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High order entropy stable schemes provide improved robustness for computational
simulations of fluid flows. However, additional stabilization and positivity preserving
limiting can still be required for variable-density flows with under-resolved features. We
demonstrate numerically that entropy stable Discontinuous Galerkin (DG) methods which
incorporate an “entropy projection” are less likely to require additional limiting to retain
positivity for certain types of flows. We conclude by investigating potential explanations for
this observed improvement in robustness.
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1 INTRODUCTION

Discontinuous Galerkin (DG) schemes have received interest within computational fluid dynamics
(CFD) due to their high order accuracy and ability to handle unstructured curved meshes. In
particular, there has been interest in DG methods for simulations of under-resolved flows [1–5].
Among such schemes, “entropy stable”DGmethods based on a “flux differencing” formulation have
received interest due to their robustness with respect to shocks and turbulence [6–9].

Entropy conservative and entropy stable flux differencing schemes were originally formulated for
finite difference methods in [10, 11]. They were extended to tensor product grids using discontinuous
spectral collocation schemes (also known as discontinuous Galerkin spectral element methods, or
DGSEM) [12, 13]. Entropy stable collocation schemes were extended to simplicial meshes in [14, 15]
using multi-dimensional summation-by-parts (SBP) operators [16]. Non-collocation entropy stable
schemes have also been developed. These schemes began with staggered grid schemes on tensor
product grids in [17], which were later extended to simplicial elements in [18]. “Modal” entropy
stable DG formulations [19–21] have been utilized to construct a variety of new entropy stable
schemes, including Gauss DG methods [22, 23] and reduced order models [24]. We note that under
appropriate choices of quadrature, these “modal” formulations reduce to collocation-type entropy
stable schemes. Entropy stable schemes have since been extended to an even wider array of
discretizations, such as line DG methods, discontinuous Galerkin difference methods, and C0

continuous discretizations [25–27].
The main difference between non-collocation and collocation-type entropy stable schemes is the

use of transformations between conservative variables and entropy variables together with projection
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or prolongation operators to facilitate a discrete proof of entropy
stability. This is referred to as the “entropy projection” in [19, 25]
and as the interpolation or prolongation of entropy variables in
[17, 27]. This approach is also equivalent to the mixed
formulation of [28]. We will refer to this transformation as
the “entropy projection” for the remainder of the paper.

The motivation for introducing the entropy projection has
been to enable the use of more accurate quadrature rules or novel
basis functions. This has been at the cost of additional complexity
and issues related to the sensitivity of the entropy variables for
near-vacuum states [19, 27]. To the best of the authors’
knowledge, no inherent advantages in using the entropy
projection have been observed in the literature. This paper
focuses on the following observation: high order entropy stable
schemes based on the entropy projection appear to be more
robust than entropy stable collocation schemes for two and three
dimensional simulations of under-resolved variable-density fluid
flows with small-scale features.

The structure of the paper is as follows: Section 2 reviews
mathematical formulations of entropy stable schemes which
involve the entropy projection. Section 3 documents the
observed difference in robustness for a variety of problems in
two and three dimensions, and provides analysis and numerical
experiments which support that the primary difference between
unstable and stable schemes is the entropy projection. Section 4
conjectures potential explanations for why the entropy projection
might improve robustness. We conclude with Section 5, which
explores potential applications towards under-resolved flow
simulations.

2 FORMULATION OF HIGH ORDER
ENTROPY STABLE DISCONTINUOUS
GALERKIN SCHEMES
In this section, we provide a brief description of high order
entropy stable schemes in 1D. More detailed derivations, multi-
dimensional formulations, and extensions to curved grids can be
found in [14, 15, 19, 21, 22, 24].

The notation in this paper is motivated by notation in [15,
29]. Unless otherwise specified, vector and matrix quantities
are denoted using lower and upper case bold font,
respectively. Spatially discrete quantities are denoted using
a bold sans serif font. Finally, the output of continuous
functions evaluated over discrete vectors is interpreted as a
discrete vector.

For example, if x denotes a vector of point locations,
i.e., (x)i � xi, then u(x) is interpreted as the vector

u x( )( )i � u xi( ).
Similarly, if u � u(x), then f(u) corresponds to the vector

f u( )( )i � f u xi( )( ).
Vector-valued functions are treated similarly. For example,

given a vector-valued function f : Rn → Rn and a vector of
coordinates x, we adopt the convention that (f (x))i � f (xi).

2.1 Conservation Laws With Entropy
In this section, we review the construction of entropy
conservative and entropy stable schemes for a one-
dimensional system of nonlinear conservation laws

zu
zt

+ zf u( )
zx

� s u( ),

where s(u) is a source term. We assume the domain is exactly
represented by a uniform mesh consisting of non-overlapping
intervals Dk, and that the solution u(x) is approximated by degree
N polynomials over each element. We also introduce entropy
conservative numerical fluxes fS(uL, uR) [30], which are bivariate
functions of “left” and “right” states uL, uR. In addition to being
symmetric and consistent, entropy conservative numerical fluxes
satisfy an “entropy conservation” property

vL − vR( )Tf S uL, uR( ) � ψ uL( ) − ψ uR( ). (1)
here, vL, vR are entropy variables evaluated at the left and right
states, and ψ(u) denotes the “entropy potential”. Examples of
expressions for entropy variables and entropy potentials can be
found in [14].

2.2 Collocation Formulations
Degree N entropy stable collocation schemes are typically built
from Legendre-Gauss-Lobatto (LGL) quadrature rules with (N +
1) points. Let x,w denote vectors of quadrature points and
weights on the reference interval [−1, 1]. Let ℓi(x) denote
Lagrange polynomials at LGL nodes, and let u denote the
vector of solution nodal values u(xi). Define the matrices

M � diag(w), Qij � ∫1

−1

zℓj
zx

ℓidx,

B � −1
1

⎡⎣ ⎤⎦, Vf � 1 . . . 0

0 . . . 1
⎡⎣ ⎤⎦.

here Vf is a face interpolation or extraction matrix which maps
from volume nodes to face nodes. Flux derivatives are discretized
using a “flux differencing” approach involving summation-by-
parts (SBP) operators and entropy conservative fluxes [30]. An
entropy stable collocation formulation can now be defined on an
element Dk as follows:

hM
du
dt

+ Q −QT( )◦F( )1 + VT
fBf

p � s u( ), Fij � f S ui,uj( ),
(2)

where h is the size of the element Dk and ◦ denotes the matrix
Hadamard product [10–12].1 Here, fp is a vector which
contains numerical fluxes at the left and right endpoints of the
interval

1Since the entries of F are vector-valued, the Hadamard product (Q −QT)◦F
should be understood as each scalar entry of (Q −QT) multiplying each vector-
valued entry of F.
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fp � f p u+
1 ,u1( )

f p uN+1,u+
N+1( )[ ],

where u+
1 ,u

+
N+1 denote exterior nodal values on neighboring

elements. If f p is an entropy conservative flux, then the
resulting numerical method is semi-discretely entropy
conservative. If f p is an entropy stable flux (for example, Lax-
Friedrichs flux, HLLC, and certain matrix penalizations [14, 31])
then the resulting scheme also dissipates entropy.

