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We recently developed an Effective Field Theory (EFT) for rotational bands in

odd-mass nuclei. Herewe use EFT expressions to perform a Bayesian analysis of

data on the rotational energy levels of 99Tc, 155,157Gd, 159Dy, 167,169Er, 167,169Tm,
183W, 235U and 239Pu. The error model in our Bayesian analysis includes both

experimental and EFT truncation uncertainties. It also accounts for the fact that

low-energy constants (LECs) at even and odd orders are expected to have

different sizes. We use Markov Chain Monte Carlo (MCMC) sampling to explore

the joint posterior of the EFT and error-model parameters and show both the

LECs and the breakdown scale can be reliably determined. We extract the LECs

up to fourth order in the EFT and find that, provided we correctly account for

EFT truncation errors in our likelihood, results for lower-order LECs are stable as

we go to higher orders. LEC results are also stable with respect to the addition of

higher-energy data. We extract the expansion parameter for all the nuclei listed

above and find a clear correlation between the extracted and the expected

value of the inverse breakdown scale, W, based on the single-particle and

vibrational energy scales. However, the W that actually determines the

convergence of the EFT expansion is markedly smaller than would be

naively expected based on those scales.
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1 Introduction

Rotational bands are ubiquitous in the spectra of medium-mass and heavy nuclei. As

has been known for 70 years [1], they emerge in a description of the nucleus as a nearly

rigid axially-symmetric rotor [2]. For even-even nuclei the simplest rotational bands

consist of 0+, 2+, . . . states and their energies are described by an expansion in powers of

I(I + 1), where I is the spin of the rotational state [3, 4]. This behavior has recently been

obtained in ab initio calculations of the Be isotope chain [5–9] and 34Mg [10].

Odd-mass neighbors of a rotor nucleus can then be understood as a fermion coupled

to the rotor. The fermion dynamics is simpler in the intrinsic frame in which the nucleus is

not rotating, but this frame is non-inertial, so solving the problem there induces a Coriolis
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force proportional to �j · �I, the dot product of the single-fermion

angular momentum and the total angular momentum of the

fermion-rotor system. When combined with other mechanisms,

such as excitation of the fermion to higher-single particle states

and the fermion disturbing the rotor, this induces a string of

terms in the energy-level formula [11]. Odd powers of I appear,

and produce staggering between adjacent levels. Which powers of

I are present depends on the value of the quantum number, K, the

projection of the fermion angular momentum on the rotor axis.

For K = 1/2 bands the energy-level formula is:

E I( ) � AKI I + 1( ) + EK + A1 −1( )I+1/2 I + 1/2( )
+B1I I + 1( ) −1( )I+1/2 I + 1

2
( ) + BK I I + 1( )[ ]2 (1)

where AK, EK, A1, B1, and BK are parameters, related to rotor

properties and single-particle matrix elements, that need to be

either derived from a microscopic model or estimated from data.

Over the years a number of models have had success

describing this pattern from underlying density functional

theory [12–15] or shell-model [15–18] dynamics. The models

also predict specific values for the coefficients that appear in Eq.

1. In Ref. [19] we took a different approach, organizing formula

(1) as an effective field theory (EFT) expansion in powers of the

small parameter, Q. For values of I appreciably larger than one

the expansion parameter should be modified to Q = I/I{br}, with

I{br} the spin of the nuclear state at which dynamical effects

associated with single-particle and/or vibrational degrees of

freedom cause the polynomial expansion in powers of I to

break down. To simplify our later presentation we notate the

inverse of the breakdown scale as W ≡ 1/I{br}. We then have

Q=IW. This description of rotational bands in odd-mass nuclei

builds on the successful EFT developed for even-even nuclei in

Refs. [3, 4]. Other efforts to develop an EFT for these rotational

bands can be found in Refs. [20, 21].

In the odd-mass rotor EFT, Eq. 1 is the next-to-next-to-next-

to-next-to leading order (N4LO) result for the energies, and the

first corrections to it are O(EQ4). The EFT analysis of Eq. 1

organizes it in terms of increasingly accurate predictions: the

NkLO energy-level formula has accuracy O(EQk). All short-
distance/high-energy physical mechanisms that affect the

energies up to that accuracy are subsumed into the

parameters or low-energy constants (LECs) that multiply the

I-dependent terms in Eq. 1. In Ref. [19] we determined these

LECs by fitting the lowest levels in the different rotational bands

we analyzed. However, this runs the risk of fine-tuning the values

of the LECs to those levels, and it does not provide uncertainty

estimates for them. Better parameter estimation would use all the

data available on a particular band, and account for the O(EQk)
truncation uncertainty present at order NkLO [31, 32].

Bayesian methods for EFT parameter estimation do just that

[32–35]. Reference [34] showed that the effect of neglected terms

in the EFT expansion could be included in the error model by

modifying the likelihood so that the covariance matrix that

appears there includes both experimental uncertainties and

EFT truncation errors. More recently, Ref. [35] showed that

MCMC sampling of that likelihood enabled the simultaneous

determination of the LECs and the parameters of the error

model, i.e., the value of W and the typical size of the “order

one” dimensionless coefficients that appear in the EFT

expansion.

In this work we apply the EFT parameter estimation

technology developed in Refs. [32–35] to the problem of

rotational bands in odd-mass nuclei. We consider K = 1/2

bands in 99Tc, 167,169Er, 167,169Tm, 183W, 235U and 239Pu as well

as K = 3/2 bands in 155,157Gd and 159Dy. Section 2 summarizes the

elements of the EFT that are relevant for this paper. Section 3

then develops the Bayesian statistical model we use to analyze

data on rotational bands. We first write down the likelihood that

includes both experimental and theory uncertainties, and then

explain how we use known information on the expected size of

the LECs and the expansion parameter to set priors. A novel

feature of this work, compared to earlier Bayesian EFT

parameter-estimation studies, is that our statistical model

incorporates the possibility that the LECs at even and odd

orders have different typical sizes. This reflects the physics of

odd-order LECs that are associated with matrix elements of the

fermion spin, while even-order LECs contain a combination of

effects from the rotor and the fermion. Section 4 contains details

of our Markov Chain Monte Carlo sampler, and then Section 5

presents the results for LECs and the inverse breakdown scale,W,

that we obtain from sampling the Bayesian posterior. We

conclude in Section 6. All the results and figures generated

from this work can be reproduced using publicly available

Jupyter notebooks [36].

