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The interplanetarymagnetic field (IMF) By component can cause asymmetric features in the
magnetosphere-ionosphere system and influence the electromagnetic energy input. In this
study, we use the Space Weather Modeling Framework (SWMF) to study the transient
dynamics after a sudden change in the IMF By component exerts on the magnetosphere
system. Simulation results reveal that under northward IMF conditions, an abrupt change
of the IMF By from duskward to dawnward induces a dawnward geomagnetic field firstly in
the cusp region and then in both the near-Earth and magnetotail regions. The signal of the
new y-component of the geomagnetic field in the near-Earth region extends tailward while
that in the magnetotail moves Earthward, leading the middle-tail region to react last. We
investigate in detail the transitional change of the y-component of the geomagnetic field
and compare it to the scenario under southward IMF conditions, and find that the latter
case reacts in a much simpler manner and the responses are faster globally.

Keywords: solar wind–magnetosphere interactions, magnetosphere–ionosphere interactions, IMF By effect,
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INTRODUCTION

The solar wind-magnetosphere interaction is largely controlled by the interplanetary magnetic field
(IMF). Various investigations investigated the magnetosphere-ionosphere (MI) response to sudden
changes in the IMF based on observations and numerical simulations (e.g., [1–9]). For example,
Wing et al. [10] reported that following a sudden orientation change of the IMF Bz, the geomagnetic
field on the dayside of geosynchronous orbit responds in 4–5 min while that on the nightside reacts
in 12 min. Yu and Ridley [11] simulated the magnetosphere-ionosphere responses to a sudden
southward turning of the IMF Bz component and found that, depending on the solar wind speed, the
ionospheric convection responds in 4–8 min and the magnetosphere reconfigures into a new state
within 15–20 min.

On the other hand, the IMF By plays an important role in modifying the magnetospheric
configuration and introducing asymmetric magnetic flux across two hemispheres. With the presence
of duskward IMF By, the dayside magnetopause reconnection shifts to the northern duskward and
southern dawnward quadrants. Such a dawn-dusk asymmetry introduces asymmetric magnetic flux
onto the tail magnetosphere, resulting in the appearance of the y-component of the geomagnetic field
in the magnetotail, or called IMF By penetration. According to 9 years of cluster observations, Cao
et al. [12] found that the neutral sheet By is nearly linearly correlated to the IMF By, and the
penetration efficiency of the IMF By is enhanced under southward IMF conditions. Browett et al. [13]
further expanded the statistical work of Cao et al. [12]. They found that the response of plasma sheet
to IMF By in the case of southward IMF is obviously faster than that of northward IMF. However, the
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time delay in responding to sudden IMF By variations was not
considered in their statistical analysis. Rong et al. [14] reported a
time delay of 1–1.5 h for the IMF By penetration into the
magnetotail. But Kabin et al. [15] found the response time
scale to be 4–8 min and 14–20 min in the dayside and
nightside magnetosphere respectively. Tenfjord et al. [16]
surveyed the Geostationary Operational Environmental
Satellite (GOES) satellite observations and reported an average
response time of about 15 min over all local times and a
reconfiguration time of about 45 min at geosynchronous
distances following the IMF By reversal.

Using idealized simulations, Tenfjord et al. [17] illustrated the
magnetic induction process in the magnetosphere associated with
the IMF By emergence. Their study assumed a gradual emergence
of IMF By (within 10min) from a purely northward IMF Bz
condition instead of a sudden orientation change of IMF By. We
speculate that a pre-existing y-component of the geomagnetic field
effect probably would affect the response processes. Therefore, in
this study, we simulate theMI system in response to an abrupt IMF
By reversal (within 1 min) from duskward to dawnward, intending
to reveal the transitional responses in both the ionosphere and the
magnetotail in a global context. Such a sudden IMF By orientation
change without varying other solar wind/IMF parameters indicates
a tangential discontinuity. Our analysis of the magnetospheric
configuration and ionospheric electrodynamics suggests that the
ionosphere reacts in a few minutes but spends about 30min
finishing the transition, while the tail magnetosphere
reconfigures in a much longer time. The magnetotail
reconfiguration transits in a much slower and more complicated
way under northward IMF conditions than under southward IMF
conditions.