2.3 “Modal” Formulations
DegreeN entropy stable “modal”DG schemes generalize collocation
schemes to arbitrary choices of quadrature. In one dimension, this
allow for the use of higher accuracy volume quadratures. In higher
dimensions, modal formulations also enable more general choices of
surface quadrature. These schemes introduce an additional “entropy
projection” step to facilitate the semi-discrete proof of entropy
stability or conservation.

We now assume the solution is represented using some
arbitrary basis over each element, such that u(x) � ∑jujϕj(x).
Let x, w now denote a general quadrature rule with positive
quadrature weights. We define quadrature-based interpolation
matrices Vq,Vf, the mass matrix M, and the modal
differentiation matrix Q̂

Vq( )
ij
� ϕj xi( ), Vf( )

1j
� ϕj −1( ), Vf( )

2j
� ϕj 1( ),

M � VT
qdiag(w)Vq, Q̂ij � ∫1

−1

zϕj

zx
ϕidx.

We introduce the quadrature-based projection matrix
Pq � M−1VT

qdiag(w). Using Pq and Q̂, we can construct
quadrature-based differentiation and extrapolation matricesQ, E

Q � PT
q Q̂Pq, E � VfPq.

To accommodate general quadrature rules which may not
include boundary points, we introduce hybridized SBP operators
Qh on the reference interval [−1, 1]

Qh � 1
2

Q − Q( )T ETB
−BE B

[ ].
The use of such operators simplifies the implementation for

general quadrature rules and nodal sets which do not include
boundary nodes [19, 32]. Next, we define Vh as the interpolation
matrix to both volume and surface quadrature points

Vh � Vq

Vf
[ ].

We also introduce the L2 projection of the entropy variables
and the “entropy projected” conservative variables ~u

v � Pqv Vqu( ), ~u � u Vhv( ),
which are defined by evaluating the mapping from conservative
to entropy variables u(v) using the projected entropy variables.
Here, v(u) denotes the mapping from conservative to entropy

variables. Note that the projected entropy variables v is a vector
corresponding tomodal coefficients, while ~u corresponds to point
values at volume and face quadrature points.

An entropy stable modal DG discretization over a single
element Dk is then

hM
du
dt

+ VT
h Qh −QT

h( )◦F( )1 + VT
fBf

p � s u( ), (3)

Fij � f S ~ui, ~uj( ), fp � f p ~u+
1 , ~u1( )

f p ~uN+1, ~u
+
N+1( )[ ].

Note that the right hand side formulation is evaluated not
using the conservative variables u, but the “entropy projected”
conservative variables ~u.

While we have presented entropy stable DG schemes using a
general “modal” DG framework, the formulation reduces to
existing methods under appropriate choices of quadrature and
basis. For example, specifying LGL quadrature on a tensor
product element recovers entropy stable spectral collocation
schemes [22]. SBP discretizations without an underlying basis
on simplices [14–16] can also be recovered for appropriate
quadrature rules by redefining the interpolation and projection
matrices Vq,Pq [33].

3 NUMERICAL COMPARISONS OF
COLLOCATION AND ENTROPY
PROJECTION SCHEMES
In this section, we will demonstrate numerically that a significant
difference in robustness is observed between collocation and
entropy projection-based discretizations of the Euler and ideal
MHD equations. For the Euler equations, we study the Kelvin-
Helmholtz, Rayleigh-Taylor, and Richtmeyer-Meshkov
instabilities, and for the MHD equations we study a
magnetized Kelvin-Helmholtz instability. All of these examples
exhibit small-scale turbulent-like features. Moreover, we observe
a difference in robustness between entropy stable collocation and
entropy projection-based methods independently of the
polynomial degrees, mesh resolutions, and type of mesh (e.g.,
quadrilateral or triangular). We focus on the following entropy
stable DG methods:

• On quadrilateral meshes:
(1) DGSEM: collocation scheme based on the tensor

product of one-dimensional (N + 1) point LGL
quadrature,

(2) Gauss DG: a “collocation” scheme based on the tensor
product of one-dimensional (N + 1) point Gauss
quadrature. The entropy projection is used to
evaluate interface fluxes [22],

• On triangular meshes:
(1) SBP: a collocation scheme based on multi-dimensional

summation-by-parts finite difference operators [14, 16],
(2) Modal: a modal formulation utilizing quadrature rules

which exactly integrate entries of the volume and face
mass matrices [19].
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Remark 1. It is known that the Kelvin-Helmholtz, Rayleigh-
Taylor, and Richtmeyer-Meshkov instabilities are notoriously
sensitive to initial conditions and discretization parameters,
and that numerical schemes may not converge to a unique
solution [34, 35]. Instead, this paper focuses on these
problems as stress tests of robustness.

Unless specified otherwise, all numerical experiments
utilize a Lax-Friedrichs interface flux with Davis wavespeed
estimate [36]. We also experimented with HLL and HLLC
surface fluxes, but did not notice a significant difference. We
also note that instead of discontinuous initial conditions, we
utilize smoothed approximations for each problem
considered here.

All experiments are also performed on uniform meshes. For
triangular meshes, this mesh is constructed by bisecting each
element of a uniform quadrilateral mesh along the diagonal.
Unless specified otherwise, all results are produced using the Julia
[37] simulation framework Trixi.jl [38, 39]. For most
experiments, we utilize an optimized adaptive 4th order 9-
stage Runge-Kutta method [40] implemented in
OrdinaryDiffEq.jl [41]. The absolute and relative tolerances are
set to 10–7 unless specified otherwise. Scripts generating main
results are included in a companion repository for
reproducibility [42].

We note that the robustness, efficiency, and high order
accuracy of both entropy stable DGSEM and entropy stable
Gauss DG schemes have been verified in previous works [7–9,
22, 23], and will not be addressed in detail in this paper. However,
the difference in robustness between the two methods has not
been previously observed in the literature, and will be the focus of
this work.

3.1 Euler Equations of Gas Dynamics
We consider first the two and three-dimensional problems for the
Euler equations of gas dynamics. The conservative variables for
the three-dimensional Euler equations are density, momentum,
and total energy, u � (ρ, ρv, E), where the vector v � (u, v, w)
contains the velocities in x, y and z, respectively. The flux reads

f u( ) �

ρv

ρvvT + Ip

v
1
2
ρ‖v‖2 + γp

γ − 1
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

where I is the 3 × 3 identity matrix, γ is the heat capacity ratio, and
p � (γ − 1)(E − ρ‖v‖2/2) is the gas pressure. For two-
dimensional problems, we neglect the third component of the
velocity, w, and I becomes the 2 × 2 identity matrix.