2 Rotational EFT background

Here we summarize the results of the EFT for rotational

bands in odd-mass nuclei that was developed up to fourth

order in the angular velocity of the system in Ref. [19]. This

theory constructs the Lagrangian of the particle-rotor system

using its angular velocity and the angular momentum of the

unpaired fermion, �j, as building blocks. The resulting

Lagrangian corrects that of a rigid rotor with

contributions arranged as a series in powers of a small

expansion parameter, Q = WpI, according to a power-

counting scheme that counts powers of the system’s

angular velocity. Naively, we expect W to be of order Erot/Ehigh,

where Erot is the energy scale at which rotational excitation

take place and Ehigh is the scale of high-energy physics not

explicitly taken into account by the EFT. At leading order

(LO), the energy of a rotational band on top of a bandhead

with spin K is

ELO I, K( ) � ArotI I + 1( ) + EK, (2)

Frontiers in Physics frontiersin.org02

Alnamlah et al. 10.3389/fphy.2022.901954

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.901954


where I is the spin of the rotational state (or, equivalently, the

total angular momentum of the fermion-rotor system), and Arot

and EK are LECs that must be fitted to experimental data. Arot is

determined by the moment of inertia of the even-even nucleus

(the rotor) to which the unpaired fermion is coupled.

At next-to-leading order (NLO) rotational bands with K = 1/2

are affected by a term that takes the same �j · �I form as the Coriolis

force. This produces:

ENLO I, K( ) � ArotI I + 1( ) + EK

+A1 −1( )I+1/2 I + 1
2

( )δK1/2, (3)

where δKK′ is the Kronecker delta. The LEC A1 is expected to be of

orderArot times a sum of matrix elements involving the fermion’s

total angular momentum operator (for details see Ref. [19]).

From previous studies we see that A1/Arot < 1. This correction,

sometimes called the signature term, causes staggering between

adjacent states in K = 1/2 bands.

The energy of a rotational band at next-to-next-to-leading

order (N2LO) is

EN2LO I, K( ) � AKI I + 1( ) + EK

+A1 −1( )I+1/2 I + 1
2

( )δK1/2. (4)

The term proportional to AK combines the LO term proportional

to Arot and corrections entering at this order with the same spin

dependence. From our power counting we expect the shift ΔA =

Arot − AK to be of order ArotW. In contrast to Arot, AK is band

dependent and so should be fitted to data on the rotational band

of interest.

The N3LO corrections to the energy of a rotational band are

both ~ I3 for I ≫ 1, but take a different form in the K = 1/2 and

K = 3/2 bands:

ΔEN3LO I, K( ) � B1 −1( )I+1/2 I + 1
2

( )I I + 1( )δK1/2
+A3 −1( )I+3/2 I + 1

2
( ) I − 1

2
( ) I + 3

2
( )δK3/2. (5)

with B1 and A3 expected to be of order A1W
2. Last, at N4LO we

have the additional term:

ΔEN4LO I, K( ) � BK I I + 1( )[ ]2. (6)

with BK expected to be of order ArotW
3.

This pattern continues: at odd orders we add terms that

correct the staggering term and have LECs of orderA1W
n−1, while

the even-order terms provide the overall trend with I and have

LECs of order ArotW
n−1. (In both cases n is the order of our

expansion.) This difference in the expected sizes of odd and even

LECs comes from the physics. Odd-order LECs are associated

with operators in the effective Lagrangian that couple rotor and

fermionic degrees of freedom, while even-order LECs encode

both rotor-fermion interactions and effects coming from the

non-rigidity of the rotor itself.

In what follows we denote the LECs A1, ΔA, B1, and BK
generically as {an: n = 1, . . . , k}≡ak, where k is the order of the

EFT calculation. (In the case of K = 3/2 bands the set is ΔA, A3,

and BK, and a1 = 0.) We then divide the nth-order LEC, an, by the

reference scale and the power of the inverse breakdown scale

assigned to it by the EFT power counting, i.e., construct:

cn � an
ArotWn−1. (7)

We expect these coefficients cn to be of order one, i.e., they

should be natural coefficients. However, because sets of odd and

even natural coefficients seem to have different sizes we will assume

the even and odd cn’s are drawn from two different distributions

with different characteristic sizes that we denote by �ceven and �codd.

3 Building the Bayesian model

3.1 Building the posterior

Our goal in this analysis is to use the information on the

expected size of LECs to stablize the extraction of their values as

we addmore levels to the analysis, or as we use energy-level formulae

computed at different EFT orders. At the same time, we want to

estimate the inverse breakdown scale,W, of the theory, as well as the

characteristic sizes for even and odd coefficients, �ceven and �codd.

We want to obtain the posterior distribution for all the LECs

that appear at order k, a set we collectively denote by ak. Here we

will obtain the joint posterior pdf of ak, the inverse breakdown

scale, W, and the characteristic sizes. To do this we follow the

successful endeavor by the BUQEYE collaboration in Refs.

[33–35], and write the posterior, given experimental data,
�yexp, and prior information on the model, Pp, as

pr ak,W, �ceven, �codd| �yexp, Pp( ) � pr ak|W, �ceven, �codd, �yexp, Pp( )
× pr W|�ceven, �codd, �yexp, Pp( )
× pr �ceven|�codd, �yexp, Pp( )
× pr �codd| �yexp, Pp( ).

(8)
Marginalization of this posterior distribution over W, �ceven

and �codd yields the posterior distribution for ak. Other

marginalizations can be carried out to obtain posteriors for

W, �ceven and �codd.

This joint posterior distribution tells us the probability of the

LECs and the error model parameters given experimental data.

We could use this posterior distribution to get other quantities or

observables, such as the energy of a particular rotational level,

which depend on the LECs or the error model parameters. These

are now represented by distributions and not single numbers.

Their distributions are called posterior predictive distributions

(PPD). We write the PPD of an observable O as
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pr O| �yexp, Pp( ) � ∫ d �θδ O −O �θ( )( )pr �θ| �yexp, Pp( ) (9)

where �θ represents the LECs and the error model parameters.

