].
Traditional differential interference contrast (DIC) microscopy
utilizing oil-immersion condensers could visualize the lipid
droplets. However, this method is polarization dependent and
would not work with the plastic material of the microfluidic chip
which is often used in large scale screening or time-lapse
monitoring. In the fluorescence-based methods, often confocal
microscopy is preferred if individual droplets are of interest. Nile
Red dye or genetically encoded fluorescent proteins are used to
create contrast. However, the Nile Red is not specific and not
every strain of C. elegans has a matched genetic fluorescent
protein [4]. Further the genetically modified C. elegans are not
available to everyone, thus limiting capacities of many
research labs.

A label-free method that does not depend on polarization and
staining is therefore preferred. Recently both coherent and
spontaneous Raman imaging has been used to study the lipid
diversity [9–11]. However due to its slow speed, Raman
microscopy would not be a good screening method. Another
line of label-free methods is phase microscopy. Recently, there is a
strong push to expand its application to image thick samples such
as C. elegans[12–14]. However, current resolution and contrast
are still not enough to visualize individual lipid droplets due to
their dense packing within the C. elegans. Phase imaging methods
are generally wide-field illumination and imaging, resulting in
optical sectioning that is significantly worse compared to confocal
fluorescence [15,16]. This issue becomes pressing in thick
samples, where out-of-plane structures can dominate the
image quality. Perhaps due to this reason, reported work on
using phase microscopy to analyze lipid droplets is scarce.
Recently, we have developed an epi-illumination dark field
microscope which can visualize the unlabeled and individual
lipid droplets in livingC. elegans [17]. The system has a transverse
resolution of 260 nm and lateral resolution of 520nm, which is
comparable to a fluorescence microscope of equivalent numerical

aperture. Thus we hope to use this system as a basis to perform
lipid droplet analysis in vivo.

For large scale screening purposes or for time-lapse
monitoring, it would be desirable to have the images
automatically analyzed. Edge detection, Hough transform and
granulometry-based digital sieves have been used to segment or
analyze lipid droplets [18,19]. However they are all developed
based on fluorescence images with nearly perfect contrast. In the
label-free images of lipid droplets in vivo, including those
generated by the dark field microscope used here, the multiple
scattering in the thick sample degrades the image contrast and
creates subtle textures in the images, not to mention the lack of
specificity means that the images in general are complex.
Traditional image analysis methods are therefore not well
suited to automated lipid droplet segmentation using
unlableled C. elegans images.

In this work, we propose to solve those issues through two
strategies, one is to improve the image contrast through adding
asymmetrical illumination to our previously developed epi-
illumination dark field microscopy. Asymmetrical illumination
has been shown previously to yield differential phase contrast
(DPC) images which have improved optical sectioning [20–22].
However, to date it is mostly explored in cases of either small NA
forward illumination or the collection of forward scattering
signals. Here, we apply the asymmetry to epi-illumination with
a large NA and to the collection of back scattered signals. In this
way, we can maintain the high spatial resolution while removing
the multiply-scattered background signal from the image. The
second strategy is in the image segmentation side, where we
utilize deep learning rather than traditional image processing
methods to perform the image segmentation of lipid droplets in
the dense regions. Due to the improved image quality from the
asymmetric illumination, our training requires a small dataset of
only 25 images. With this, we have achieved automatic image
analysis of unlabeled lipid droplets with analysis accuracy of
around 85%, while the traditional methods basically fail to
segment. We validate our approach through recovering
changes in lipid number and size due to starvation and
feeding conditions in living C. elegans. Since our method is
not fluorescence-dependent, we can analyze any strain of the
C. elegans, without requiring exogenous labels or genetically-
encoded fluorophores.

