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We study single-photon scattering of an artificial giant Λ-type atom coupled to a
superconducting quantum interference device (SQUID) chains waveguide at two
points. In this circuit, the single-photon scattering rates are dependent on the atom-
waveguide coupling strengths and the phase accumulated between two coupling points.
By modulating the flux-dependent phase velocity in the SQUID-chain waveguide, the
photon’s traveling time is changed, and the accumulating phase is adjusted
simultaneously. We investigate the relationship between the scattering effect and the
flux bias, which allows us to explore novel phenomena with the tunable traveling time in
both Markovian and non-Markovian regimes, and to design novel quantum technologies
such as quantum storage.
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1 INTRODUCTION

In the last decades, research on superconducting quantum circuits has gone far forwards [1,2].
The superconducting quantum circuit is blessed with scalability, integrability, and flexibility
interacting with other systems, making it a prospective platform for carrying on the quantum
information and quantum compution missions [3-5]. The superconducting qubit can play a role
as an artificial atom and then strongly coupled to microwave photons in circuit quantum
electrodynamics (cQED) [6-17]. One can make the artificial atom’s scale comparable to
wavelengths so that it goes beyond the dipole approximation [18]. Moreover, the artificial
atoms can also couple with the field confined in a waveguide at several points, which behave as a
giant atom [18]. In recent years, a giant atom system has been experimentally realized for the
first time in an acoustic system, where a superconducting qubit coupled to a surface acoustic
wave (SAW) via an interdigital transducer acts as a giant atom [19,20], the photonic version
following [21,22]. In such giant atom systems, many striking effects were discovered [18]. For
example, strongly frequency-dependent coupling between giant atoms and bosonic modes can
be designed for realizing interference effects [23-26] between coupling points, which enables
electromagnetically induced transparency (EIT) in a ladder configuration [27]. When the
distance of the coupling points is too large, the Markovian approximation can no longer be
applied to the whole system. The so-called non-Markovian effect [28] induced by the non-
negligible travel time can cause some novel phenomena in giant-atom systems [29], such as non-
exponential decay [30] and bound state in a continuum [31,32].

Waveguide quantum electrodynamics (wQED) [33] studies the interaction between an atom
and continuum of electromagnetic modes confined in a 1D waveguide. WQED uses the
transmission and reflection spectrum of the incident field to reveal the dynamics of the
whole system and supports a theoretical basis for quantum networks. Because of recent
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experimental advances on giant atoms [19,20], wQED setups
based on giant atoms have attracted considerable attention.
For example, Ref. [34] proposed a decoherence-free waveguide
with multiple giant atoms. In addition, an effective single-
photon frequency conversion rate via a giant Λ-type atom can
approach a unit combining with the Sagnac interferometer
[35]. Compared to the two-level atom, the Λ-type three-level
atom has two transition paths, which provide additional
tunable spaces. Meanwhile, the circuit Λ-type atom has
been demonstrated good tunability in experiments, as
shown in Refs [36,37]. The combination of Λ-type atoms
and giant atoms could be a promising way for quantum
information processing, which will be explored in this
paper. Very recently, Ref. [32] proposed tunable chiral
bound states in a system composed of superconducting
giant atoms and a Josephson photonic-crystal waveguide
[38-42].

In this paper, we present a circuit giantΛ-type atom couples to
the SQUID-chain waveguide. In contrast to previous works with a
fixed length between two coupling points, we replace a typical
SQUID-chain waveguide instead of a standard transmission line
and achieve the in-situ tunability of traveling time. This tunability
stems from the flux-dependent phase velocity of the SQUID-
chain waveguide. By studying single-photon scattering in this
system, we can understand the unique dynamics of the giant
atom. Then, the tunable group velocity of this particular
waveguide can be utilized to realize the tunable scattering rate.
Furthermore, taking advantage of the tunability of this circuit, we
explore the novel physical phenomena from Markovian to non-
Markovian regimes and propose a promising protocol to store
quantum information.

The paper is structured as follows. We begin in Section 2 with
a brief introduction of the Hamiltonian of the whole system
before turning to the detailed calculation of the single-photon
process in the SQUID-chain waveguide in Section 3. Then,
distinguishing scattering properties of this system from
Markovian to Non-Markovian regimes and an application in
quantum storage are discussed in Section 4. At last, we end with a
conclusion in Section 5.

2 MODEL

We consider a giantΛ-type atom interacting with a 1Dwaveguide
at two coupling points, as depicted in Figure 1. The Hamiltonian
H is defined as

H � Ha +Hw +Hint, (1)
whereHa � Z∑i�a,b,cωi|i〉〈i| is the free Hamiltonian of theΛ-type
atom, where |a〉, |b〉 and |c〉 are the ground, excited and substable
states, respectively. Such a Λ-type atom can be experimentally
implemented in a circuit QED system, where a flux qubit couples
to a coplanar waveguide (CPW) resonator with a resonant driving
field [36,37].