Calculating the observable at each point in the parameter space �θ

and then integrating over the parameters �θ allows one to carefully

account for correlations between the parameters.

Using Bayes’ theorem, we can express the posterior of Eq. 8 as

pr ak,W, �ceven, �codd| �yexp, Pp( ) � pr �yexp|ak,W, �ceven, �codd, Pp( )
× pr ak|W, �ceven, �codd, Pp( )
× pr W|�ceven, �codd, Pp( )
× pr �ceven|Pp( )pr �codd|Pp( )
×

1

pr �yexp|Pp( ).
(10)

The terms on the right-hand side of Eq. 10 have the following

interpretations:

1. pr( �yexp|ak,W, �ceven, �codd, Pp) is the likelihood of the

experimental data given specific values of both the LECs

that appear in the energy formula at order k and the

parameters in our error model.

2. pr(ak|W, �ceven, �codd, Pp) is the prior distribution of the LECs

given the parameters encoding the systematic expansion of

the EFT.

3. pr(W|�ceven, �codd, Pp) is the prior distribution of the inverse

breakdown scale given the characteristic sizes of even and odd

natural coefficients.

4. pr(�ceven|Pp) and pr(�codd|Pp) are the prior distributions of the
even and odd characteristic sizes (In Eq. 10 we assume an

uncorrelated prior on �ceven and �codd.).

5. pr( �yexp|Pp) is the evidence, which we drop in what follows as

it does not depend on the parameters we are interested in

extracting and functions only as a normalization constant.

3.2 Building the likelihood

We now build the likelihood function accounting for the

expected error between the experimental and theoretical values,

for data on K = 1/2 rotational bands. The corresponding

likelihood for K = 3/2 bands is built analogously. Following

[34] we start by writing our observable (the energy of a particular

rotational level) at order k as

E I( ) � ArotI I + 1( )
1 + ∑k

n�odd
cnW

n−1 −1( )I+1/2 I + 1
2

( ) I I + 1( )[ ] n−3( )/2⎧⎨⎩
+ ∑k

n�even
cnW

n−1 I I + 1( )[ ] n−2( )/2}. (11)

We choose the leading-order energy for each level,

ArotI(I + 1), to be the reference scale Eref for the

observable. The dimensionless coefficients cn (see Eq. 7) are

assumed to beO(1). The theory error �σth at any order is due to

terms omitted from the summations in Eq. 11. Its most

significant contribution comes from the first omitted term

in the EFT expansion. Accounting only for this term yields an

estimate for the theory error that is fully correlated across

levels if k + 1 is even, and anticorrelated for adjacent levels if

k + 1 is odd. To account for this correlation or anticorrelation

we write the theory covariance matrix as the outer product of a

vector representing the theory error, Σth ≡ �σth ⊗ �σth. The

vector �σth contains the value of the first omitted term for

each of the m energy levels that enter the likelihood. We also

account for experimental errors by writing the covariance

matrix as

Σ � Σth + Σexp (12)

where we take (Σexp)ij ≡ ( �σexp)2i δij. The likelihood function is

then

pr �yexp|ak,W, �ceven, �codd, Pp( ) � ��������
1

2π( )m|Σ|
√

exp −1
2
�r
TΣ−1 �r( ),

(13)
where �r ≡ �yexp − �yth is the residual between the central

experimental energy for a level and the theory result from

Eq. 11 andm is the number of levels included in the likelihood

estimation.

We note that since the theory error is the outer product of the

theory error with itself, the theory covariance Σth is singular.

Including the experimental error solves this singularity problem

FIGURE 1
Comparing the log of the likelihood when accounting for
different number of omitted terms, p, in the theory error. Apart
from W, the parameters that enter the likelihood were chosen to
be themedian parameters after we had sampled the posterior
distribution for 169Er.
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for the covariance Σ. However, Σ can still become ill-conditioned

for higher values of W if the experimental errors are too small;

numerical issues then arise when we try to invert the covariance

matrix.

Including more terms in the estimate for the theoretical error

produces a steeper peak in the likelihood function, see Figure 1,

which, in turn, restricts the values sampled for W to a narrower

region. Because it precludes the sampler exploring large values of

W, this inclusion of more omitted terms in the model of the

theoretical error solves the numerical problem of ill-conditioned

matrices and gives amore accurate extraction of the LECs and the

error-model parameters.

In what follows we estimate the theory error including

omitted terms up to a certain cutoff order kmax. Our theory

error estimate for the level with spin I is then

σth I( ) � Arot ∑kmax

l�k+1
�ceven,oddW

l−1Pl I( ), (14)

where the �c that is used here is �ceven for even values of l and �codd
otherwise. The I-dependence of the lth term is chosen to match

that in Eq. 11, and is denoted here by Pl(I), a polynomial of power

l. We arrange the contributions to the theory error, Eq. 14 as the p

columns of am × pmatrix σth, where p = kmax − k is the number of

omitted terms. Each column in this matrix then corresponds to

the theory-error structure, while each row corresponds to a

different energy level. To obtain Σth we then again take the

outer product of σth with itself, i.e., we construct an outer product

in our m-dimensional data space, while also taking an inner

product in order space. This results in the theory error associated

with different orders being added in quadrature, while

maintaining the correlation structure of the theory error

across the data space.

3.3 Building the priors

The prior distributions for an order-n LEC is taken to be a

Gaussian with mean zero and standard deviation

σn � Arot�cevenW
n−1 if n is even;

Arot�coddW
n−1 if n is odd,

{ (15)

encoding the EFT expectations for the sizes of the LECs arising

from the power counting described in Section 2. The standard

deviation in Eq. 15 allows the possibility for even and odd LECs

to have different typical sizes. Combining the Gaussian priors for

the LECs yields

pr ak|W, �ceven, �codd, Pp( ) � 1
�E

���
2π

√ exp − E2
k

2�E2( )
∏k
n�1

1

σn
���
2π

√ exp − a2n
2σ2n

( ). (16)

The LEC EK is just an energy shift and its size is not

determined by the EFT power counting. We set the prior on it

to be Gaussian with mean zero and a standard deviation, �E,

that is wide enough to capture its value. The value for �E is

determined from the energy of the bandhead and Arot by

means of Eq. 3.