2 METHODS

2.1 Experimental Setup of Asymmetrical
and Epi-Illumination Dark Field Microscopy
The schematic diagram of the system is shown in Figure 1A. The
detailed description of the imaging system was described
previously [17]. Briefly, the system utilizes a 60X, NA 1.49 oil-
immersion objective (Nikon, Japan) and a ring source to provide
the epi-illumination. The exposure time of data in this paper is
80 ms with a sCMOS camera (pco.edge 4.2, PCO GmbH,
Germany). The back scattered light is collected to form the
image. In the conjugate plane of the ring source, a ring-shaped
metal mask is used to block the light reflected from the sample for
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dark-field imaging. The ring source consists of 32 green LEDs
with a central wavelength of 531 nm and a line-width of about
30 nm. In order to generate an asymmetric illumination pattern,
the LED ring is divided into 4 groups, with each group having
eight LEDs. The adjacent two groups are used to form top and
bottom or left and right illumination patterns as shown in
Figure 1B. If the worm body is largely horizontal in the field
of view, we will use horizontally asymmetrical illumination
scheme. Otherwise, we will use vertically asymmetric scheme.
While multi-axis asymmetric illumination imaging has been
previously demonstrated [23], for simplicity in this study we
utilize only a single axis to create each image.

The traditional dark field image can also be obtained through
turning all LEDs on or simply adding up the pair of the
asymmetrical illuminated images. Representative top-bottom
and left-right dark-field DPC images of a single 1 μm bead are
shown in Figure 1B, while Figure 1C shows the traditional dark
field image of the same bead.

For C. elegans, the body length is about 1 mm and the moving
speed could be up to 0.5 mm/s, however the field of view of the
present imaging system is only about 177μm × 177 μm. Thus, in
order to view a freely-moving worm with submicron resolution, a
high speed and high precision tracking platformwill be necessary.
In this work, for simplicity, the worm is imaged after
anesthetization.

2.2 Data Processing
There are two steps of the processing: preprocessing and
segmentation of the image.

2.2.1 Preprocessing the Data
Since images are generated when part of the ring is on, we have
two kinds of data. One is the differential phase image, Idpc,
through subtraction. The other is the epi-illumination dark

field microscopy data, Idm, through summation. The formulas
can be described below:

Idpc � IL − IR
IL + IR

or Idpc � IT − IB
IT + IB

(1)
Idm � IL + IR or Idm � IT + IB (2)

where the subscripts L, R, T and B represent left, right, top and
bottom halves respectively. In our system, the camera collects the
back scattered signals from subcellular structures, which is
typically weak. The background light, which arises from out-
of-plane scattering, reflections within the optical system, and
other stray light sources, can be substantial compared to the
signals from the sample. Thus a background image collected for
each half-ring is subtracted from the raw images before
computing Idpc and Idm.

2.2.2 Image Segmentation
Three methods, two traditional machine-learning based and one
deep learning based, are used. The first is the traditional thresholding
method. For differential phase type images, DIC-object-tracking
(DICOT) method, which is thresholding based, uses a modified
Gaussian filter called scaling of Gaussian (SoG) and has been shown
to achieve reasonable results on the yolk granules inside the C.
elegans embryo [24]. The method can be downloaded (https://
github.com/Self-OrganizationLab/DICOT_GUI) and has
parameters such as the kernel size and sigma which define the
estimated object size and the variation of the Gaussian filter. In our
DPC image, we optimized the kernel size to be 3 μm and sigma to be
0.1 μm. The second method is the watershed algorithm, which is
edge detection based. Through searching the ridges (high intensity
region) and valleys (low intensity region) in an image, the algorithm
accomplishes segmentation. A custom Matlab script is used to
perform the watershed segmentation and can be found at https://
github.com/pipi8jing/pytorch-unet-dropletsegmentation.

FIGURE 1 | The proposed imaging system layout and exemplary images. (A) Schematic layout of the proposed systemwhere both the illumination and detection is
on one side of the objective. (B) images of 1 μm bead with vertically or horizontally asymmetrical illumination; (C) Symmetric illumination dark field image of the same
bead.
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The third method utilizes deep learning, which has achieved
tremendous success on a wide variety of image segmentation and
classification problems in recent years [25,26]. However, typically
deep learning requires substantial amounts of training data (from
thousands to millions of images). In this work, the ground truth is
generated through manual annotation and the sizes of the
training data set are 25 and 20 images for DPC and DF cases
respectively. The sizes of the test data for DPC and DF based
analysis are 10 and 3 respectively. For DF based analysis, due to
the poorer performance, we annotated only 3 images for the
testing.