All the following experiments use the entropy conservative
and kinetic energy preserving flux of Ranocha [43, 44]; however,
similar results were observed when experimenting with the
entropy conservative flux of Chandrashekar [45].

3.1.1 Two Dimensional Kelvin-Helmholtz Instability
We perform additional experiments analyzing the robustness of
entropy stable DGSEM and Gauss DG for the Kelvin-Helmholtz

instability. The domain is [−1, 1]2 with initial condition
from [46]:

ρ � 1
2
+ 3
4
B, p � 1,

u � 1
2

B − 1( ), v � 1
10

sin 2πx( ),
(4)

where B(x, y) is a smoothed approximation to a discontinuous
step function

B x, y( ) � tanh 15y + 7.5( ) − tanh 15y − 7.5( ). (5)
Each solver is run until final time Tfinal = 15. As can be

observed in Figure 1, the solution differs significantly between the
N = 3 and N = 7 simulations. This is likely a consequence of the
well-known sensitivity of the Kelvin-Helmholtz instability to
small perturbations and numerical resolutions [34, 35]. End
times for each simulation can be found in Table 1.

3.1.2 Two Dimensional Rayleigh-Taylor Instability
The two-dimensional Rayleigh-Taylor instability generates small-
scale flow features through buoyancy or gravity effects [47, 48]. The
setup involves a heavy and light fluid suspended above one another
separated by a curved interface, and buoyancy or gravity results in
displacement of the lighter fluid into the heavier one. This
displacement causes velocity shear and the formation of
additional Kelvin-Helmholtz instabilities along the interface. The
domain is [0, 1/4] × [0, 1].

Let da,b(x) � a + 1
2 (1 + tanh(sx))(b − a) denote a smoothed

approximation (with slope s) to a discontinuous function with
values a for x < 0 and b for x > 0. The initial condition is given by

ρ � d2,1 y − 1
2

( ), p � 2y + 1 y< 1/2
y + 3/2 y≥ 1/2{ ,

u � 0 v � − c

40
cos 8kπx( )sin πy( )6,

where c � ����
γp/ρ

√
is the speed of sound. Here, we borrow from

[49] and multiply the y-velocity perturbation by sin(πy)6 so that
u, v satisfy wall boundary conditions. We also add gravity source
terms to the y-momentum and energy equations:

s x, t( ) � 0 0 gρ gρv[ ],
where s = 15. Note that the sign of gravity is such that the light
fluid flows up into the heavy fluid. Reflective wall boundary
conditions are imposed at all boundaries using mirror states,
which results in an entropy stable scheme under the Lax-
Friedrichs flux [14, 50]. Figure 2 shows snapshots of the
density for a degree N = 3 entropy stable Gauss DG scheme
on a mesh of 32 × 128 elements at various times. End times for
each simulation can be found in Table 2.

3.1.3 Two Dimensional Richtmeyer-Meshkov
Instability
The Richtmeyer-Meshkov instability generates small-scale flow
features by passing a shock over a stratified fluid [47, 51]. The
domain for this setup is [0, 40/3] × [0, 40], and the initial density
and pressure are given by
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ρ � d1,14
y − 18 + 2 cos

6πx
L

( )( )( ) + d3.22,0 y − 4
∣∣∣∣ ∣∣∣∣ − 2( ),

p � d4.9,1 y − 4
∣∣∣∣ ∣∣∣∣ − 2( ),

where we again set the slope s = 15. The initial velocities are both
set to zero, i.e., u, v = 0. We approximate the discontinuous initial
condition using smoothed Heaviside functions with a slope of s =
2 due to the size of the domain. Reflective wall boundary
conditions are imposed everywhere. Figure 3 shows
pseudocolor plots of the density using a degree N = 3 entropy

stable Gauss DG on a uniform mesh of 32 × 96 quadrilateral
elements. End times for each simulation can be found in Table 3.

3.1.4 Three-Dimensional Kelvin-Helmholtz Instability
For completeness, we also verify that a difference in robustness is
observed for instability-type problems in three dimensions. Due to the
high computational cost of entropy stable DGmethods on tetrahedral
meshes, we restrict ourselves to hexahedral meshes for the following
experiments. We adapt the Kelvin-Helmholtz instability to three
dimensions using the following initial condition:

FIGURE 1 | Snapshots of density for the Kelvin-Helmholtz instability using an entropy stable Gauss DG scheme on uniform quadrilateral meshes.

FIGURE 2 | Density for a Rayleigh-Taylor instability for a degree N = 3 entropy stable Gauss DG scheme on a mesh of 32 × 128 elements.
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ρ � 1
2
+ 3
4
B p � 1

u � 1
2

B − 1( ) v � 1
10

sin 2πx( )sin 2πz( ) w � 1
10

sin 2πx( )sin 2πz( ),

where B is defined as in Eq. 5.Table 3 shows the results, which are
similar to previous results for the two-dimensional test problems.
We note for this example, both the relative and absolute adaptive
time-step tolerances were set to 10–8 instead of 10–7. This was
necessary to avoid crashes for the entropy projection method at
degrees N = 6 and N = 7 on the finer Ncells = 32 mesh.

3.2 Ideal GLM-MHD Equations
Next, we consider the ideal GLM-MHD equations. These
equations use generalized Lagrange multiplier (GLM)
technique to evolve towards a solution that bounds the
magnetic field divergence. When the magnetic field divergence
is non-zero, the GLM-MHD system requires the use of non-
conservative terms to achieve entropy stability and to ensure
Galilean invariance in the divergence cleaning technique.

The non-conservative GLM-MHD system without source
terms reads

zu
zt

+ ∇ · f u( ) +  � 0, (6)

where the state variables are density, momentum, total energy,
magnetic field, and the so-called divergence-correcting field,
u � (ρ, ρv, E,B,ψ), and the vectors v � (u, v, w) and B �
(B1, B2, B3) contain the velocities and magnetic field in x, y
and z, respectively. The flux reads

f u( ) �

ρv

ρvvT + I p + 1
2
‖B‖2( ) − BBT

v
1
2
ρ‖v‖2 + γp

γ − 1
+ ‖B‖2( ) + B chψ − v · B( )( )

vBT − BvT + Ichψ

chB

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where I is again the 3 × 3 identity matrix, γ is the heat capacity
ratio, ch is the hyperbolic divergence-cleaning speed, and p �
(γ − 1)(E − (ρ‖v‖2 − ‖B‖2 − ψ2)/2) is the gas pressure. Finally,
the non-conservative term reads

 � ∇ · B( ) 0,B, v · B, v, 0( ) + 0, 0,ψ v · ∇ψ( ), 0, v · ∇ψ( ). (7)
To construct a two-dimensional version of the GLM-MHD

system, we replace I by a rectangular 3 × 2 identity matrix and
neglect the flux in z. However, we keep the third component of
the velocity and magnetic field because plasma systems admit
three-dimensional electromagnetic interactions in two-
dimensional problems. For details about the GLM-MHD
system, we refer the reader to [52].