Hw describes a bidirectional waveguide where photons
propagate equally in two directions. In our setup, the
waveguide is a superconducting transmission line composed of
identical SQUID loops. The interval between adjacent loops
equals d0, and a homogeneous magnetic field is applied
vertically through every SQUID loop. The SQUID loop can be
viewed as an effective inductance LJ parallel to the Josephson
capacitance CJ. The Hamiltonian of SQUID chains can be
quantized as [39]: Hsc � ∑kωk(a†kak + 1/2), where ak(a†k) is
the annihilation (creation) operator of mode k. And the
SQUID-chain waveguide has a dispersion relation form [32]:

ωk � 1����
LJCg

√ ��������������������
1 − cos kd0( )

CJ/Cg 1 − cos kd0( )[ ] + 1
2

√
. (2)

For the effective inductance of SQUID, LJ is flux dependent,
the photon’s group velocity vg = dω/dk in the waveguide is,
therefore, a tunable parameter. Assuming the waveguide length
L → ∞, we obtain the continuum form of the Hamiltonian

Hw � ∫ Zωka
†
ωk
aωk

dωk. (3)

Hint represents the coupling of two circuit systems and has the
form, Hint ∝

�����
~κ±ij/2π
√

(~σ ijakeikx± + a†k~σjie
−ikx± ), where ~σ ij � |i〉〈j|

is the transition operator of atom, and ~κ±ij � κ|〈i|a†|j〉|2 denote
the coupling strengths between the circuit Λ-type atom and the
SQUID-chain waveguide, with κ being the decay rate of the
resonator through two gate capacitances Cg±

J at two points x±
(details in Appendix A).

Although the whole system may reach the non-Markovian
regime originating from two distant coupling points, the
Markovian approximation is still valid at each local coupling
point x±. Consequently, the total Hamiltonian for the whole
system can be written as

FIGURE 1 | (A) Sketch of the circuit, a SQUID-chain waveguide (deep
blue) capacitively coupled to a giant atom consisting of a flux qubit and a λ/2
CPW resonator at x± two points, γ denoting coupling strength. (B) Schematic
illustration of the whole system. The giant atom is Λ-type three-level
system consisting of exicting state |a〉, ground state |b〉 and substable state
|c〉.
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H � Z ∑
i�a,b,c

ωi|i〉〈i| + ∑
α�1,2

∫ Zωpa
†
αωp

aαωpdωp

+ ∑
α�1,2

∫ Z ���
γ1
4π

√
|b〉〈a|a†αωk

e−icαkkL/2 + eicαkkL/2( )[
+ H.c.]dωk + ∑

α�1,2
∫ Z ���

γ2
4π

√
|c〉〈a|a†αωq

e−icαkqL/2([
+ eicαkqL/2) +H.c.]dωq.

(4)

The terms on the right-hand side of the first line are the atom and
field modes free energy, where |i〉 and ωi are the eigenstates of the
atomic system and their energies, respectively. aαωp are photon field
operators for the right (α = 1) and left-propagating (α = 2) photons,
satisfying [aαωp, a

†
α′ωp′ ] � δαα′δ(ωp − ωp′ ), where ωp represent the

frequency of the mode. kp is the wave vector corresponding to ωp,
satisfying ωp = kpvg. The coupling terms in the last three lines have
involved the phase difference between two coupling points at positions
x± = ±L/2. γi denote the radiative decay rates for two transition paths of
the Λ-type level configuration, and they also represent the coupling
strength, which is approximated as constants here over the relevant
frequency range in the spirit of Weisskopf–Wigner theory.

3 SINGLE-PHOTON PROCESS IN
SQUID-CHAIN WAVEGUIDES

3.1 Dynamics of the Giant Atom
Firstly, the motion equations of the giant atom limited in the single-
photon subspace can be studied by using the similar method
introduced in Ref [29]. The total state of a Λ-type giant atom
and the microwave field in the waveguide can be described by

|Φ t( )〉 � Ca t( )|a, 0〉 + ∑
α�1,2

∫ dωkCbαk t( )|b, 1k〉

+ ∑
α�1,2

∫ dωqCcαq t( )|c, 1q〉,
(5)

where |0〉 represents the vacuum state of the microwave filed in the
SQUID-chain waveguide. The integral terms describe the state of a
single photon propagating in the waveguide towards right α = 1 or
left α = 2, with the giant atom in the ground state |b〉 (or substable
state |c〉). Using the Schrödinger equation iZz/zt|Φ(t)〉 = H|Φ(t)〉,
we obtain the differential equations for coefficients: Ca(t) being the
probability amplitude of the giant atom in exicted state |a〉, Cb1(2)k

and Cc1(2)q denoting the photon spectrums in the transmission line
with the giant atom staying in the ground state |b〉 and the substable
state |c〉, respectively. The time evolution of Ca(t) is then turned to

dCa t( )
dt

� −iωaCa t( ) − γ1 Ca t( )[
+ Θ t − T( )e−iωbTCa t − T( )] − γ2 Ca t( ) + Θ t − T( )e−iωcTCa t − T( )[ ]
−i
����
γ1vg
2