METHODOLOGY

We use the Space Weather Modeling Framework (SWMF)
[18,19] to simulate the response of the MI system to the
sudden orientation change of the IMF By. The SWMF
contains the global MHD model BATS-R-US that solves the
ideal MHD equations [20], and an ionospheric potential solver
[21]. The electric potential is determined by ionospheric
conductance and field-aligned currents (FACs), which are
calculated at a sphere of 3.0 Earth radius (RE) in the MHD
model and mapped to the ionosphere altitude. The ionosphere
conductance is specified based on two dominant sources: the solar
EUV-generated conductance and the auroral zone conductance
[21]. The resultant electric potential is mapped back to the inner
boundary of the MHD model (i.e., 2.5 RE) to determine the
convection velocity. Such an integrated model is suitable for
solving the geospace circulation dynamics and has been
extensively validated (e.g., [22–27]).

The simulation is an idealized numerical experiment with the
Earth’s rotation axis aligned with the magnetic dipole axis. The
solar wind input of the model at the upstream boundary includes
a simple step function of IMF By from 5 nT to −5 nT (i.e., from
duskward to dawnward), with other solar wind parameters
remaining constant: solar wind density n = 5/cm3,

Ux = −400 km/s, Uy = Uz = 0, Bx = 0, Bz = 5nT, and T =
100,000K. The simulation is firstly run for 1 hour before IMF By is
abruptly flipped, after which the simulation continues for 5 h.

SIMULATION RESULTS

To understand how the global magnetosphere changes in
response to the IMF By turning from duskward to dawnward,
several snapshots of the global magnetic configuration are shown
in Figure 1. It is found that after the IMF By reversal arrives at the
bow shock (denoted as t = 0 min), the dawnward By gradually
occupies the magnetosheath and then the cusp regions in both
hemispheres from t = 9 to 28 min. Note that as the dawnward
IMF By approaches the dayside magnetopause and the originally
strong duskward By in the cusp region gradually decreases (red
turning to green), the nightside magnetospheric configuration is
hardly affected until t = 28 min, after which the duskward
y-component of the geomagnetic field in the magnetotail
neutral sheet starts fading. However, an enhancement of the
duskward geomagnetic field appears again at t = 34 min around X
~ −18 RE and propagates Earthward. This is due to a temporary
twist of magnetic fields in the near-Earth region, as will be
discussed later. After t = 54 min, the dawnward geomagnetic
field starts to emerge in the far magnetotail at X ~ −40 RE and
moves Earthward, while in the middle-tail region
around −20 RE < X < −10 RE, the duskward geomagnetic field
remains and continues decreasing. The far-tail dawnward
geomagnetic field penetrates Earthward and the global
configuration finally stabilizes after ~2 h.

It demonstrates that the dayside ionosphere is influenced
much earlier than the nightside magnetosphere due to the
direct penetration of IMF By into the high-latitude cusp
region, and the nightside magnetosphere does not seem to
react linearly with radial distance. We therefore investigate the
ionosphere and nightside magnetosphere separately in detail.
Figure 2 shows the evolution of the FACs pattern in the
northern hemisphere. The initial NBZ current consists of a
bulk upward (red) current in the polar cap region and an
elongated downward (blue) current at 75° magnetic latitude in
the dawn sector. After the reversed IMF By encountering the
high-latitude lobe reconnection site (as seen in Figure 1) at t =
9 min, a new upward FACs in the post-noon sector at 75°

magnetic latitude starts to grow, while the original NBZ
current system fades (from t = 9 min to t = 30 min). The
growth of the new upward FACs into an elongated pattern in
the dusk sector is accompanied by downward FACs at an even
higher latitude in the post-noon, which eventually becomes a bulk
current. The new state, established after about 40 min, is an
expected pattern with the opposite IMF By orientation. We note
that the ionospheric FACs do not respond until about 10 min
after the IMF By reversal arrives at the bow shock. Such a belated
effect is owing to the transitional development of the new
reconnection site in the dawn sector, rather than an
instantaneous shift from dusk to dawn.

Figure 3 shows the change of magnetic topology at
X = −1 RE. The chosen position is based on the location of
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FIGURE 1 | Global magnetospheric configuration in the XZ plane. Color indicates By component. The black streamlines represent magnetic field lines.

FIGURE 2 | Ionospheric FACs pattern in the northern hemisphere. Red indicates upward current and blue indicates downward current.
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lobe reconnection. All the field lines are projected to the YZ
plane. Colors on field lines indicate By. The contour colors
denote E•J, an indicator of energy conversion. A negative value
suggests energy conversion from plasma kinetic energy to
electromagnetic energy, and a positive value means the
opposite conversion. The outer-most purple circle denotes
the bow shock, and the internal circle represents the
magnetopause boundary. Initially, the duskward IMF By