The non-conservative GLM-MHD system (Eq. 6) can be
discretized using the collocation (Eq. 2) and modal (Eq. 3)
formulations by replacing the volume term F and the surface
term fp [53]. In the collocation formulation the new terms read

FIGURE 3 | Density for the Richtmeyer-Meshkov instability using a degree N = 3 entropy stable Gauss DGwith 32 × 96 elements. The domain is [0, 40/3] × [0, 40].

TABLE 1 | End time for simulations of the 3D Kelvin-Helmholtz instability on
hexahedral meshes. “Collocation” refers to a nodal DGSEM discretization,
while “entropy projection” refers to a method based on Gauss nodes.

Degree 1 2 3 4 5 6 7

Solver

3D KHI, Ncells = 16
Collocation 10 2.73 2.111 1.978 2.059 1.797 1.893
Entropy projection 10 10 10 10 10 10 10
3D KHI, Ncells = 32
Collocation 4.049 2.451 2.061 1.721 2.071 1.973 1.952
Entropy projection 10 10 10 10 10 10 10

Times colored blue correspond to simulations which did not crash and ran to completion,
while times colored red denote simulations which did crash.
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Fij � f S ui, uj( ) +Φ◇ ui, uj( ),
fp � f p u+

1 , u1( ) +Φ◇ u+
1 , u1( )

f p uN+1, u+
N+1( ) +Φ◇ uN+1, u+

N+1( )[ ]. (8)

and in the modal formulation they read

Fij � f S ~ui, ~uj( ) +Φ◇ ~ui, ~uj( ),
fp � f p ~u+

1 , ~u1( ) +Φ◇ ~u+
1 , ~u1( )

f p ~uN+1, ~u+
N+1( ) +Φ◇ ~uN+1, ~u+

N+1( )[ ]. (9)

In addition to the symmetric two-point flux fS, we use a
non-symmetric two-point term Φ◇ to account for the non-
conservative term in the equation. The following experiment
uses the non-conservative term presented by Rueda-Ramírez
et al. [53] and the entropy conservative flux of Hindenlang and
Gassner [54], which is a natural extension of the entropy
conservative, kinetic energy preserving, and pressure
equilibrium preserving Euler flux of Ranocha [43, 44] to the
GLM-MHD system.

3.2.1 Two Dimensional Magnetized Kelvin-Helmholtz
Instability
To test the robustness of entropy projection schemes for the
GLM-MHD system, we propose a modification of the Euler two-
dimensional Kelvin-Helmholtz instability of Section 3.1.1. The
domain is [−1, 1]2 with the initial condition:

ρ � 1
2
+ 3
4
B, p � 1, ψ � 0,

u � 1
2

B − 1( ), v � 1
10

sin 2πx( ), w � 0,

B1 � 0, B2 � 0.125, B3 � 0,

(10)

where B(x, y) is as defined in Eq. 5. Each solver is run until final
time Tfinal = 15.

For this example, we set ch as the maximum wave speed in the
domain for the initial condition (Eq. 10) and keep it constant
throughout the simulation. This standard way of selecting ch has
been shown to control the divergence error efficiently without
affecting the time-step size [52, 55]. We observed that smaller
values of ch affect the robustness of the schemes for this problem,
and higher values of ch increase the stiffness of the problem which
can also lead to a crash if the tolerance for the adaptive time-
stepping method is set too loosely.

Figure 4 shows pseudocolor plots of the density at T = 10 for
the magnetized Kelvin-Helmholtz instability problem obtained
with the entropy stable Gauss DG using polynomial degreesN = 3

FIGURE 4 | Snapshots of density for the magnetized Kelvin-Helmholtz instability using an entropy stable Gauss DG scheme on uniform quadrilateral meshes.

TABLE 2 | End time for simulations of the Kelvin-Helmholtz instability on
quadrilateral and triangular meshes. On quadrilateral meshes, “collocation”
refers to a nodal DGSEM discretization, while “entropy projection” refers to a
method based on Gauss nodes. On triangular meshes, “collocation” refers to
nodal SBP discretization, while “entropy projection” refers to a modal entropy
stable DG method.

Degree 1 2 3 4 5 6 7

Solver

KHI, quadrilateral mesh, Ncells = 16
Collocation 15 4.807 3.769 4.433 3.737 3.369 3.642
Entropy projection 15 15 15 15 15 15 15
KHI, quadrilateral mesh, Ncells = 32
Collocation 15 4.116 3.652 4.266 3.54 3.663 3.556
Entropy projection 15 15 15 15 15 15 15
KHI, triangular mesh, Ncells = 16
Collocation 15 3.984 3.441 2.993 2.943 3.128
Entropy projection 15 15 15 15 15 15
KHI, triangular mesh, Ncells = 32
Collocation 3.919 3.452 3.191 2.958 3.063 3.269
Entropy projection 15 15 15 15 15 15

Times colored blue correspond to simulations which did not crash and ran to completion,
while times colored red denote simulations which did crash.
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andN = 7 on uniformmeshes of 64 × 64 and 32 × 32 quadrilateral
elements, respectively. A comparison with Figure 1 shows that
the addition of a vertical magnetic field extends the flow features
in the y direction and suppresses many of the vortical structures at
T = 10. MHD turbulence eventually develops in the domain after
T = 10, which leads to later crash times for this example. End
times for each simulation can be found in Table 3.

3.3 Overview of Results
Tables 1,2,4,5 show what time the solver ran until for each solver
on both quadrilateral and triangular meshes. We observe the
pattern that, for degree N > 1, entropy stable methods which
utilize the entropy projection appear be more robust than
collocation-type schemes. Moreover, this pattern appears to
hold independently of the polynomial degree and mesh size.

3.4 Dependence of Robustness on Atwood
number
While the numerical results in the previous section indicate a
difference between different entropy stable schemes, they do not
provide insight into why and when this difference in robustness
manifests. The goal of this section is to establish a relationship
between robustness, the Atwood number (a measure of the
density contrast), and the use of the “entropy projection” in
an entropy stable scheme. We restrict our focus to the Kelvin-
Helmholtz instability for this section.

The results presented so far are somewhat unexpected, as the
robustness of high order entropy stable DG schemes has been
documented for a variety of flows where shocks and turbulent
features are present [7–9, 13]. In this section, we conjecture that
the documented differences in robustness are due to the presence
of both small-scale under-resolved features and significant
variations in the density. For example, entropy stable DGSEM
methods are known to be very robust for the Taylor-Green

vortex, where the density is near-constant throughout the
duration of the simulation.