The CNN architecture for segmentation is based on the classic
U-Net[27]. Compared with the original U-Net structure, the
downsampling is achieved through a 2 × 2 pixel convolution
[28]. A dropout layer (p = 0.2) before each downsampling and
upsampling process is used to prevent overfitting. The loss
function is defined as:

MSE � 1
n
∑
n

yi − f xi( )( )2 (3)

where f(xi), yi are the output and target image respectively. The
network was trained using the Adam optimizer and a learning
rate of 0.001. The convolutional kernel were initialized using a
truncated normal distribution with a standard deviation of 0.02
and a mean of zero. The bias were initialized as zeros. The
training is finished after a total of 3,000 mini-batch (size = 8)
iterations. The network was implemented using the Pytorch
framework (version 1.10.0) and on a desktop computer with a
NVIDIA GeForce RTX 3090 (NVidia, Santa Clara, CA,
United States) and 16 GB RAM.

In order to use the training data more efficiently, we have
rotated Idpc images generated from vertical illumination 90° so
that all images appear to utilize the same horizontal differential
contrast. To quantify the accuracy, we have used dice, precision
and recall, defined as follows:

Dice � 2pTP
TP + FP + TP + FN

(4)

Precision � TP

TP + FP
(5)

Recall � TP

TP + FN
(6)

where true/false positive/negative are calculated at the pixel level
in each image. After the segmentation by the CNN,there are still
holes and irregular boundaries in the binary result. In order to
facilitate the morphology analysis of lipid droplets for different
physiology states, we used morphological operators in ImageJ
(https://imagej.nih.gov/ij/download.html) to fill holes within the
binary image, by simply clicking the dilation and then the erosion
buttons without need for parameter tuning.

2.3 Sample Preparation
C. elegans were anesthetized with 0.05 mM of levamisole for
15 minutes at an ambient temperature of 21°C immediately prior
to imaging. After anesthetization the worms were placed on
coverslip-bottomed Petri dishes for observation.

3 RESULTS

3.1 Contrast Improvement Through
Asymmetrical Illumination in Epi-DFM
Lipid droplets are not only well inside the body of C. elegans
(within ~ 8 microns from the epidermal layer) but also densely
packed, thus presenting a great challenge for label-free
microscopy. Our epi-illumination dark field microscopy
already gives state of art results on achieving cell and
subcellular resolution on thick samples. Thus we used this
microscope to image an area with lipid droplets accumulation
in the intestine of adult C. elegans where the worm is intact and
example 2D images are shown in Figure 2.

In the raw dark field images (labeled as DF images), one can
see that there are still many lipid droplets with low contrast. Two
examples are shown in (A) and (B), indicated by white arrows.
Then with asymmetrical illumination, the image of the same field
of view can be obtained (labeled as DPC images). One can see that
the shape of lipid droplets becomes more obvious since its
boundary is more clearly defined and the intensity within the
droplet area is more uniform. The background of the DPC image
is also cleaner compared to DF image. The line profile of two lipid
droplets (indicated by the dotted lines in the zoomed ROIs) are
shown in Figures 2C,D. One can see that both edges of the
droplets are obvious in the DPC image while only one edge is
clearly visible in the dark field images, due to the out-of-focus
signals. However, in the DPC images, the out-of-focus light is
eliminated through the subtraction operation (as shown in Eq. 1)
and the edges can be revealed with higher contrast. This increased
contrast would facilitate the automatic image analysis as we
demonstrate below.

3.2 Deep Learning Segmentation Results
and Comparison With Traditional Methods
With the DF or DPC images, we first processed them with the
traditional image segmentation methods, namely, watershed and
DICOT(more details can be found in Section 2). The raw images
and the ground truth (generated through manual annotation) are
shown in Figure 3A and the segmentation results in Figure 3B,
where the ground truth is labeled in yellow, and the watershed
results (edges of lipid droplets) are overlaid in sepia, while the
DICOT results (brightest point in a lipid droplet) are black dots.
One can see that due to the dense structure and complex textures
of the droplets, the intensity variations along the edges and inside
the lipid droplets cause the standard segmentation results to not
be usable. In the image shown in Figure 3A, there are 73 lipid
droplets in total. The watershed method gives out only 7
correctly. For DICOT method, the most obvious problem is
that the same particle can be detected multiple times (a few
examples indicated by the green arrows in Figure 3B). Further, it
can only be used to count particles roughly without giving a
complete morphological segmentation. We believe the primary
reason for this is that, unlike fluorescence images with low
backgrounds, our label-free microscope has a strong, complex
background that varies across the image, and even within a
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single lipid droplet (More examples of the irregular intensity
variation can be found in the Supplementary Figure S1).
Thus, traditional methods which are mostly based on local
intensity values, have difficulty accurately segmenting the
complex label-free image.