√
e−iωbt Cb1 −L/2 − vgt, 0( ) + Cb1 L/2 − vgt, 0( )[ ]

−i
����
γ1vg
2

√
e−iωbt Cb2 −L/2 + vgt, 0( ) + Cb2 L/2 + vgt, 0( )[ ]

−i
����
γ2vg
2

√
e−iωc t Cc1 −L/2 − vgt, 0( ) + Cc1 L/2 − vgt, 0( )[ ]

−i
����
γ2vg
2

√
e−iωc t Cc2 −L/2 + vgt, 0( ) + Cc2 L/2 + vgt, 0( )[ ].

(6)

The first term denotes free evolution. The following two
terms show the atom relaxing process with γ1,2 and feedback
effect with Ca (t − T), where T = L/vg is the delay time. Here,
Θ(•) is the Heaviside step function showing the time-delay
feedback between the coupling points. We introduced the
notion Cb1(2)(x, t) � 1���

2πvg
√ ∫dωke±iωkx/vgCb1(2)k(t) for

describing photon distribution and time evolution. Then,
the remaining four terms imply that the incident photon in
both directions can excite the giant atom.

Ca(t) can be analytically solved and finally has the spectrum
form expansion (details in Appendix A)

Ca t( ) � 1
2πi
∫ϵ+i∞

ϵ−i∞
Ca s( )estds

� 1
2πi
∫ ds Ca 0( )est

s + iωa + γ1D1 + γ2D2

−i
���
γ1
4π

√ ∫ dsCbs 0( ) esT/2 + e−sT/2( )este−iωbt

s + iωa + γ1D1 + γ2D2

−i
���
γ2
4π

√ ∫ dsCcs 0( ) esT/2 + e−sT/2( )este−iωct

s + iωa + γ1D1 + γ2D2
,

(7)

where D1(2) � 1 + e−iωb(c)Te−sT is the additional phase of the
decay rate γ1(2) due to the time-delay feedback effect. Here, we
introduce the notations Cbs (0) = Cb1s (0) + Cb2s (0) and Ccs(0)
= Cc1s (0) + Cc1s (0), denoting the initial photon of frequency ωs

in the waveguide incident from both direction.

3.2 Single-Photon Scattering
To study scattering properties of the giant atom, we set a right-
propagating photon incident into the waveguide, whose
frequency is centered at ωk (Cb1k0 ≠ 0), with the giant atom
initially being in the ground state. The dynamical
evolution equation of the giant atom is then derived from
Eq. 7,

Ca t( ) � −i
���
γ1
4π

√ ∫ dsCb1s 0( ) esT/2 + e−sT/2( )este−iωbt

s + iωa + γ1D1 + γ2D2
. (8)

In the long-time limit, the emission spectrum of outgoing
photons can be obtained (details in Appendix B):

Cb1k ∞( ) � e−iωktCb1k 0( ) 1 − γ1 1 + cos ωkT( )[ ]
i ωa − ωk( ) + γ1 1 + eiωkT( ) + γ2 1 + eiωqT( )[ ],

(9)

Cb2k ∞( ) � e−iωktCb1k 0( ) −γ1 1 + cos ωkT( )[ ]
i ωa − ωk( ) + γ1 1 + eiωkT( ) + γ2 1 + eiωqT( ),

(10)

Cc1q ∞( ) � e−iωktCb1k 0( ) −2 ����
γ1γ2

√
cos ωqT/2( )cos ωkT/2( )

i ωa − ωk( ) + γ1 1 + eiωkT( ) + γ2 1 + eiωqT( ),
(11)

where the ground state energy is set to zero ωb = 0 with variable
substitution ωk = ωq + ωc. Then, we obtain the transmission
rate Tk, the reflection rate Rk, and the forward conversion
rate Tq,
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Tk � |Cb1k ∞( )
Cb1k 0( ) |

2

� ωk − ωa − γ1 sin ωkT( ) − γ2 sin ωqT( )( )2 + γ22 1 + cos ωqT( )( )2
ωk − ωa − γ1 sin ωkT( ) − γ2 sin ωqT( )( )2 + γ1 1 + cos ωkT( )( ) + γ2 1 + cos ωqT( )( )[ ]2 , (12)

Rk � |Cb2k ∞( )
Cb1k 0( ) |

2

� γ21 1 + cos ωkT( )( )2
ωk − ωa − γ1 sin ωkT( ) − γ2 sin ωqT( )( )2 + γ1 1 + cos ωkT( )( ) + γ2 1 + cos ωqT( )( )[ ]2 , (13)

Tq � |Cc1q ∞( )
Cb1k 0( ) |

2

� 4γ1γ2 cos
2 ωkT/2( )cos2 ωqT/2( )