We examine the connection between density contrast and
robustness by parametrizing the initial condition by the Atwood
number. Given a stratified fluid with two densities ρ1, ρ2, the
Atwood number is defined as

A � ρ2 − ρ1
ρ1 + ρ2

∈ 0, 1[ ),

where it is assumed that ρ2 ≥ ρ1. For a constant-density flow, A =
0, while A → 1 indicates a flow with very large density contrasts.
We investigate the behavior of different entropy stable methods
for a version of the Kelvin-Helmholtz instability parametrized by
the Atwood number A:

ρ1 � 1 ρ2 � ρ1
1 + A

1 − A
ρ � ρ1 + B ρ2 − ρ1( ) p � 1

u � B − 1
2

v � 1
10

sin 2πx( )

Figure 5 shows the crash times for the Kelvin-Helmholtz
instability using various entropy stable solvers at polynomial
degrees 3 and 7. For quadrilateral meshes, we utilize entropy
stable DGSEM solvers and entropy stable Gauss DG solvers. For
triangular meshes, we utilize entropy stable multi-dimensional
SBP solvers and entropy stable modal DG solvers. The DGSEM
and SBP solvers are collocation-type schemes, while Gauss and
modal DG solvers introduce the entropy projection.

For degree 3 quadrilateral solvers, we utilize a 32 × 32 mesh,
while for degree 7 quadrilateral solvers, we utilize a 16 × 16 mesh.
The mesh resolution is halved for polynomial degree 7
simulations so that the total number of degrees of freedom is
kept constant. For triangular solvers, we again use 32 × 32 and 16
× 16 uniform meshes, but we compare polynomial degrees 3 and
6, as SBP quadrature rules are available only up to degree 6 in

TABLE 3 | End time for simulations of the Rayleigh-Taylor instability on
quadrilateral and triangular meshes. On quadrilateral meshes, “collocation”
refers to a nodal DGSEM discretization, while “entropy projection” refers to a
method based on Gauss nodes. On triangular meshes, “collocation” refers to
nodal SBP discretization, while “entropy projection” refers to a modal entropy
stable DG method.

Degree 1 2 3 4 5 6 7

Solver

RTI, quadrilateral mesh, Ncells = 16
Collocation 3.674 3.44 3.332 3.257 3.106 3.034 3.044
Entropy projection 15 15 15 15 15 15 15
RTI, quadrilateral mesh, Ncells = 32
Collocation 3.996 3.144 3.44 3.155 3.031 2.972 2.976
Entropy projection 15 15 15 15 15 15 15
RTI, triangular mesh, Ncells = 16
Collocation 4.297 2.87 3.238 3.229 2.927 2.881
Entropy projection 15 15 15 15 15 15
RTI, triangular mesh, Ncells = 32
Collocation 3.6 2.896 3.197 3.227 3.032 2.778
Entropy projection 15 15 15 15 15 15

Times colored blue correspond to simulations which did not crash and ran to completion,
while times colored red denote simulations which did crash.

TABLE 4 | End time for simulations of the Richtmeyer-Meshkov instability on
quadrilateral and triangular meshes. On quadrilateral meshes, “collocation”
refers to a nodal DGSEM discretization, while “entropy projection” refers to a
method based on Gauss nodes. On triangular meshes, “collocation” refers to
nodal SBP discretization, while “entropy projection” refers to a modal entropy
stable DG method.

Degree 1 2 3 4 5 6 7

Solver

RMI, quadrilateral mesh, Ncells = 16
Collocation 30 30 27.96 24.94 8.851 8.853 8.85
Entropy projection 30 30 30 30 30 30 30
RMI, quadrilateral mesh, Ncells = 32
Collocation 30 25.52 23.34 8.759 7.808 7.014 7.01
Entropy projection 30 30 30 30 30 30 30
RMI, triangular mesh, Ncells = 16
Collocation 30 22.8 21.52 15.13 8.841 7.239
Entropy projection 30 30 30 30 30 30
RMI, triangular mesh, Ncells = 32
Collocation 30 23.84 23.63 8.752 7.582 3.946
Entropy projection 30 30 30 30 30 30

Times colored blue correspond to simulations which did not crash and ran to completion,
while times colored red denote simulations which did crash.
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Trixi.jl. We run up to time Tfinal = 10 for A ∈ [0.1, 0.9] and report
the times each simulation ran until. For degree N = 3, we observe
that schemes which involve the entropy projection runs until the
final time Tfinal = 10. Collocation-type schemes run to completion

for low Atwood numbers, but crash earlier and earlier as the
Atwood number increases. At degreeN = 7, we observe that while
both collocation solvers and entropy projection solvers crash at
higher Atwood numbers, entropy projection solvers begin

TABLE 5 | End time for simulations of the magnetized Kelvin-Helmholtz instability on quadrilateral and triangular meshes. On quadrilateral meshes, “collocation” refers to a
nodal DGSEMdiscretization, while “entropy projection” refers to amethod based onGauss nodes. On triangular meshes, “collocation” refers to nodal SBP discretization,
while “entropy projection” refers to a modal entropy stable DG method.

Degree 1 2 3 4 5 6 7

Solver

MHD KHI, quadrilateral mesh, Ncells = 16
Collocation 15 15 11.503 10.988 10.315 10.230 10.270
Entropy projection 15 15 15 15 15 15 15
MHD KHI, quadrilateral mesh, Ncells = 32
Collocation 15 11.639 11.048 11.111 11.483 10.169 10.919
Entropy projection 15 15 15 15 15 15 15
MHD KHI, triangular mesh, Ncells = 16
Collocation 12.846 13.797 10.626 10.212 10.990 9.973
Entropy projection 15 15 15 15 15 15
MHD KHI, triangular mesh, Ncells = 32
Collocation 14.875 11.121 9.748 10.081 10.307 10.219
Entropy projection 15 15 15 15 15 15

Times colored blue correspond to simulations which did not crash and ran to completion, while times colored red denote simulations which did crash.

FIGURE 5 | Final times a solver an until as a function of Atwood number for the Kelvin-Helmholtz instability for DGSEM and various entropy stable solvers. End times
less than final time Tfinal = 10 indicate a crash.
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crashing at higher Atwood numbers. For example, on
quadrilateral meshes, DGSEM crashes around Atwood number
0.3, while Gauss solvers crash around Atwood number 0.7. We
note that crash times for entropy projection schemes also tend to
depend on the adaptive time-stepping tolerance. For example, for
N = 3 and a 322 mesh, Gauss collocation runs stably to Tfinal = 10
if the absolute and relative tolerances are reduced to 10–9. The
same is not true of entropy stable collocation-type schemes.