Meanwhile, deep learning based segmentation, even using
only 25 annotated images in the training, results in much
improved segmentation with most of the lipid droplets labeled
successfully. As one can see in Figure 3C, some droplets that
failed to segment by the traditional methods are successfully
segmented by the CNN network. In Figure 3C, the ground truth
annotations are colored green, while the deep network results are
in red, such that areas of agreement are colored yellow.
Comparing the DF or DPC image based segmentation, one
can see that the latter gives a markedly better result. The
quantitative measures such as dice, recall and precision are
computed and plotted in Figure 3D for both cases. One can
see that these numbers are all higher for the DPC image based
segmentation. Note that the image analysis is performed on 2D
data due to the focus of this paper on assessing different imaging
modes for droplet segmentation. The microscope itself is capable
of collecting 3D images by z-scanning, and overall performance
of the deep learning may be further improved by considering 3D
information, but this is beyond the scope of this article. More

segmentation results for images at different z-slices can be found
in the Supplementary Figure S2.

With the segmentation accomplished, we can perform bulk
morphology analysis. Figure 3E shows the size distribution of the
lipid droplets analyzed from the CNN segmented results
compared to the manual analysis, with the two methods
agreeing closely, showing that both area and number of
droplets are accurately predicted. Although the CNN method
still has some mistakes compared to the ground truth, these could
be improved with a larger training set size. Nevertheless, the
segmentation shown here is accurate enough to determine bulk
morphological parameters.

3.3 Analysis of Lipid Droplets of Worms in
Different Starvation Conditions
In order to demonstrate the utility of the system, we applied the
imaging and analysis pipeline to analyze the effect of starvation
on lipid droplets in C. elegans (strain shg366), which have the
same phenotype as wild-type. Three starvation statuses were
studied: starved for 12 h, restricted diet and normal diet. The
representative imaging results (with individual planes selected by
the operator as those where the lipid droplets area appears
largest) are shown in Figure 4A. One can easily see that the

FIGURE 2 | Two examples of lipid droplets in dense regions imaged by normal dark field microscopy and asymmetrically illuminated dark field microscopy. (A,B)
Two regions of interest and their zoom-in versions where lipid droplets pointed by the white arrows can be resolved in the DPC image and not in the DF image. The line
profiles of two such lipid droplets are shown in (C,D). Scale bars in (A,B) represent 6 μm.
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densities of lipid droplets in the starvation states are relatively
smaller compared to the normal diet case. This implies that in the
hungry state, the nematodes will consume their stored energy,
resulting in a decrease in the density of lipid droplets. This is
consistent with previous reports [29]. Based on the DL
segmentation results, we can analyze the morphology and the
result is shown in Figure 4B. One can see that the quantitative
analysis is consistent with the visual inspection. The advantages
of automatic analysis, however, is that one can easily analyze a
large amount of data, obtain a time course of the changes due to
the starvation or other types of stimulus, and more quantitatively
compare morphological changes without tedious manual
annotation.

Note that with our illumination scheme, the dark field and
DPC images can be generated from the same set of data (with Eqs
1, 2). Interestingly, the dark field image could give unique
information. As shown in Figure 4C, we can see that the
edges of the lipid droplets in the starving state become either

very bright or dark while, they are less so in the normal state. This
may be caused by changes in the chemical composition inside the
droplets, resulting in changes in the refractive index [11]. This
also implies that the abnormal lipid droplets are more obvious in
the dark field images while the edges of normal lipid droplets are
more obvious in DPC images. These two kind of images could be
combined in the future to analyze the effect of certain stimuli in
more detail and address the heterogeneity of responses.