ωk − ωa − γ1 sin ωkT( ) − γ2 sin ωqT( )( )2 + γ1 1 + cos ωkT( )( ) + γ2 1 + cos ωqT( )( )[ ]2.
(14)

In contrast to small atoms, Eqs 12–14 imply that the giant
atom has the corrected transition frequencyΩa =ωa + γ1 sin(ωkT)
+ γ2 sin(ωqT) and decay rate Γ1(2) = γ1(2)(1 + cos(ωk(q)T)) [43].
From Eq. 13, the conditions for total reflection, Rk = 1, can be
obtained directly

ωa − ωk + γ1 sin ωkT( ) + γ2 sin ωqT( ) � 0,

γ2 1 + cos ωqT( )[ ] � 0.
(15)

There are two ways to make the second condition satisfied.
One is γ2 = 0, which means the transition path |a〉 → |c〉
directly turned off. The other one is ωqT = 2 (n + 1)π, which
infers that the decay channel of |a〉→ |c〉 is suppressed by the
destructive interference between coupling points [35]. Either
of these two cases can cause that the Λ configuration atom
could be reduced to a simple two-level atom. However, the first
solution is trivial and will not be considered in our case. Then
the two conditions in Eq. 15 can be rewritten as ωk − ωa = γ1 sin
(ωcT) and ωqT = 2 (n + 1)π. Here, we introduce the detuning, Δ
= ωk − ωa, of the incident photon from the |a〉 − |b〉 transition.
The total reflection conditions are written as Δ = γ1 sin (ωcT)
and Δ = ωc − ωa + 2 (n + 1)π/T.

While the total transmission, Tk = 1 and Rk = Tq = 0, happens
in the case of ωkT = (2n + 1)π, no matter with ωcT. Because of the
nondirectional decay process of the excited atom, the forward
nonelastic scattering photon strength is equal to the backward
one. Thus, it is reasonable to set the frequency conversion rate to
be twice the forward conversion rate, Tc = 2Tq. The fundamental
source affecting the conversion rate is the ratio of the decay rates,
i.e., γ1/γ2. For simplicity, we set γ1/γ2 = 1 and use γ regardless of
the subscript in the context.

In Figure 2, we plot the scattering rates as the function of
the scaled detuning Δ/γ and the scaled substable level
frequency ωc/γ, for ωaT = 2000π, where ωa/γ = 10,000 and
T = 0.2π/γ. Figure 2A,B depict the reflection rates for the
Markovian (γT = 0.2π) and non-Markovian (γT = 3π)
regimes, respectively. Compared with Figure 2A,B shows
two different features. First, there are additional small
peaks at two sides of the primary maximum for the certain
ωc. Second, the frequency band of the total reflection is
broadened. The giant atom can provide a wide spectrum
window for the strong reflection in the non-Markovian
regime. Figure 2C,D represent the single-photon
transmittance and the frequency conversion rate,
respectively, of the giant atom in the Markovian regime.

3.3 Tunable Traveling Time T
Based on the above investigation, it is clear that the single-photon
scattering effect of the Λ-type giant atom is intensely affected by
the two crucial phases, ωkT and ωcT. These phases are dependent
on the atom’s energy level structure and the coupling points
separation distance. Therefore, it is intuitive to control the spatial
length between the coupling points for coherently tuning the
phase. However, the spatial length is fixed once the circuit sample
is fabricated. Here, we introduce the SQUID-chain transmission
line, in which the photon’s phase velocity is flux-dependent.
Although the spatial distance of two points in the waveguide
is determined, changes in the photon’s phase velocity will change
the cost time T for photons traveling between two fixed points,
equivalent to the effective length and accumulated phase.
Consequently, the effect will affect the dynamical evolution of
this Λ-type giant atom as well as the scattering properties.

In addition to infinite length condition L → ∞, if the
superconducting transmission line also satisfies following
conditions [32]:

d0 ≪ λk ≪L, k≪
1
d0

���
Cg

CJ

√
, (16)

the dispersion relation Eq. 2 can be reduced to

ωk0 ≃
kd0����
LJCg

√ � kvJ, (17)

i.e., the phase velocity is d0/
�����
LJCg
√

. The effective inductance of
the SQUID is controlled by the magnetic field through it. Then
the photon’s phase velocity v can be modulated by controlling the
field through the SQUID loops

v � d0����
LJCg

√ �
d0

�����������
cos πΦ/Φ0( )√ �����

L0Cg

√ . (18)

The change in phase velocity leads to the change of the
traveling time of photons propagating between two points, so
does the accumulating phase. We set the separation distance of
the two coupling points as d = nd0, i.e., n SQUIDs constituting the
waveguide between the coupling points. Then, the traveling time
of a photon is

T � d

v
� n

�����
L0Cg

√�����������
cos πΦ/Φ0( )√ . (19)

By modulating the photon’s traveling time between two
coupling points, we can explore some interesting applications
that will be discussed in Section 4.