To provide another point of comparison, we ran simulations
using an entropy stable DGSEM solver with sub-cell finite volume
shock capturing [56] with Zhang-Shu positivity-preserving
limiting for the density and pressure [57, 58], which we refer
to as DGSEM-SC-PP for shock capturing and positivity
preservation.2 The entropy stable sub-cell finite volume-based
shock capturing scheme utilizes a blending coefficient parameter
α ≤ αmax [56]. For these experiments, we set αmax = 0.005, which
implies that the low order finite volume solution constitutes at
most 0.5% of the final blended solution. Despite the fact that this
shock capturing is very weak, the resulting solver greatly
improves robustness and enables long simulation times: for
N = 3 and a 32 × 32 mesh, DGSEM-SC-PP runs stably to
time Tfinal = 10 for Atwood numbers up to 0.99. However, we
have also observed that the minimum value of αmax necessary to
avoid solver failure depends on the mesh resolution. For example,
for N = 3 and a 64 × 64 mesh, we observe that DGSEM-SC-PP
with αmax = 0.005 crashes around t = 6.4871.

Remark 2. We note that DGSEM with αmax = 0.005 shock
capturing but no positivity preservation is not robust for the
Kelvin-Helmholtz instability. For the initial condition (Eq. 4),
N = 3, and a 64 × 64 mesh, DGSEM with shock capturing crashes
around time t = 4.8891. For N = 7 and a 32 × 32 mesh, DGSEM
with shock capturing crashes around time t = 5.0569. In contrast,
DGSEM with only positivity preservation results in the
simulation stalling due to a very small time-step.

4 THE ROLE OF THE ENTROPY
PROJECTION
4.1 Is Robustness Due Only to the Entropy
Projection?
While the numerical results up to this point indicate that there is a
significant difference in robustness for different entropy stable
schemes, it is not yet clear that the increased robustness is due to
the entropy projection. For example, the numerical experiments
in Section 3 compare entropy stable Gauss DG schemes to
DGSEM on tensor product meshes and entropy stable
“modal” DG methods to SBP schemes on triangular meshes.
In both cases, a collocation scheme is compared to a scheme with
higher accuracy numerical integration. Thus, it is not

immediately clear whether the difference in robustness is due
to the entropy projection or other factors such as the quadrature
accuracy. We investigate whether the quadrature accuracy has a
significant effect on stability by testing two additional variants of
entropy stable DGSEM schemes on quadrilateral meshes. These
schemes are purposefully constructed to be “bad”methods (in the
sense that they introduce additional work without improving the
expected accuracy), and are intended only to introduce the
entropy projection. Both have quadrature accuracy similar to
or lower than entropy stable DGSEM methods.

The first scheme utilizes LGL points for volume quadrature,
but utilizes (N + 1) point Clenshaw-Curtis quadrature at the faces.
This scheme can be directly derived from a modal formulation
and (despite the lower polynomial exactness of Clenshaw-Curtis
quadrature) can be shown to be entropy stable on affine
quadrilateral meshes using the analysis in [21]. In order to
retain entropy stability, the solution must be evaluated using
the entropy projection at face nodes. We argue that the use of
Clenshaw-Curtis quadrature does not result in a significant
increase in quadrature accuracy over LGL quadrature: while
Clenshaw-Curtis quadrature has been shown to be similar to
Gauss quadrature for integration of analytic functions [61], for
lower numbers of points we observe that the accuracy is
comparable to LGL quadrature. Moreover, it was argued in
[62] that increasing quadrature accuracy only for surface
integrals or only for volume integrals does not provide
sufficient anti-aliasing. We refer to this method as “DGSEM
with face-based entropy projection” in Figure 6.

Remark 3. We note that one can also build an entropy stable
scheme from a combination of LGL volume points and Gauss face
points. While this method possesses much of the simplicity and
advantageous features of entropy stable DGSEM methods while
also displaying improved robustness, this method results in a
suboptimal rate of convergence by one degree [21].

The second scheme we test is similar to the staggered scheme
of [17]. However, while the original scheme of Parsani et al.
combines degree N Gauss points with degree (N + 1) LGL points,
we combine degree N Gauss points with degree N LGL points.
This is a “useless” staggering in that it does not increase the
accuracy of integration compared with DGSEM, and is intended
only to introduce the entropy projection into the formulation.3

We refer to this method as “DGSEM with volume-based entropy
projection” in Figure 6.

Figure 6 shows snapshots of the density for the Kelvin-
Helmholtz instability for a degree N = 3 mesh of 64 × 64
elements for each method. While the plots for the Gauss DG
and DGSEM with face-based entropy projection have qualitative
similarities, we observe that DGSEM with volume-based entropy

2For DGSEM-SC-PP, we utilize a 4-stage 3rd order adaptive strong stability
preserving (SSP) Runge-Kutta time-stepping method [59, 60] with stepsize
controller and efficient implementation of [40], which is necessary to ensure
fully discrete positivity.

3This scheme can also be derived by beginning with an entropy stable DGSEM
scheme and replacing the diagonal LGLmass matrix with the fully integrated dense
mass matrix computed using Gauss quadrature. The resulting scheme can be made
entropy stable by evaluating the spatial formulation using the entropy projection.
More specifically, the appropriate entropy projection for this setting interpolates
the entropy variables at Gauss nodes, then interpolates to LGL nodes.
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projection results in a noisier solution. This may be due to
inconsistency in terms of accuracy between the two
quadrature rules used (e.g., (N + 1) point LGL and Gauss
quadratures). However, all three entropy projection schemes
remain stable, and we have verified that they are able to run
until T = 25 without crashing.

We also compute crash times for each method for the Kelvin-
Helmholtz instability with Atwood numbers A ∈ [0.1, 0.9]. These
crash times are also compared to crash times of an entropy stable
DGSEM method. These computations are performed on both a
degree N = 3 mesh of 32 × 32 elements, as well as a degree N = 7
mesh of 16 × 16 elements. Figure 7 plots the crash times for each
method. We observe that all schemes which involve the entropy
projection run stably for a wider range of Atwood numbers than
entropy stable DGSEM, and that this effect becomes even more
pronounced for degree N = 7. However, for both the N = 3 and
N = 7 experiments, the entropy stable Gauss schemes are stable
for the widest ranges of Atwood numbers.

These results indicate that incorporating the entropy
projection does have a significant effect on the robustness of
an entropy stable method, but that the entropy projection is not
the only factor which impacts robustness. However, a detailed
analysis of factors such as quadrature accuracy is out of the scope
of this current work.

4.2 Why Is There a Difference in Robustness
for Different Entropy Stable Methods?
While the results from previous sections suggest that the entropy
projection plays a role in the robustness of an entropy stable
scheme, it is not clear why it plays a role. While we do not have a
thorough theoretical understanding of the entropy projection,
initial experiments indicate that entropy projection schemes
behave most differently from collocation schemes when the
solution is either under-resolved or have near-zero density or
pressure.

FIGURE 6 | Degree N = 3 and 64 × 64 grid Kelvin-Helmholtz simulations at T = 5. All methods run until T = 25, while DGSEM crashes at T ≈ 3.5.