(red) is reconnected with the geomagnetic field in the
duskside lobe at t = 0 min. One of the reconnected field lines
is open and connected to the southern polar region, while the
other one is connected to the northern cap and open to the
northern hemisphere. A similar reconnection occurs in the
southern hemisphere in the dawnside lobe. The arrival of
dawnward IMF By (blue) in the magnetosheath at t = 5 min

only changes the orientation of the originally connected field
lines outside the magnetopause, forming a “Z”-shaped
reconnected field line still connecting to the other
hemisphere. This “Z”-shaped line relaxes into a more
stretched line at t = 9 min, with the reconnection site moving
to the midnight meridian. Two minutes later, the stretched
dawnward IMF line is reconnected again at the high latitude
lobe region. This time it is near the midnight meridian local time
toward dawn. The new reconnection brings in new energy
sources down to the high-latitude polar region to generate
the new FAC pattern. Such a dynamic evolution of the newly
approaching IMF By from the dayside magnetosheath to the new
high-latitude nightside lobe leads to a delayed reaction in the
ionosphere by ~10 min. Later on, the new reconnection site
migrates dawnward while keeping the topology unchanged.

FIGURE 3 | Magnetic field lines projected to the YZ plane at X = −1 RE. The color on the lines indicates By. The contour color in the background represents E•J.
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Figure 4 shows the temporal evolution of the 3D magnetotail
configuration, to understand the response in the nightside
magnetosphere. Field lines are selected with their footprints
fixed in the ionosphere throughout the process. Colors on the
field lines denote the y-component of the geomagnetic field.
Initially, with IMF By>0, the middle-tail field lines (X~−10 RE)
are twisted with a moderate duskward geomagnetic field in the
neutral sheet (shown in yellow), while the far-tail region (X
~ −30 RE) is less twisted. Such a configuration does not
change much until approximately 30 min after the bow shock
encounter of the IMF By reversal. At t = 36 min, the near-Earth
y-component of the geomagnetic field in the neutral sheet is
significantly enhanced as the magnetic field lines are pushed to be
highly duskward (large positive By in red), likely a result of
Earthward depolarization and bursty flows. The field line
stretching and depolarization can be seen in Figure 1 at t =
34 and 41 min. The contour color of Ux in the magnetic equator
suggests a fast Earthward flow. Calculation of E•J (not shown)
also indicates an energy transfer from electromagnetic energy to
kinetic energy, i.e., an indication of local reconnection. As the
highly twisted duskward magnetic field lines in the neutral sheet
gradually relax, the off-equator magnetic field starts to change to
dawnward (see t = 40 min). After t = 60 min, the tail magnetic
fields clearly show dawnward tilt, although the middle-tail fields

still appear to be aligned with the midnight meridian with very
limited tilt in the Y direction.

DISCUSSION

The above simulation reveals the MI response to the IMF By
reversal (from duskward to dawnward) under northward IMF
conditions. It is found that the ionosphere can quickly react
within 10 min, although the entire reconfiguration to the new
FACs pattern takes about another 30 min. On the other hand, the
magnetotail reconfiguration is more complex. The near-Earth
duskward geomagnetic field undergoes an enhancement before
the dawnward geomagnetic field is finally induced. The middle-
tail geomagnetic field does not changemuch even after t = 60 min.
Whether a similar reconfiguration process takes place if the IMF
Bz<0 is not well known. Therefore, a new simulation with the IMF
Bz = −5 nT has been carried out. It is found that the ionospheric
responses are similar. That is, after the arrival of the IMF By
reversal on the magnetopause, the FACs start to react within
10 min and gradually shift to a new state. But the magnetotail
fields appear to respond in a much simpler way.

Figure 5 shows the response time of the y-component of
geomagnetic fields at any location in the central plasma

FIGURE 4 | Nightside magnetospheric configuration. Streamlines indicate magnetic field lines with the color representing By component. The background color
indicates Ux. The color on the sphere near the Earth indicates FACs (Jr).
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sheet along the Sun-Earth line. The time of zero is defined
when the IMF By discontinuity encounters the bow shock, and
the response time at a location along the Sun-Earth line is
recorded when the geomagnetic field changes from duskward
to dawnward. The black dashed line marks the propagating
time of the IMF By discontinuity. In general, the y-component
of the geomagnetic field responds in a faster way under IMF
Bz < 0 than under IMF Bz > 0. While the response time in the
dayside magnetosphere in both cases monotonically increases
with decreasing distances, the nightside magnetosphere shows
vastly different response times. With IMF Bz < 0, the near-

Earth region (X > −13 RE) reacts quickly within 10–30 min,
depending on the distance from the Earth. Around X
~ −13 RE, an abrupt change in response time denotes the
tail reconnection site, beyond which the reconnected
magnetic fields are completely open in the solar wind and
need 40 min to respond, without a clear distance-dependence
though. In contrast, with IMF Bz > 0, the near-Earth and far-
tail regions can quickly react with a time scale of 20–60 min.
Note that the signal of duskward-to-dawnward turning of
magnetic fields in these two regions appears to propagate in
opposite directions, both towards the middle-tail region,

FIGURE 5 | Response time of the y-component of the geomagnetic field variation on the Sun-Earth line under northward (red) and southward (blue) IMF Bz

conditions.