3.4 Experimental Feasibility
The linear dispersion relation (17) of the SQUID-chain
waveguide is valid over a wide frequency domain ωk <
10 GHz, when the circuit parameters are taken as [32];
[41,40]: L0 = 0.2 nH, Cg = 0.4 fF, CJ = 90 fF, d0 = 1 μm. The
transition frequencies of the circuit Λ-type atom can be set to fall
within the frequency domain. For example, we can take these
parameters: ωac/2π = 6.4828 GHz, ωab/2π ≈ 6.48452 GHz under a
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driving field with the frequency ωd/2π = 5.6466 GHz and the
coupling strength Ωd/2π = 1.46 MHz [37], where ωab(c) = ωa −
ωb(c) is the transition frequency between |a〉 and |b(c)〉. The
original traveling time now is T0 ≈ 10–9 s without the magnetic
field. With normal reliable decay rates γ (~MHz) for the
capacitive coupling, we can realize γT changing from the
regime of γT ≪ 1 to γT ≈ 1 theoretically. In other words, the
whole system can transit to the non-Markovian regime from the
Markovian regime gradually. Thus, taking advantage of this
setup, we can study novel physical phenomena in both
Markovian and Non-Markovian regimes. It also allows fine-
grained operations.

4 DISCUSSIONS

4.1 From Markovian to Non-markovian
For the sake of intuitively seeing the tunable scattering effects, we
substitute Eq. 19 into Eq. 12–14 and obtain the relationship
between the scattering rates and the flux bias as:

Tk � ωk −Ωa( )2 + Γ22
ωk − Ωa( )2 + Γ1 + Γ2( )2, (20)

Rk � Γ21
ωk − Ωa( )2 + Γ1 + Γ2( )2, (21)

Tq � Γ1Γ2
ωk −Ωa( )2 + Γ1 + Γ2( )2, (22)

where the corrected transition frequency Ωa � ωa +
γ1 sin(

nωk

���
L0Cg

√�������
cos(πΦ/Φ0)

√ ) + γ2 sin(
nωq

���
L0Cg

√�������
cos(πΦ/Φ0)

√ ) and decay rate Γ1(2) �
γ1(2)[1 + cos(nωk(q)

���
L0Cg

√�������
cos(πΦ/Φ0)

√ )] are the functions of the flux bias.

Then we plot the atom’s scattering effect to characterize their
relationship.

First, we demonstrate the giant atom’s scattering
characteristics Rk, Tk and Tc as the function of the external
scaled magnetic flux Φ/Φ0 and the scaled detuning from the
excited state frequency Δ/γ in Figures 3A–C. The decay rates
and the energy level structure of the giant atom are set to γ1 =
γ2 = ωc/10 = ωa/10000. The original traveling time of the
photon is set as T0 = 0.001/γ. Figures 3A–C clearly show that
the scattering rate is a single value around zero flux. While the
flux is increasing, the frequency band of the rates is broadened,
as discussed in Section 3.2. Continue to increase magnetic flux
approaching 0.5Φ0, the scattering rates begin violently
oscillating, which implies γT > 1 in the non-Markovian
regime. Then, the detailed scattering rates of the system
near the white dashed line in Figures 3A–C are shown in
Figures 3D–F. The shape of scattering rates spreading out like
a water wave demonstrates their periodicity, which originates
from the cosine function of the magnetic flux. The flux Φa

along the white dashed line satisfies
Ta � 1/γ � T0/

�����������
cos(πΦa/Φ0)
√

, while the blue dashed line
corresponds to Φ = 0. Therefore, the large region between
the two white dashed lines is the parameter space of the
Markovian regime, and the remaining edge areas are the
parameter space of the non-Markovian regime. From the
perspective of Figure 3, the adjustable ranges of the
reflection rate and the transmission rate are 0, −,1. The
total reflection case only happends in the non-Markovian
regime. The frequency conversion rate varies from 0, −,0.5
as the flux changes, which is limited by the ratio of the
decay rates.

Figures 4A–C show the scattering rates Rk, Tk and Tc along the
cuts of dashed lines in Figures 3A–C versus the normalized
detuning Δ/γ. Here, the red curve describes the scattering rates for
γT = 1 (the cut of white dashed lines), and the blue dashed curve
describes the scattering rates for γT = 0.001 (the cut of blue
dashed lines). The reflection rate and the transmission rate are

FIGURE 2 | Scattering rates. (A), (C) and (D) depict the reflectance, transmittance, and frequency conversion rate of the incident ωk photon, respectively, as a
function of the normalized detuning Δ/γ and the substable state frequency ωc/γ for γT = 0.2π. (B) shows the reflectance for γT = 3π. The white dashed curves in the
colormaps depict trajectories of max [Rk(Δ)], min [Tk(Δ)], and max [Tc(Δ)] versus ωc/γ, respectively, while the right plots show the maximum or minimun value of the
corresponding rate versus ωc/γ.
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significantly affected by the traveling time T with the maximum
reflection rate increasing and the minimum transmission rate
decreasing, respectively, as shown in Figures 4A,B . Apart from
the main peak around the zero detuning, some small peaks arise
on two sides of the resonance point. In contrast, the peaks of the
frequency conversion rates for two cases only exhibit a slight shift,
as shown in Figure 4C.