FIGURE 7 | Final times a solver an until as a function of Atwood number for the Kelvin-Helmholtz instability for DGSEM and different variants of entropy stable
solvers based on the entropy projection. End times less than final time Tfinal = 10 indicate a crash.
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We illustrate the aforementioned behavior of the entropy
projection using the one-dimensional compressible Euler
equations. The conservative variables for the Euler equations
are density, momentum, and total energy (ρ, ρu, E). Let s(u) =
log(p/ργ) denote the specific entropy. The entropy variables for
the convex entropy S(u) = −ρs(u)/(γ − 1) are given by

v u( ) � γ − s

γ − 1
− ρu2

2p
,
ρu

p
,−ρ

p
( ).

Recall that the main steps of the entropy projection are as
follows:

(1) Evaluate the entropy variables using degree N
polynomial approximations of the conservat ive
variables

(2) Compute the quadrature-based L2 projection of the entropy
variables to degree N polynomials

(3) Re-evaluate the conservative variables in terms of the
projected entropy variables.

These re-evaluated conservative variables are then used to
compute contributions from an entropy stable DG formulation.

It was demonstrated numerically in [19] that the entropy
projection is high order accurate for sufficiently regular solutions.
However, the behavior of the entropy projection was not explored
for under-resolved or near-vacuum solution states. We illustrate
this behavior using the following solution state:

ρ � 1 + e2 sin 1+kπx( ), u � 1
10

cos 1 + kπx( ),
p � pmin + 1

2
1 − cos kπx − 1

4
( )( ), (11)

where pmin > 0 is the minimum pressure, and k is a parameter
which controls the frequency of oscillation. As k increases, the
solution states in Eq. 11 become more and more difficult to
resolve, and as pmin→ 0, the solution approaches vacuum and the
entropy approaches non-convexity.

Figure 8 illustrates the effect of increasing k and decreasing
pmin on the entropy projected conservative variables for a degree
N = 2 approximation on a coarse mesh of eight elements. As k

FIGURE 8 | Illustration of the effect of larger k (under-resolution) and smaller pmin (near-vacuum state) on the entropy projection. A degree N = 2 approximation and
mesh of 8 elements were used.

FIGURE 9 | Evolution of entropy over time for the Kelvin-Helmholtz instability.
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increases and the solution becomes under-resolved, the entropy
projection develops large jumps at the interface. Similarly, as pmin

decreases from 1 to 1/10, the entropy projection develops large
jumps at the interface. We note that for both increased k and
decreased pmin, spikes do not appear in the interior of the element.

This indicates that the error in the entropy projection is
influenced by both the numerical resolution and how close the
entropy is to becoming non-convex. We denote the continuous
entropy projection by ~u � u(ΠNv(uh)). Then, by the mean value
theorem, we can bound the difference between the conservative
and entropy-projected variables

uh − ~u‖ ‖L∞ � uh − u ΠNv uh( )( )‖ ‖L∞ ≤ zu
zv

�������
�������L∞ v uh( ) − ΠNv uh( )‖ ‖L∞,

where zu
zv is evaluated at some intermediate state between uh and ~u.

The latter term in the bound ‖v(uh) − ΠNv(uh)‖ is small when
the entropy variables are well-resolved, which we expect to be true
when the solution is well-resolved and the mapping between
conservative and entropy variables is well-conditioned.
Conversely, high frequency components of the solution are
often amplified when v(u) is highly nonlinear or the solution
is under-resolved (this is the motivation behind filtering for
stabilization [63–65]), and we expect ‖v(uh) − ΠNv(uh)‖ to be
large for such settings. The former term ‖zuzv‖ is large when the
mapping between conservative and entropy variables is nearly
singular, which occurs when the entropy is nearly non-convex
(for example, near-vacuum states).

4.2.1 What Role Does Entropy Dissipation Play?
The previous section illustrates that entropy projection schemes
are likely to differ from collocation schemes most when the
solution is under-resolved or has near-zero density or
pressure. Moreover, since the entropy projected variables in
Figure 8 display spikes at the interfaces, it seems possible that
the entropy projection would change the manner in which
entropy dissipative interface dissipation terms are triggered. To
test this hypothesis, we compute the evolution of entropy over

time for the Kelvin-Helmholtz instability using both entropy
stable Gauss DG and DGSEM-SC-PP, which is an entropy stable
DGSEM with a shock capturing technique that consists in
blending a sub-cell finite volume scheme with the DGSEM in
an element-wise manner [56] and Zhang-Shu’s positivity
preserving limiter [57, 58]. The blending of the finite volume
scheme is capped at 0.5% in order to avoid unnecessary numerical
dissipation. We also compare entropy evolution for a scheme that
blends a sub-cell finite volume scheme with the DGSEM in a
subcell-wise manner [66], which we refer to as DGSEM-subcell.
The blending factors are chosen for each node (or subcell) to

enforce lower bounds on density and pressure based on the low

order solution, ρ ≥ 0.1 ρFV, p ≥ 0.1 pFV. For this choice of lower

bound, we observe high order accuracy for a two-dimensional
sinusoidal entropy wave [67]. While this scheme is not provably
entropy stable, it was demonstrated numerically in [66] that the
use of subcell blending factors requires significantly lower levels
of limiting compared with an element-wise limiting factor.

Figure 9 shows the evolution of the integrated entropy over
the entire domain (which we have shifted to be positive) for the
Kelvin-Helmholtz instability. Since periodic boundary conditions
are used, the integrated entropy for the semi-discrete formulation
can be proven to decrease over time. We observe that all four
methods display similar entropy dissipation behavior until time
t ≈ 1.2, after which DGSEM shows less entropy dissipation than
either Gauss or DGSEM-SC-PP. However, while DGSEM-SC-PP
initially dissipates more entropy than Gauss DG, the entropy
dissipation for Gauss DG increases and overtakes that of
DGSEM-SC-PP around time t ≈ 4. Since entropy dissipation
in both Gauss DG and DGSEM-SC-PP schemes is triggered by
under-resolved flows (either through a modal indicator or
through jump penalization terms) and since the Kelvin-
Helmholtz instability generates increasingly small scales at
larger times, this suggests that entropy dissipation for Gauss
DG may be activated more strongly but at smaller scales than
DGSEM-SC-PP. In contrast, Gauss DG dissipates more global
entropy than DGSEM-subcell, though DGSEM-subcell
eventually catches up to Gauss DG for N = 3.

Our initial hypothesis was that the entropy projection in Gauss
DG schemes results in larger interface jumps, which would trigger
more entropy dissipation through jump penalization terms.
However, this does not appear to be consistent with numerical
results for entropy conservative schemes. To test these schemes,
we focus on the three-dimensional Taylor-Green vortex. We note
that the observed loss of robustness stands in stark contrast to the
observed robustness of high order entropy stable and split-form
DGSEM for the Taylor-Green vortex [8, 13, 22]. This can be
explained by the fact that the density remains near-constant over
time for the Taylor-Green vortex; for a Kelvin-Helmholtz initial
condition with a constant density, DGSEM runs stably up to final
time T = 25 for each of the previous numerical settings. Thus,
while the Taylor-Green vortex generates small-scale flow features,
it is a more benign test case when evaluating the robustness of
high order entropy stable DG schemes.