We choose not to impose any expectations regarding the size

of the expansion parameter in the prior forW and so take it to be

flat between two limits:

pr W|�ceven, �codd, Pp( )∝ 1 W ∈ 0,Wcut( )
0 otherwise.

{ (17)

Limiting W from above restricts the sampler from going to

high values of W, as they make the covariance matrix ill-

conditioned and harder to invert. For all cases we check that

the posterior for W is confined to values well below Wcut.

The priors on the characteristic sizes �ceven and �codd, are taken

to be identical scaled-inverse-χ2 distributions

pr �c2l |Pp( )∝ χ−2 ] � 1, τ2 � 1( ) �c2l ∈ 0, �c2cut( )
0 otherwise,

{ (18)

where the cutoff �ccut prevents numerical issues inverting the

covariance matrix. The scaled-inverse-χ2 distribution,

given by

χ−2 x; ], τ2( ) � τ2]/2( )]/2
Γ ]/2( )

exp −]τ2
2x[ ]

x1+]/2 , (19)

is shown for different values of ] and τ in Figure 2. We stress that

we chose identical priors for �ceven and �codd even though we expect

the former to be larger than the latter based on previous analyses

of data on rotational bands [19]. We did not want to bias our

analysis by imposing this hierarchy on the prior, instead

FIGURE 2
Prior distribution of the size of the dimensionless natural
coefficients, �c.
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anticipating that it will emerge naturally in the posteriors for

those parameters.

The scaled-inverse-χ2 favors small values of �c2 and has long

tails. This allows the sampler to explore higher values of �c2. The

sharp decrease in this distribution for very small values of �c2

could be a problem for cases where �codd is much smaller than one.

This is a concern in some K = 3/2 bands where we expect smaller

odd-order corrections to the leading-order energy than inK = 1/2

bands.

4 Running the sampler

To sample the posterior distribution in Eq. 10 we use the Python

ensemble sampling toolkit for affine-invariantMCMC (emcee) [37].

We run the sampler for each nucleus at a certain EFT order using the

m rotational levels from the bandhead up to some Imax and

accounting for p omitted terms in the theory error. We use

64 walkers to sample the posterior distribution for an initial

10,000 steps. We then continue running the sampler with

FIGURE 3
Corner plot for the marginalized distributions of the LECs and the error-model parameters at N4LO for 167Er including all adopted rotational
levels (Imax =16.5) and accounting for six omitted terms in the theory error. The inset in the top right corner shows the correlations between posterior
parameters. The order of the parameters on the corner plot is the same on the correlations plot. (Here EK and all the EFT LECs are expressed in keV.
The error-model parameters are dimensionless.)
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3,000 step increments. After every 3,000 steps we calculate the

autocorrelation time, τα, where α indexes an LEC or an error-model

parameter. We declare the sampler to be converged if the sampler

meets two criteria. First, the number of steps has to be more than

50 times the highest τα. Second, the change in any of the τα’s has to

be less than 2% from its value after the last 3,000 step increment.

To get the posterior distributions we discard 2 ×max (τα)

steps from the beginning of the chain (burn-in) and 0.5 ×min (τα)

steps in between steps we accept (thinning).

A sample corner plot of the marginalized distributions of the

LECs and the error-model parametersW, �ceven and �codd, for the case

of 167Er is shown in Figure 3. This figure clearly shows that the

posterior distributions for all parameters are fully converged. For this

particular casewe setWcut= 0.16 and �ccut � 22 for both �ceven and �codd.

As explained in Section 3.3, the cutoffs on W and the characteristic

sizes prevent the covariance matrix from being ill-conditioned. We

also ran the sampler for 167Er at different values ofWcut and �ccut and

found that different choices of these hyperparameters do not result in

a significant change in the posterior distributions.

For some cases, namely 99Tc and 183W, the posterior distribution

of W was initially at the upper limit of the prior. We then ran into

numerical problems when increasingWcut trying to encompass the

entire posterior. This problem was solved by decreasing the number

of levels included in the analysis, i.e., decreasing Imax. It was then

possible to increase Wcut without encountering problems with

degenerate matrices. This means that for 99Tc we were only able

to extract the LECs andW at Imax = 11.5.We note that this is beyond

the breakdown scale for this particular nucleus and therefore we

believe that the extraction of the LECs and the error model

parameters is not as reliable as for the other nuclei considered in

this work. For 183Wwe needed to remove two levels from the upper

end of the data set for the sampler to be numerically stable.

In Figure 3 we see clear correlations between EK, A, and B and

also betweenA1 and B1. (Here we have dropped the subscriptK onA

and B; it is to be understood that all LECs are band dependent.) The

correlation coefficients given in the inset in the top-right corner of the

figure make the block-diagonal structure of the covariance matrix

clear. To a good approximation the correlation matrix can be

decomposed into a correlation matrix for even-order LECs, one

for odd-order LECs, and one for the error-model parameters.

We note that, as expected, �codd is smaller than �ceven.

Corrections to the energy levels carrying odd powers of I are

smaller than those carrying even powers of I. This size difference

is connected to different physics correcting the effective

Lagrangian at even and odd orders.

To see which of the parameters has the narrowest distribution

and therefore places the strongest constraint on the posterior

distribution, we did a Singular Value Decomposition (SVD) of

the Hessian matrix. We found that the eigenvector with the

highest eigenvalue, i.e., the parameter combination with smallest

absolute error, is made up mostly of the highest-order LEC. This is

unsurprising, since that LEC, B, is markedly smaller than the others

(we note that its relative error is actually larger than that on, e.g., A1).

We initially found a peculiar correlation between LECs in some

cases where the rotational band was built on the ground state of the

nucleus we were looking at. There we found the eigenvector with the

highest eigenvalue was a very particular linear combination that

involved all the LECs.We ultimately traced this correlation to the fact

that the ground state experimental error had been set to zero, and so

the combination of LECs that entered the formula for the ground-

state energy was very well constrained (theory error is also very small

there). This problemwas solved by adding a small experimental error

to the ground state. We chose it to be equal to the error that the

NNDC quotes on the energy of the first excited state.