Based on the facts presented in Figures 3, 4, we find that the
maximum reflection rate in the non-Markovian regime is much
bigger than the corresponding rate in the Markovian regime with
a narrower peak width. Giant atoms prefer to intensely interact
with the photon modes with certain frequencies because these
photon modes were selected out in a “cavity” formed by the two
coupling points of the artificial giant atom, which acts as resonant
mirrors [44].

Distinguishing scattering properties in both Markovian and
non-Markovian regimes can serve future quantum technologies.
Excitingly, all of these are now implemented by using one setup,
in which we only need to change the external magnetic field
through the SQUID loops. In addition, our circuit allows
observing the transition between these two regimes by only
modulating the external field gradually from one to the other.

4.2 Application: Quantum Storage
The tunable traveling time in ourΛ-type giant atom can also be
used to store quantum information. Because the corrected
decay rates Γi depend on the phases, we can find an unusual
phase ωcT, with which Γ2 can reach the maximum value as well
as Γ1 at its minimum value. These tunable decay rates enable
one to realize state transition between |b〉 and |c〉 in our
system. For example, |b〉 → |a〉 → |c〉 transitions can be
achieved by switching off the decay Γ1, when the atom is
excited by an incident ωk photon.

Recalling Eq. 7 with the initial values, Ca (0) = 1, Cbs (0), and
Ccs(0) = 0, we obtain the atomic excitation

Ca t( ) � 1
2πi
∫ ds est

s + iωa + γ1D1 + γ2D2
. (23)

The emission spectrum of outgoing photons in the long-time
limit is

Cbαk ∞( ) �
e−iωkt

����
γ1/π√

cos ωkT/2( )
i ωa − ωk( ) + γ1 1 + eiωkT( ) + γ2 1 + eiωqT( ), (24)

Ccαq ∞( ) �
e−iωqt

����
γ2/π√

cos ωqT/2( )
i ωa − ωq( ) + γ1 1 + eiωkT( ) + γ2 1 + eiωqT( ). (25)

When the phases satisfy the conditions, ωkT1 = ωabT1 = (2n +
1)π and ωqT1 = ωacT1 = 2nπ, the resonant photon with frequency
ωab [Cbαk (∞)] vanishes corresponding to extreme depression of
the decay path |a〉 → |b〉, while the conversion photon with
frequency ωac [Ccαq (∞)] reaches the maximum corresponding to
the enhancement of the decay from |a〉 → |c〉.

Using Residue theorem, we can derive
Ca(t) � L−1[Ca(s)] � ∑nRes[Ca(s), sn]esnt, where sn is the root
of the equation [29,45].

s + iωa + γ1 1 + e−iωbTe−sT( ) + γ2 1 + e−iωcTe−sT( ) � 0. (26)
Interestingly, when sn is a purely imaginary number sn =

iωs, there will be a mode sn without decay which can survive in
the-long time limit. Therefore, we have the stationary
solution

Ca t → ∞( ) � e−iωst

1 − γ1e
−iωbT + γ2e

−iωcT( )Te−iωsT
, (27)

FIGURE 3 | Density plots showing the single-photon (A,D) reflection rate Rk (B,E) transmission rate Tk, and (C,F) frequency conversion rate Tc as a function of the
detuning Δ/γ and flux Φ/Φ0. In (A–C), the variation range of Φ is setted to be −0.5Φ0 ~ 0.5Φ0 while (D–F) is −0.04Φ0 + Φa ~ 0.04Φ0 + Φa with Φa satisfying
γTa � γT0/

������������
cos(πΦa/Φ0)
√ � 1.
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which yields a dark state decoupled with the open
transmission line.

If the giant atom is initially prepared in the excited state and
the transition frequencies between levels satisfy ωac = ωab =
(2n + 1)π/T, a dark-state mode, sn = −iωa,
Ca(t → ∞) � e−iωat

1+(γ1+γ2)T, exists. The fields in the transmission
line have the form as

Cb x, t( ) �
���
γ1
2vg

√
−1( )ne−iωat2 cos

ωabx

vg
( )

× Θ −x + L/2( )Θ x + L/2( ),
(28)

Cc x, t( ) �
���
γ2
2vg

√
−1( )ne−iωat2 cos

ωacx

vg
( )

× Θ −x + L/2( )Θ x + L/2( ),
(29)

which are referring to continuum bound states [31,32]; [46,47].
Unlike the bound state protected by the energy gap [48-55], it derives
from the destructive interference among the coupling points of the
giant atom. Particularly, it can be created and relieved after
introducing the adjustable traveling time. This method of
preserving quantum information in an atom-waveguide bound
state could be widely applied in quantum storage.