FIGURE 6 | Magnetic configuration at t = 70 min with the equatorial flow speed indicated by color.

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9001926

Gong et al. Magnetosphere Responses to IMF_By Change

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


which ends up with a very late response. After analyzing the
3D configuration, it is found that the field lines in the middle-
tail region are firstly twisted more duskward and then slowly
recover and stay aligned with the midnight meridian for a
while before they finally turn dawnward. Such a reluctant
response may be associated with shear flows in the azimuthal
direction, which helps balance the forces from the twisted
magnetic field. Figure 6 displays the field configuration with
the flow speed shown in color. At t = 70 min, a fast Earthward
flow from the tail diverges to east/west directions near X
~ −15 RE, and remains at a high speed of ~100 km/s. This
strong shear flow lasts for about 20 min before disappearing.
This is consistent with the response time in the middle-tail
region. Therefore, the slow response in the middle-tail region
is probably hindered by the external forces in association with
fast shear flows.

We speculate that the difference between the two cases is
ultimately due to different magnetic flux loading processes from
the dayside reconnection. As the magnetosphere is open under IMF
Bz < 0 due to both the dayside and nightsidemagnetic reconnection,
the asymmetric magnetic flux from the dayside magnetopause can
be easily exerted on the nightside lobe magnetosphere and then the
tail reconnection through the Dungey cycle. On the other hand,
when IMF Bz > 0, the magnetosphere is closed in a vast region even
down to X < −60 RE, and the reconnection occurs only in high-
latitude tail lobes. Therefore, the asymmetric magnetic flux from the
lobe reconnection cannot directly penetrate the middle-tail
magnetosphere without the assistance of tail reconnection, but
rather introduce disturbances on the magnetopause first and
later induces the dawnward geomagnetic field through it. This
also explains the longer time scales. Exactly through what kind
of mechanism requires further investigation and we plan to do it in
our future study.

SUMMARY

IMF By is one of the most critical conditions that control the
electromagnetic energy input into the MI system, leading to
asymmetric responses in the system. In this study, we
analyzed the transitional responses in the ionospheric FACs
and magnetospheric configuration after the IMF By suddenly
changing its orientation using MHD simulations. We mainly
focused on solar wind conditions with the northward IMF Bz. The
main results are summarized as follows.

1) The ionospheric FACs pattern responds in about 10 min after
the IMF By discontinuity encounters the bow shock. The
delayed response is because of the propagation of reversed
IMF By inside the magnetosheath before touching the high-
latitude lobe reconnection. Later on, the gradual
reconfiguration of the reconnected field lines in the high-
latitude lobes from dusk to the dawn sector takes another
5 min, and the penetration of reversed By into the cusp region
is not significant until about 15 min later. Thus, the
ionosphere reconfiguration needs about 30 min at least.
This is consistent with the result of Kabin et al. [15].

2) In contrast to the quick response in the ionosphere, the
magnetospheric response time on the nightside is longer.
The local y-component of the geomagnetic field in the
nightside neutral sheet does not change much until
approximately 30 min later after the arrival of the IMF
By turning signal at the bow shock. It is consistent with the
result in Tenfjord et al. [17] that the response time is about
30 min based on an observational study of Geostationary
Operational Environmental Satellite (GOES) data.
However, the response time is not linearly correlated
with the radial distance. Instead, the near-Earth
(X > −15 RE) and far-tail (X < −30 RE) regions appear
to have a quicker reaction with a time scale of 20–60 min
than the middle-tail zone (−30 RE < X < −15 RE), which
responds in about 80–100 min. The slow response in the
middle-tail is probably due to local disturbances, such as
localized dipolarization and flow burst.

3) The response is less complex when IMF Bz < 0. The response
time scales throughout the magnetosphere are shorter than
when IMF Bz > 0, consistent with the observational results
in Browett et al. [13]. The response time also shows a
linear correlation with the radial distance inside the closed
field line region. The above mentioned comparison suggests
that the asymmetric magnetic flux loading from the dayside
reconnection site to the nightside magnetosphere may differ.
As IMF Bz < 0, the loading can directly occur via the open tail
reconnection, while this is not easy when the magnetosphere
is largely closed if IMB Bz > 0.
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