5 Results

In this section we show results for our Bayesian analysis of

the rotational energy levels in 99Tc, 155,157Gd, 159Dy, 167,169Er,
167,169Tm, 183W, 235U and 239Pu. The experimental data are

taken from the National Nuclear Data Center (NNDC)

[22–30]. Except for the cases of 99Tc and 183W noted above,

we included all levels in a certain rotational band according to the

adopted level determination in the NNDC.

5.1 Stable LEC extraction across EFT
orders and additional data

In this subsection we show that lower-order LECs extracted

for the selected rotational bands are stable across EFT orders and

with the addition of high-energy data, provided that we account

for enough omitted terms when treating the theory error. For 169Er,
167Er, 169Tm, and 239Pu including omitted terms up to kmax = 10,

FIGURE 4
Posteriors for A1 describing

169Er as a function of Imax at
different EFT orders. The solid line connects themedian values and
the error bands encompass the 16th and 84th percentiles of the
marginalized distribution.
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i.e., accounting for six omitted terms at N4LO, was enough to

stabilize the extraction of the LECs.

As an example, we show the stability of the extracted LEC,A1,

across number of levels included at different EFT orders in

Figure 4. In this figure, Imax is the spin of the highest-energy

level included in a particular analysis. The central values of the

resulting posteriors are consistent with each other within 68%

credible intervals, shown as error bars in the figure. Adding more

levels to the analysis narrows the posteriors for the LECs up to a

certain Imax, after which the widths of these distributions

saturate. Figure 4 also demonstrates striking agreement

between the distributions obtained at low and high EFT

orders: they are almost identical as long as omitted terms up

to the same kmax are accounted for in both analyses.

The importance of includingmore than one omitted term in the

theory error estimate is evident in Figure 5. The top and bottom

panels of the figure show the way that posteriors for B1 and B evolve

as Imax increases. This is done using three error models that include

different numbers of omitted terms. These results show that

including more omitted terms in the model of the theory error

removes the drifting and staggering of the central values.

For both cases the distributions at kmax = 10 agree within

errors as we go higher in Imax. The narrowing of the distribution

as we go higher in Imax is clearly seen in those two figures. In

addition to having less data, the broadening of the error bands at

low Imax comes from the fact that including less levels in the

analysis leads to highly correlated LECs. This allows the

numerically larger errors on the lower-order LECs to

contribute to the errors on the higher-order LECs, thereby

enhancing them.

In Figure 6 we show the decrease in the correlations between the

LECs as Imax increases. The high correlation between the LECs at

FIGURE 5
Posteriors for B1 and B describing 239Pu a function of Imax for
different values of kmax. The solid line connects the median values
and the error bands encompass the 16th and 84th percentiles in
the marginalized distribution.

FIGURE 6
Correlations between LECs and error-model parameters as a
function of Imax, resulting from the analysis on the lowest K =1/2
rotational band in 239Pu at N4LO with kmax =10.

FIGURE 7
The distribution of EK for 169Er at N4LO and kmax =10 as we
successively remove the lowest energy levels from the data set D.
The solid blue line connects themedian values and the error bands
encompass uncertainties between on the 16th and 84th
percentiles of the samples in the marginalized distribution. The
solid black lines show to size of the standard deviation set with the
Gaussian prior on EK.
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low Imax occurs because these analyses do not include enough data to

constrain all LECs independently. Furthermore, the high correlation

between the LECs at low Imax also results in an unreliable extraction

of the inverse breakdown scaleW. This comes from the fact that at

low energies the theory truncation error is very small compared to

the experimental error. Indeed, adding more terms to our EFT error

model (i.e., increasing kmax) leads to higher correlation between the

LECs at low Imax. Thus, the number of levels required to reliably

extract W increases with increasing kmax.

Starting instead at the low-I end of the data: when we

progressively remove the lowest-energy levels from the data

set D used to construct the likelihood we rapidly lose the

ability to reliably extract the LECs. Figure 7 shows that the

distribution for EK starts narrow and broadens as we remove

levels from below. When we remove the six lowest energy levels

the distribution of EK is exactly the same as the prior distribution:

the likelihood is making no contribution to the EK posterior.

The previous results were nearly the same for all cases

considered in this work. However, even for kmax = 10,

staggering and shifting of the LECs remains sizable for the

K = 1/2 bands in 183W, 167Tm and 235U. In 183W and 167Tm,

these effects could be attributed to large expansion parameters, as

they translate to large omitted contributions to the energies of the

rotational levels. In 235U, the fermionic matrix elements could be

larger than naively expected, causing the systematic expansion of

the EFT to be questionable as discussed in Ref. [19]. For 167Tmwe

needed to go to kmax = 12 to get stable results, and for 235U and
183W we needed to go to kmax = 18.

FIGURE 8
The posterior predictive distribution for energy-level
residuals at N4LO and kmax =10 for 169Er and Imax =17.5 (top panel)
and at kmax =18 for 235U and Imax =23.5 (bottom panel). The dark
and light red bands show the truncation error plus the
experimental error at 68% and 95% credible levels respectively.
The lighter blue lines connect the energy residuals calculated from
the distribution of the LECs. The solid black line represents the
median of the distribution and the dashed lines indicate the 16th
and 84th percentiles. The correlation shown on the plot is the
highest correlation between any LEC and any error-model
parameter. Ibr was determined from the distribution of W. The
dashed purple line shows the lower limit of Ibr. The inset on the plot
shows the residuals on the first five levels with an altered y-axis
scale.

FIGURE 9
A 2D cut of the posterior predictive distribution at N4LO and
kmax =10 for 169Er and Imax =17.5 (top panel) and at kmax =18 for 235U
and Imax =23.5 (bottom panel). The blue dots show the energies
calculated from the distribution of the LECs. The black cross
shows the experimental value and the black lines and black ellipse
shows the corresponding experimental uncertainty. The
remaining ellipses and lines show the truncation error and the
experimental error added in quadrature. (All the ellipses are
centered at the experimental value.) The orange, red and green
account for 1, two and six omitted terms in the theory error
respectively (In the top panel the red ellipse is completely covered
by the green ellipse.)
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For K = 3/2 bands, we were able to extract stable LECs from

the 159Dy analysis by setting Imax = 15.5. This extraction required

us to consider omitted terms up to kmax = 16. This is because the

spin at which the EFT breaks in this nucleus is Ibr ≈ 15.5. (This,

then, is the third case in which we do not use all the NNDC

energy-level data available on a particular band.) 157Gd is stable

across orders and Imax and we get stable results at kmax = 12, while
155Gd exhibits shifting and staggering due to a larger inverse

breakdown scale, W ≈ 0.07, and we needed to go to kmax = 18 to

get stable results.