5 CONCLUSION

In this paper, we investigate a driven resonator-qubit giantΛ-type
atom coupling to a SQUID-chain waveguide. By studying the
scattering effect of individual photons on this giant atomic
system, we explore both Markovian and non-Markovian
phenomena caused by the interference effect between two
coupling points. Due to the adjustable group velocity of the
waveguide, the scattering effect of this artificial giant Λ-type
atom to the incident microwave photon can show significant
variation when we control the external magnetic field applied on
SQUID loops in this particular waveguide. This in-situ
modulation brings convenience to adjust the transmission of
quantum information and provides more possibilities in future
quantum technologies. Moreover, this setup can be realized in
experiments using current state-of-the-art technologies for
superconducting circuits [30]; [21,22]; [56].

6 APPENDIX

6.1 Derivation of the Giant Atom System
6.1.1 Artificial Λ-type Three-Level Atom
The artificial Λ-type giant atom can be realized in the design of
the system of Ref. [36] in addition to one more coupling point in
the waveguide-CPW resonator interface as shown in Figure 1A.
The Hamiltonian of the qubit-resonator system is given by

Hs � Z

2
ωqσz + Zωr a† a + 1

2
( ) + Zg a†σ− + aσ+( )

+ Z Ωσ− exp iωdt( ) +Ω*σ+ exp −iωdt( )[ ], (30)

where σi are the pauli operators of the flux qubit with frequency
ωq. a

†(a) is the creation (annihilation) operator of the resonator
ωr photon. g denotes the coupling constant of the qubit and the
resonator, while Ω is the Rabi frequency representing the
amplitude of driving field E(t). This system has a set of
polarition states |1〉, |2〉, |3〉, and |4〉, which can be
approximated as [37]:

|1〉 � −sin θ0
2
( )˜|e, 0〉 + cos

θ0
2
( )˜|g, 0〉,

|2〉 � cos
θ0
2
( )˜|e, 0〉 + sin

θ0
2

( )˜|g, 0〉,
|3〉 � −sin θ1

2
( )˜|e, 1〉 + cos

θ1
2
( )˜|g, 1〉,

|4〉 � cos
θ1
2
( )˜|e, 1〉 + sin

θ1
2

( )˜|g, 1〉,
(31)

FIGURE 4 | The scatting process described by the reflectance Rk (A),
transmittance Tk (B), and frequency conversion rate Tc (C) versus normalized
detuning Δ/γ with γT = 0.001 (dashed bule line) and γT = 1 (solid red line).
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where the mixing angles θ0 and θ1 are given by tan (θ0) = Ωd/
[(ωq − χ) − ωd] and tan (θ1) = Ωd/[ωd − (ωq − 3χ)], respectively.
And we use the set of polariton states |1〉, |2〉 and |3〉 to form a
Λ-type system with the Hamiltonian Hs � ∑j ~ωj|j〉〈j| �∑j ~ωj~σjj.

6.1.2 SQUID-Chain Waveguide
The SQUID-chain microwave transmission line model, as shown
in Figure 1, can be described by the Hamiltonian

H0 � 1
2
�Q
T
Ĉ

−1 �Q + �ΦT
L̂
−1 �Φ �∑

k

ωk a†kak + 1/2( ), (32)

where the charge and phase vectors have the form, �Q
T �

(Q1, Q2, . . . , QN, . . .) and �ΦT � (Φ1,Φ2, . . . ,ΦN, . . .),
respectively. Ĉ and L̂ are the capacitance and inductance
matrixes defined as [39]; [32].

Ĉ �
CJ −CJ 0 . . .
−CJ 2CJ + Cg −CJ 0 . . .
0 −CJ 2CJ + Cg −CJ 0 . . .

..

.
0 1 1 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (33)

and

L̂
−1 �

1
LJ

− 1
LJ

0 . . .

− 1
LJ

2
LJ

− 1
LJ

0 . . .

0 − 1
LJ

2
LJ

− 1
LJ

0 . . .

..

.
0 1 1 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (34)

respectively. The charge-density operator at the antinode position
Q can be approximately, in the linear limit CJ = 0 [32],
expressed as

Q � −iCg∑
k

����
Zωk

Ct

√
a†ke

ikx − ake
−ikx( ), (35)

Ct = NCg is the total capacitance of SQUID chains.