However, when using a purely entropy conservative scheme
(which can be constructed by utilizing entropy conservative

TABLE 6 | End time for entropy conservative simulations of the Taylor-Green
vortex on hexahedral meshes.

Degree 1 2 3 4 5 6 7

Solver

Ncells = 23

DGSEM 20 20 20 20 16.4 7.704 7.482
Gauss 20 20 20 20 20 20 20
CGSEM 20 20 20 20 20 20 20
Ncells = 43

DGSEM 20 20 20 20 10.31 5.792 5.46
Gauss 20 20 20 20 20 20 20
CGSEM 20 20 20 20 20 20 20
Ncells = 83

DGSEM 20 20 20 20 6.035 5.29 5.02
Gauss 20 20 20 20 20 20 20
CGSEM 20 20 20 20 20 20 17.5

Times colored blue correspond to simulations which did not crash and ran to completion,
while times colored red denote simulations which did crash.
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interface fluxes), DGSEMmethods can display non-robust behavior
for the Taylor-Green vortex. We run the Taylor-Green vortex to
final time Tfinal = 20 using a variety of entropy conservative schemes:
DGSEM, Gauss DG, as well as an entropy stable C0 continuous
Galerkin spectral element method (CGSEM) and a periodic finite

difference method. We note that, because an entropy conservative
scheme can be constructed given any summation-by-parts or skew-
symmetric operator [12, 14, 26], we are able to implement an
entropy conservative C0 continuous spectral element method and
periodic finite difference method by constructing global difference

FIGURE 10 | Density and pressure for the Kelvin-Helmholtz instability at Tfinal = 25 on a N = 3 mesh of 642 elements.

FIGURE 11 | Density and pressure for the Kelvin-Helmholtz instability at Tfinal = 25 on a N = 7 mesh of 322 elements.
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operators from the tensor product of one-dimensional
operators. These one-dimensional operators are provided
by the Julia library SummationByPartsOperators.jl [68].

Table 6 shows the end simulation time for each solver. We
observe that again, despite the absence of any entropy
dissipation, the Gauss DG solver is more robust than the
DGSEM solver. The continuous spectral element solver
CGSEM is also significantly more robust than the DGSEM
solver, though it does lose robustness at higher orders and
finer grid resolutions. We also ran periodic finite difference
operators for grids with 4, 6, 8, 10, 12 nodes in each
dimension with orders of accuracy 2, 4, 6, 8, 10. We
observe that the periodic finite difference operator is as
robust as the Gauss DG solver: for every grid resolution
and order specified, the finite difference solver ran up to
the final time Tfinal = 20.

These experiments indicate that robustness for schemes
involving the entropy projection is not solely due to the
entropy dissipative terms. These experiments also show that
robustness is improved for CGSEM and periodic finite
difference solvers, neither of which contains interface terms.
Since these results are on relatively coarse resolutions and
utilize an entropy conservative scheme (when most practical
schemes are entropy stable), further numerical experiments are
necessary to carefully analyze the effect that different
discretizations have on robustness.

5 APPLICATIONS TOWARD
UNDER-RESOLVED SIMULATIONS

We conclude the paper with a discussion on a comparison
between three schemes which include dissipative terms
(entropy stable Gauss DG, entropy stable DGSEM-SC-PP,
and DGSEM-subcell) for an under-resolved simulation. We
run the Kelvin-Helmholtz instability using the initial
condition (Eq. 4), but modify the y-velocity perturbation to
break symmetry of the resulting flow

v � 1
10

sin 2πx( ) 1 + 1
100

sin πx( )sin πy( )( ).
We run the simulation up to final time Tfinal = 25. We use both a

degreeN= 3mesh of 64 × 64 elements and a degreeN= 7mesh of 32
× 32 elements, each of which contains the same number of degrees of
freedom. Due to the sensitivity of the Kelvin-Helmholtz instability
problem and the long time window of the simulation, the results for
each scheme are qualitatively very different.

Figures 10, 11 show snapshots of density and pressure for the
entropy stable DGSEM-SC-PP and Gauss DG schemes. We observe
that in both cases, the flow scales present in the DGSEM-SC-PP
scheme are noticeably larger than those observed in theGauss scheme.
This is notable because the DGSEM-SC-PP scheme applies a very
small amount of shock capturing: dissipation is added by blending the
high order scheme with a low order finite volume scheme, and the
amount of the blended low order solution is capped at 0.5%.However,
even a small amount of dissipation produces a noticeable change on
small-scale features in the resulting flow.We also observe the presence
of shocklets or compression waves in the pressure, which mirror
observations made in [69].4

For N = 3, the scales observed in DGSEM-subcell scheme are
noticeably smaller than those ofDGSEM-SC-PP but similar to those of
the Gauss DG scheme. ForN = 7, the scales observed in the DGSEM-
subcell scheme are again smaller than those of DGSEM-SC-PP, but
appear to be slightly larger than those of the Gauss DG scheme. To
avoid qualitative speculation, we compare these flows by computing
the angle-averaged power spectra of the velocity weighted by

�
ρ

√
at

final time Tfinal = 25 [70, 71]. We follow [3, 7] and generate a grid of
uniformly spaced points by evaluating the degree N polynomial
solution at (N + 1) equally spaced points along each dimension in
the interior of each element of a uniform Cartesian mesh. The power
spectra can then be computed from a fast Fourier transform of the
resulting data. Figure 12 shows the power spectra, which appear

FIGURE 12 | Weighted power spectra for DGSEM-Subcell, entropy stable DGSEM-SC-PP, and entropy stable Gauss DG schemes.

4We note that these “shocklets” are not strictly shock waves, as the flow is not
supersonic.
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consistent with a k−7/3 rate of decay from two-dimensional turbulence
theory [71]. Moreover, we observe that the entropy stable Gauss DG
scheme retainsmore energetic information than bothDGSEM-SC-PP
and DGSEM-subcell, though a spurious spike in the energy for Gauss
DG schemes is observed near the higher wavenumbers for N = 3.

6 CONCLUSION

This paper shows that for variable density flows which generate small-
scale features, there are differences in robustness between entropy
stable schemes which incorporate the entropy projection and those
which do not. These differences in robustness are observed to depend
on the Atwood number (measuring the density contrast) and persist
across a range of polynomial degrees, mesh resolutions, and types of
discretization.However, themechanisms behind improved robustness
for entropy projection schemes are currently unknown.

We note that any conclusions drawn concerning the robustness of
DGSEM and Gauss DG should be restricted to the instability-type
problems studied here. These results do not imply that Gauss is
uniformly more robust than DGSEM. Moreover, Gauss schemes are
more computationally expensive than DGSEM schemes and result in
smaller maximum stable timesteps [22, 72–74], so the appropriate
scheme will depend on the use case.
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