The values of the LECs and the error-model parameters at

N4LO for the nuclei considered in this work are given in Tables 1,

2 respectively.

5.2 Prior sensitivity

In addition to using the scaled-inverse-χ2 distribution as a

prior for �ceven and �codd we tried truncated Gaussians with mean

zero and standard deviations σ = 7 and σ = 3 respectively for all

cases. These truncated Gaussian priors allow for smaller values of

the characteristic sizes. But the standard deviations were chosen

to still allow values for �codd and �ceven larger than those resulting

from scaled-inverse-χ2 priors with ] = 1 and τ2 = 1.

The change in prior for �codd and �ceven does not significantly

change the posteriors for the LECs: the corresponding central

values differ by less than 1%, and are consistent with each other

FIGURE 10
The size of the NLO LEC, A1 (top panel) and the N3LO LEC, B1

for K =1/2 bands and A3 for K =3/2 bands (bottom panel), on the
y-axis, compared to its expected size from the EFT power
counting, on the x-axis. Error bands on the LEC distribution
are small and can not been seen on the plot. The error bands on
the x-axis encompass the 16th and 84th percentiles. Different
nuclei are labeled in the legend of the plot. The black dashed line
has slope =1 and is plotted to facilitate comparison of prior
expectation and results from the posterior. The yellow colored
symbols are results for rotational bands with bandheads K =3/2, all
the others are K =1/2 bands. K =3/2 rotational bands do not have a
parameter A1 and we do not have them in the top panel. 99Tc and
155Gd are outliers and we exclude them from the plots (LECs values
for these nuclei can be found in Table 1).

FIGURE 11
The size of the N2LO LEC, ΔA (top panel) and the N4LO LEC, B
(bottom panel), on the y-axis, compared to its expected size from
the EFT power counting, on the x-axis. Error bands on the LEC
distribution are small and can not been seen on the plot. The
error bands on the x-axis encompass uncertainties between the
16th and 84th percentiles. Different nuclei are labeled in the
legend of the plot. The black dashed line has slope =1 and is
plotted to facilitate comparison of prior expectation with results
from the posterior. The yellow colored symbols are results for
rotational bands with bandheads K =3/2, all the others are K =1/2
bands. 99Tc and 183W are outliers and we exclude them from the
both plots. We also exclude 155Gd from the bottom plot only (LEC
values for these nuclei can be found in Table 1).
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within the 68% credible intervals. Central values of the posteriors

for W differ by less than 15%, and were similarly consistent.

The strongest dependence on the prior is that exhibited by

the posteriors for �codd and �ceven: the central values differ in some

cases by more than 50%. However, even these values are

consistent with each other within 68% credible intervals, since

the posteriors for the characteristic sizes are broad.

The changes in the posteriors of W on one hand and �codd &
�ceven on the other are anticorrelated. We only care about

combinations of them to set the size of the theory error and

the expected size of the LECs. Thus, the dependence of the theory

error and the expected size of the LECs on the prior for the

characteristic sizes is less profound. The difference in sizes of the

theory error resulting from the chosen priors is less than 20% for

all cases except 157Gd, where the difference is about 40%.

For all results that follow we used the scaled-inverse-χ2

distribution with ] = 1 and τ2 = 1 as the prior for both �codd
and �ceven, in keeping with the naturalness assumption.

5.3 Posterior predictive distributions

Figure 8 shows the PPDs (in blue) of the energy residuals as a

function of the spin I for two cases considered in this work. These

distributions are calculated using Eq. 9. In each figure,

translucent blue lines connect energy residuals resulting from

different LECs sets sampled from the posterior distribution in Eq.

8. The solid black line represents the median of the PPD, and the

dashed lines encompass the region between the 16th and 84th

percentiles. Meanwhile, the dark and light red bands show the

truncation error and the experimental error added in quadrature

at 68% and 95% credible levels respectively. To calculate the

truncation error, we consider a theory error that accounts for p

omitted terms. The omitted terms are combined in quadrature,

just as they are in the likelihood defined in Section 3. This

calculation was done using Eq. 9 i.e., by calculating the theory

error at each point in the sample space and then marginalizing

over the error parameters. The dependence of the size of the

theory error on the prior on �ceven and �codd is small in these cases:

the theory error changes by about 10%when the prior is changed.

The correlation coefficient written in the legend in Figure 8 is

the largest between any LEC and any error-model parameter for

the shown analysis. When this value is small, the truncation error

and the propagated LEC error could in principle be added

together in quadrature.

In viewing Figure 8 it is important to remember that the

truncation error on the energy residuals is highly correlated

across levels. This comes from the high correlation between

levels when building the correlation matrix that goes into the

likelihood. This correlation also flows into a correlation between

levels in the PPD of the energies. A correlation plot between two

energy levels, like the ones in Figure 9, gives a 2D cut of this

multi-dimensional correlation.

In both panels we see the importance of accounting for more

than one omitted term in the theory error. This is clearly shown

in the reverse in the direction of the correlation from a negative to

a positive correlation when going from the orange ellipse to the

red ellipse. The orange ellipse is obtained when we account for

only one omitted term, while the red ellipse includes the effect of

two omitted terms. After accounting for six omitted terms the

green ellipse is obtained and the 68% ellipse in principle expands.

This is more clearly seen when we go to high-energy levels

plotted in the lower panel in Figure 9. Note also that for lower-

energy levels the correlation is smaller since the experimental

error dominates over the truncation error, and we assumed that

the experimental errors are not correlated across energy levels.