6.1.3 Coupling Between SQUID-Chain Waveguides
and Artificial Λ-type Giant Atoms
The resonator-part Hamiltonian in the resonator-qubit system is
written as

Hr � Zωr a†a + 1
2

( ) � Q2
r

2C
+ Φ2

r

2L
, (36)

Qr and Φr are the charge operator and the flux operator of
the resonator, while C and L are the circuit characteristic
capacitance and inductance, respectively. When a
microwave field is incident, the Hamiltonian of the circuit
resonator can be rewritten as

Hr � Qr + Qe( )2
2C

+ Φ2
r

2L
. (37)

From Eq. 35, we know that the charge induced by the incident
field is

Qe ± x( ) � Q ± x( )Cg±
J

Cg
� −i∑

k

Cg±
J

����
Zωk

Ct

√
× ake

ikx± − a†ke
−ikx±( ). (38)

Expanding Eq. 37 as

Qr + Qe( )2
2C

+ Φ2
r

2L
� Q2

r

2C
+ Φ2

r

2L
+ Q2

e

2C
+ QrQe

C

≈ Zωr a†a + 1
2

( ) + Z∑
±

∑
k

Cg±
J

C

��
C

Ct

√ �����
ωkωr

2

√
a†kae

−ikx±(
+aka†eikx±),

(39)
we obtain the radiative decay rate κ from the resonator to the
waveguide,

�����
κ±/2π

√ � Cg±
J

���������
Cωkωr/2Ct

√
/CΣ.

Consequently, the total Hamiltonian of the system including
the SQUID-chain waveguide and artificial Λ-type giant atom can
be obtained as

H � Ha +Hw +Hint

�∑
j

~ωj~σjj + ∫ dωka
†
kak

+∑
x±

∫ dωk∑
i,j

������
~κ±ij/2π√

~σ ijake
ikx± + a†k~σjie

−ikx±( ), (40)

where ~κ±ij � κ|〈i|a†|j〉|2 are equal to γi/2 in the main text.

6.2 Derivation of the Single-Photon Process
In this part, we briefly derive the photon distruibution and time
evolution of the single-photon process. From the single-
excitation wave function Eq. 5, we can substitute the state
formula into the Schröndinger equation and obtain the
dynamical equation for the giant atom

dCa t( )
dt

� −iωaCa t( )
−i ∑

α�1,2
∫ Z ���

γ1
4π

√
Cbαk t( ) e−icαωkT/2 + eicαωkT/2( )dωk

−i ∑
α�1,2

∫ Z ���
γ2
4π

√
Ccαq t( ) e−icαωqT/2 + eicαωqT/2( )dωq.

(41)
The propogating photon fields in the transmission line can be

written as

dCbαk t( )
dt

� −i ωb + ωk( )Cbαk t( )
−i
���
γ1
4π

√
Ca t( ) e−icαωkT/2 + eicαωkT/2( ),

dCcαq t( )
dt

� −i ωc + ωq( )Ccαq t( )
−i
���
γ2
4π

√
Ca t( ) e−icαωqT/2 + eicαωqT/2( ).

(42)

By integrating above equations, we can obtain Eq. 6. Then
taking Laplace transform Ca(s) � ∫∞0 Ca(t)e−stdt and
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introducing the coupling strength V1(2) �
�������
γ1(2)vg/2
√

, the
differential equation can be simplified to

sCa s( ) −Ca 0( ) � −iωaCa s( ) −D1Ca s( ) −D2Ca s( )
−iV1

���
2π
vg

√
e−iωbt Cb1s 0( ) + Cb2s 0( )[ ] esT/2 + e−sT/2( )

−iV2

���
2π
vg

√
e−iωct Cc1s 0( ) + Cc2s 0( )[ ] esT/2 + e−sT/2( ). (43)

Here we set the right-propagating incident
photon field Cb1k (0) ≠ 0, which frequency band is
around ωab. With the giant atom initially being in the
ground state, the probability amplitude of the exctied
state is given by

Ca t( ) � −i
���
γ1
4π

√ ∫ dsCb1s 0( ) esT/2 + e−sT/2( )este−iωbt

s + iωa + γ1D1 + γ2D2
. (44)

From Eq. 42, we obtain the solutions of the forward-scattered
field

Cb1k t( ) � e−i ωb+ωk( )t Cb1k 0( ) − γ1
4π

e−iωkT/2 + eiωkT/2( )[
× ∫ dsCb1s 0( ) esT/2 + e−sT/2( )est′e−iωbt′

s + iωa + γ1D1 + γ2D2

× ∫t

0
dt′ei ωb+ωk( )t′],

(45)

Cc1q t( ) � e−i ωc+ωq( )t −
�����
γ1γ2
4π( )2

√
e−iωqT/2 + eiωqT/2( )[

× ∫ dsCb1s 0( ) esT/2 + e−sT/2( )est′e−iωbt′

s + iωa + γ1D1 + γ2D2

× ∫t

0
dt′ei ωc+ωq( )t′],

(46)

and the backward-scattered fields

Cb2k t( ) � e−i ωb+ωk( )t − γ1
4π

e−iωkT/2 + eiωkT/2( )[
× ∫ dsCb1s 0( ) esT/2 + e−sT/2( )est′e−iωbt′

s + iωa + γ1D1 + γ2D2

× ∫t

0
dt′ei ωb+ωk( )t′],

(47)

where D1(2) � 1 + e−iωb(c)Te−sT is the phase of the decay rate sourced
from the coupling points distance, defined in Sec.3.1 of the main text.
After taking the long-time limit, we can finally solve the above
integrations and obtain the scattering ratesRk,Tk andTq inEqs. 12–14.
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