4 DISCUSSION AND SUMMARY

In this work, we have developed a novel pipeline for in vivo lipid
droplet analysis where the visualization and automatic image
segmentation are two necessary steps. Through combining epi-
illumination dark-field and asymmetrical illumination, we have
improved the optical sectioning and thus improved the image
contrast of the lipid droplets. Even in the densely packed area, the

FIGURE 3 | Image segmentation and morphology analysis of lipid droplet in dense regions. (A) raw data of DF and DPC images and their ground truth annotated
manually. (B) segmentation by traditional methods and the ground truth is shown in white and the edges (by watershed) and bright peaks (by DIOCT) of the lipid droplets
are shown in black. One can see that many edges or the peaks are in the wrong places. The segmentation results using CNN are shown in (C) and is significantly better.
The quantitativemeasure of the DL segmentation shown in (D) suggests that the accuracy for DPC case is around 85% and 70% for DF case. The area and number
of the lipid droplets are analyzed from DPC segmentation and is shown (E) along with the analysis based on manual segmentation. Scale bars in (B) represent 6 μm.
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boundary of most lipid droplets are clear as shown in Figures
2–4. For the automatic image segmentation, we have taken
advantage of the well-validated U-net CNN architecture and
applied it to our problem. Due to the high quality of the data,
a miniscule training data set of only 25 images was used to obtain
a segmentation accuracy around 85%, while the traditional
methods such as DICOT or watershed failed. While with more
data the accuracy can be further improved, the results shown here
clearly demonstrate the proof-of-concept while at the same time
demonstrating that the asymmetric illumination provides a
distinct advantage to segmentation compared with the raw
dark-field images. In both cases, we can also improve the
image contrast further through deconvolution. Since our
illumination configuration is rather different from other DPC
work [30,31], a new theory about the image formation and optical
transfer function would need to be developed in order to create a
suitable theoretical inverse filter. Alternatively, as we have
previously shown that our image system is nearly linear
(compared to the typical bilinearity of phase imaging systems),
we could use a measured point spread function to perform the
deconvolution. Right now our morphology analysis of lipid
droplets is based on representative 2D images. Incorporating
3D data and multiple FOVs within a single worm may improve
CNN-based segmentation and allow more complete and
statistically powerful lipid droplet morphological parameters.
These would be directions of future work.

For lipid droplets, other than the morphology, the chemical
content are also important. We can combine our method and
Raman spectroscopy (for example, Coherent anti-Stokes Raman
spectroscopy (CARS)) to obtain the chemical makeup of
individual lipid droplets with improved speed and cleaner
background. As we have shown in the starvation experiment,
the morphology of lipid droplets exhibits unique features when in
different starvation states. In a hypothetical future experiment
one could envision using the dark field DPC image to guide a
Raman excitation beam and obtain the specific chemical makeup
of various lipid droplets of interest while saving the acquisition
time of the Raman measurements compared to creating a full
Raman image.

Further, as we have discussed in the introduction, our
differential phase image is created through asymmetrical
illumination, not through polarization means (as in DIC).
Meanwhile, it is also based on epi-illumination, preserving an
“open top” to the experimental platform. This means our method
can be naturally combined with plastic microfluidic devices,
which enable large scale screening but require a certain space
to operate. More importantly, our label-free method enables the
study of any strain of worm while the traditional fluorescence-
based methods resort to specific strains which could influence the
interpretation of the data. Our method also “saves” the
fluorescent channel for other proteins or pathways that might
be of interest.

FIGURE 4 | Results of the starvation experimentation where the number and size of the lipid droplets are analyzed. (A) example of the raw data and the segmented
results for three different state: starved, restricted diet and normal diet; (B) The morphology analysis based on 5 images for each case; (C) In starved state, the lipid
droplets become bright ring-like in the dark field image, signifying the strong variations in refractive index compared to those with normal state. Scale bars in (A)
represent 6 μm.
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In summary, we have developed a label-free method to analyze
the lipid droplets in vivo and can naturally integrate with other
technologies to conduct more comprehensive and in-depth study
of C. elegans and other small model organisms.
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