5.4 Model checking

In Figures 10, 11 we compare the marginalized posterior

distributions of the LECs, on the y-axis, with their expected sizes

from the EFT power counting, on the x-axis. Since we also extract

the theory error parameters from the sampler and they are highly

correlated among themselves, we calculate the expected size from

the distributions of the error model parameters using Eq. 9. We

notice that the error on the distribution of the LECs is very small

compared to the error on the expected sizes that comes from the

distribution of the theory error parameters.

As these graphs are model-checking graphs, and since the

estimates of LEC sizes plotted on the x-axis are meant as order-

FIGURE 12
The extracted inverse breakdown scale W from the
marginalized posterior distribution obtained by sampling
compared to its naively expected size. The expected size is taken
to be the maximum of Erot/Esp and Erot/Evib. The dashed black
line shows the best linear fit and its parameters are printed on the
plot. The yellow colored symbols are results for rotational bands
with bandheads K =3/2, all the others are K =1/2 bands. 99Tc is an
outlier and we exclude it from the plot (its values can be seen in
Table 2).
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of-magnitude estimates, we do not expect perfect linear

correlations. Nevertheless, the top panel in Figure 11 shows

that, for all K = 1/2 bands considered, the LEC ΔA agrees

with its expected size within error bands. This result is

surprisingly better than expected. In contrast, the size of ΔA
for K = 3/2 bands is larger than expected, especially for 155Gd (see

yellow symbols in Figure 11). There are two factors that could

contribute to this. First, the K = 3/2 bands have larger fermionic

matrix elements. This could hinder the systematic expansion of

the EFT. Second, the K = 3/2 bands have relatively larger

expansion parameters, see Figure 12.

The same discussion applies to the results in the remaining

panels in Figures 10, 11, where we see good agreement between

the LECs and their expected sizes for K = 1/2 bands. The

disagreement with power-counting estimates for K = 3/2

bands at N3,4LO is less of a concern than the one at N2LO

seen in the top panel of Figure 11, since these higher-order LECs

are smaller than their expected sizes. This doesn’t undermine the

convergence of the EFT expansion.

We also note here that the scale of the x-axis is prior

dependent and could change by more than 50% in some

nuclei, depending on the choice of prior on �ceven and �codd. For
157Gd changing the prior on �ceven and �codd to a truncated normal

allowed for smaller values of �codd and A3 was then equal to the

expected size (i.e., the point for 157Gd then falls exactly on the line

in the bottom panel of Figure 10). This did not happen when the

truncated normal is chosen as a prior for the analysis in 155Gd and
159Dy; this may occur because there is strong N5LO energy-level

staggering present in the data for these nuclei.

The size of �ceven and �codd is constrained by both the sizes of

the LECs and the size of the theory error. In a good systematic

expansion the tension between those factors on setting the size

of the �c’s would be small and one number apiece would suffice

to represent the even and odd order corrections. However when

the systematic expansion is hindered, as in the case for K = 3/2

bands due to large fermionic matrix elements, this tension

becomes clear. One example of this is seen in Figure 11 for

K = 3/2 bands. There ΔA is large and favors large values of �ceven,

however, B is small and favors smaller values of �ceven. The

eventual result is a compromise. This tension may be

exacerbated by the truncation error also providing

information on the size of the �c’s.

TABLE 1 Themedian value of the LECs at N4LO comparedwith the standard deviation of their Gaussian priors with zeromean [see Eq. 15]. We see that,
for nearly all cases, the LECs fall within this standard deviation. The uncertainties encompass the 16th and 84th percentiles of the samples in the
marginalized distributions. K =3/2 rotational bands do not have a parameter A1 and the parameters (B1, A3) refer to K =1/2 and K =3/2 bands
respectively. All the numbers are in units of keV.

Nucleus EK �E A1 σ1 ΔA σ2 (B1, A3) σ3 B σ4

99Tc 147.31130.0141−0.0142 160 70.19130.0102−0.0103 12148−35 −7.66080.0085−0.0086 33.86.4−7.9 −7.58510.0022−0.0022 5.0581.614−1.177 −2.99160.0008−0.0008 1.36140.3417−0.2508
155Gd −45.11060.0178−0.0180 77 - - −8.52650.0060−0.0059 5.32.2−1.4 −0.00430.0006−0.0006 0.4990.201−0.168 0.00760.0005−0.0005 0.02400.0086−0.0055
157Gd −41.33840.0155−0.0160 56 - - −3.80640.0040−0.0039 4.53.6−1.8 −0.00940.0002−0.0002 0.0240.013−0.007 −0.00520.0003−0.0003 0.01300.0074−0.0043
159Dy −42.78940.0159−0.0152 62 - - −5.07050.0036−0.0040 4.42.7−1.4 −0.00630.0003−0.0002 0.0620.038−0.021 −0.00350.0003−0.0002 0.01360.0066−0.0038
167Er 207.20880.0054−0.0054 230 7.83830.0028−0.0028 117−4 −2.18980.0016−0.0016 2.51.4−0.8 −0.00630.0003−0.0003 0.0250.012−0.007 −0.00820.0001−0.0001 0.00550.0023−0.0014
169Er 0.96720.0196−0.0198 22 9.77760.0101−0.0100 106−3 −1.53820.0058−0.0054 2.31.6−0.9 −0.00640.0008−0.0009 0.0100.006−0.003 −0.00310.0002−0.0002 0.00220.0012−0.0007
167Tm −18.46330.0160−0.0164 22 −9.10880.0075−0.0074 1510−5 −0.91980.0028−0.0027 1.30.6−0.4 0.04100.0007−0.0007 0.0510.028−0.015 −0.00900.0001−0.0001 0.00450.0017−0.0011
169Tm −19.05320.0011−0.0011 22 −9.72050.0008−0.0008 128−4 −0.82690.0006−0.0006 1.51.0−0.5 0.02640.0002−0.0002 0.0250.013−0.007 −0.00500.0001−0.0001 0.00310.0015−0.0009
183W −6.84890.0065−0.0043 22 2.76300.0041−0.0028 125−3 −3.92990.0029−0.0044 16.34.9−5.5 −0.04480.0006−0.0009 0.0570.023−0.014 0.02290.0006−0.0004 0.07460.0188−0.0201
235U −6.18920.0009−0.0009 22 −1.72940.0007−0.0008 42−1 −1.19710.0006−0.0005 3.62.9−1.6 0.00250.0001−0.0001 0.0070.003−0.002 −0.00270.0000−0.0001 0.00620.0047−0.0027
239Pu −8.35770.0019−0.0019 22 −3.65600.0011−0.0011 74−2 −1.07150.0004−0.0004 1.20.7−0.4 0.00410.0001−0.0001 0.0060.003−0.002 −0.00150.0000−0.0000 0.00100.0005−0.0003

TABLE 2 Themedian value of the error model parameters at N4LO and
the estimated expansion parameters based on rotational and
single particle energy scales. The uncertainties encompass the 16th
and 84th percentiles of the samples in the marginalized distributions.

Nucleus W Erot/Evib Erot/Esp �ceven �codd

99Tc 0.2040.021−0.015 0.396 1.020 1.90.4−0.5 1.30.5−0.4
155Gd 0.0670.003−0.003 0.181 0.429 3.81.7−1.1 5.42.7−2.1
157Gd 0.0540.005−0.005 0.085 0.209 5.75.4−2.5 0.60.3−0.2
159Dy 0.0560.004−0.004 0.104 0.319 4.83.3−1.7 1.20.9−0.5
167Er 0.0470.005−0.004 0.102 0.147 4.02.6−1.4 0.80.5−0.3
169Er 0.0310.006−0.005 0.097 0.142 5.65.1−2.5 0.80.4−0.2
167Tm 0.0580.004−0.004 0.102 0.170 1.70.9−0.5 1.10.8−0.4
169Tm 0.0450.008−0.007 0.097 0.140 2.62.3−1.1 0.90.6−0.3
183W 0.0680.005−0.004 0.082 0.479 14.45.0−5.3 0.70.3−0.2
235U 0.0420.003−0.003 0.047 0.111 11.710.0−5.3 0.60.3−0.2
239Pu 0.0290.004−0.003 0.073 0.059 5.64.0−2.2 0.90.6−0.3
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5.5 Higher than expected break-down
scale

In Figure 12 we see a clear correlation between the

extracted values of W and those that are expected based on

each nucleus’ single-particle and vibrational energy scales, Esp
and Evib. The expectedW is the larger of Erot/Esp and Erot/Evib,

while the extracted W comes from sampling the posterior in

Eq. 10. This extracted W is what actually determines the

convergence of the EFT expansion. It is markedly smaller

than would be naively expected. The break-down scale of the

theory is thus higher than naively expected: our rotational

EFT works to much higher I than energy-scale arguments

would suggest. This could occur because coupling between the

higher rotational states explicitly included in the EFT and the

high-energy states that are not explicitly included in our EFT

is hindered by the large difference in angular momentum

between them.

6 Conclusion

We performed a Bayesian analysis to extract the LECs

and inverse breakdown scale W describing the rotational

energy levels of diverse odd-mass nuclei within a recently

developed EFT. This analysis corroborates the EFT

organization for energy-level formulae which results from

the assumed power-counting scheme: the extracted LECs of

order k scale as Wk−1, i.e., according to EFT expectations.

While our analysis reached this conclusion for both K = 1/2

and K = 3/2 rotational bands, the sizes of the LECs describing

the latter exhibit larger deviations from their expected values

than those describing the former. We attribute this behavior

to the size of fermionic matrix elements, assumed to be of

order one while organizing energy-level formulae. Since

these matrix elements involve the angular momentum of

the fermion, �j, we cannot exclude the possibility that the

systematic behavior of the EFT is hindered in bands build on

top of single-particle orbitals with larger values of K. For the

K = 3/2 bands studied in this work, however, this discrepancy

does not destroy the systematic improvement of calculated

energies up to N4LO, as the sizes of extracted LECs are

smaller that expected.

In order to ensure that the extracted values are

independent of the EFT order and number of energy levels

entering the analysis, we employed a theory error beyond the

first-omitted-term approximation, considering omitted

terms in the expansion for the energy of rotational levels

up to order kmax. As we increased the number of omitted

terms considered in the theory error, the corresponding log

likelihood exhibited steeper and steeper peaks. Therefore, the

‘widths’ of the sampled posteriors decrease as kmax increases.

Considering up to fourteen omitted terms at N4LO enabled a

stable extraction of the LECs and breakdown scale describing

the levels of interest. The shapes of posteriors for low-order

LECs extracted at this order and those extracted using lower-

order energy formulae are, for all practical purposes,

identical. On the other hand, the shapes of the posteriors

depend strongly on the number of levels informing the

model, narrowing as more levels are included.

Nevertheless, the 68% credible intervals of these posteriors

possess significant overlap, facilitating reliable LEC

extraction.

In addition to the posteriors for the LECs and the inverse

breakdown scales, our analysis yielded distributions for the

characteristic sizes of even and odd cn’s, �ceven and �codd. The

values of �codd are typically smaller than those for �ceven, in

agreement with results from previous studies where the LECs

were fitted to the smallest possible data sets. The difference of

the characteristic sizes of even and odd LECs has its origin in

the physics behind the corresponding contributions to the

effective Lagrangian: while odd-order contributions correct

the particle-rotor interaction, even-order contributions

include terms that depend exclusively on the rotor degrees

of freedom, thus correcting the physics of the core to which

the particle is coupled. Here this conclusion was reached solely

on the basis of experimental data; we assumed equal priors for

both characteristic sizes.

Although the distributions of �codd and �ceven change

depending on the choice of the their priors, that does not

significantly change the distributions of the LECs. Altering

the priors also does not have a large effect on the size of the

theory error, which changes by less than 20% for nearly all

cases.

These considerations mean that our extractions of the

LECs and the theory error parameters in the EFT of

rotational bands in odd-mass nuclei are robust under the

choice of prior. The formalism presented here also gives

robust results for LECs across orders and as more data is

added to the analysis. We conclude that a Bayesian

framework that incorporates theory errors in the

likelihood offers significant advantages for LEC

extraction in EFTs. This methodology has already been

used for the extraction of LECs in the NN potential from

phase shifts [34] and to constrain parameters of the three-

nucleon force [35]. But it is a very general approach which

should improve the parameter estimation for LECs in

any EFT.
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