
Reduced Markovian Descriptions of
Brownian Dynamics: Toward an Exact
Theory
Matteo Colangeli 1* and Adrian Muntean2

1Department of Information Engineering, Computer Science andMathematics, University of L’Aquila, L’Aquila, Italy, 2Department
of Mathematics and Computer Science and Centre for Societal Risk Research (CSR), Karlstad University, Karlstad, Sweden

Weoutline a reduction scheme for a class of Brownian dynamicswhich leads tomeaningful
corrections to the Smoluchowski equation in the overdamped regime. The mobility
coefficient of the reduced dynamics is obtained by exploiting the Dynamic Invariance
principle, whereas the diffusion coefficient fulfils the Fluctuation-Dissipation theorem.
Explicit calculations are carried out in the case of a harmonically bound particle. A
quantitative pointwise representation of the reduction error is also provided and
connections to both the Maximum Entropy method and the linear response theory are
highlighted. Our study paves the way to the development of reduction procedures
applicable to a wider class of diffusion processes.
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1 INTRODUCTION

The derivation of a contracted description of a Brownian particle subject to a confining potential is a
long-standing problem in statistical mechanics, which dates back to an old question originally posed
by Uhlenbeck and Ornstein [1]. For more background details and a general outline of the methods,
we refer the reader to the seminal paper by van Kampen [2] as well as to the more recent reviews [3,
4]. The Smoluchowski equation stands as a prominent example of a reduced description in the high
friction regime, where the momentum variable rapidly thermalizes and the statistics of the particle is
determined only by the distribution in the configuration space. In the last decades, a large research
endeavour [5–7] has pointed towards the derivation of corrections to the Smoluchowski formula for
finite values of the friction constant. A classical iterative scheme, described e.g. in [8], derives
solutions of the Kramers equation in terms of matrix continued fractions, via an expansion in powers
of the inverse friction coefficient. Further guidelines on the derivation of the Smoluchowski equation
from the Kramers equation can also be found in [9–11]. A different approach, developed by Titulaer
[12], implements a Chapman-Enskog reduction scheme on the Fokker-Planck equation. A
systematic use of the same procedure applied for the adiabatic elimination of fast variables was
also considered in [13]. More recently, a non-local version of the Smoluchowski equation was also
obtained from the Kramers equation through the Chapman-Enskog procedure in [14]. In the set-up
of kinetic theory of gases, the Chapman-Enskog method has proved successful in the derivation of
the Euler and the Navier-Stokes equations of fluid dynamics from the Boltzmann equation. However,
as it was first demonstrated by Bobylev for Maxwell’s molecules [15], the Chapman-Enskog
expansion is prone to small wavelength instabilities: namely, sufficiently short acoustic waves
increase with time instead of decaying. This creates difficulties for an extension of hydrodynamics, as
derived from a kinetic description, in the regime of finite Knudsen numbers, where the Navier-Stokes
approximation is inapplicable. The study of various kinetic models [16–19] has later revealed that
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such instabilities can be cured by taking into account also the
remote terms of the expansion. The resulting hydrodynamic
equations, obtained from an exact summation of the
Chapman-Enskog scheme, are indeed stable for all
wavelengths, at variance with the finite-order approximations.
The structure of the slow invariant manifold for systems
displaying an intrinsic separation of time scales can be
determined through a non-perturbative reduction procedure
known as the invariant manifold method [20]. A key
ingredient, in the method, is an equation of dynamic
invariance which, for a class of kinetic models known as
linearized Grad’s moment systems, was shown to lead to the
same result as the exact summation of the Chapman-Enskog
expansion [21, 22]. Thus, the plan of this work is to adopt, in the
context of Brownian dynamics, the invariant manifold set-up to
derive meaningful corrections to the Smoluchowski equation,
while preserving the Markovian structure of the original process.
Unlike previous reduction schemes, the proposed procedure
operates on the deterministic component of the dynamics,
whereas the stochastic terms are properly handled via the
Fluctuation-Dissipation theorem. Explicit calculations can be
carried out for the Brownian oscillator model, in which the
equivalence between the condition of dynamic invariance and
the exact summation of the Chapman-Enskog expansion is also
established. The special case with a harmonic potential can hence
be used as a test-bed to illustrate the general formalism. With
other models, instead, quasi-equilibrium manifolds typically
constitute the starting point towards an iterative method of
solution of the equation of invariance.

We envisage further developments of similar reduction
schemes in the direction of coarse-graining of interacting
particle systems as well as of partial differential equations with
randomly fluctuating coefficients. Such research line might
possibly connect this work with periodic and/or random
homogenization questions; see [23–28] for recent applications
of reduction schemes to statistical physics and epidemiological
models. We also refer the reader to [29–32] for related matters, as
well as to [33, 34] for applications of similar methods to the
reduction of complex dynamics connected to climate change
topics, where the need of developing innovative reduction
techniques is growing. In this line of thinking, a rigorous
characterization of slow invariant manifolds of random
dynamical systems can be found in [35]. Other relevant
questions related to the procedure of model reduction are also
addressed in this work. One, for instance, concerns the derivation
of a quantitative estimate of the reduction error stemming from
the application of the method. The role of the initial data and of
the defect of invariance will be properly highlighted.
Furthermore, as the contracted description retains just some of
the observables of the original model, it is a non-trivial task to
quantify to which extent a certain reduced dynamics yields a
response to (small) perturbations comparable to that expressed
by the original dynamics. The study of the linear response
formalism will enable us to answer also this question.

This paper is organized as follows. In Section 2, we introduce
the model and also illustrate the general set-up of the invariant
manifold method and the related Chapman-Enskog scheme. In

Section 3 we present some iterative schemes, based on the
Maximum Entropy principle, which can be used to solve the
invariance equation for a class of Brownian dynamics. We focus,
in particular, on the case of a harmonically bound Brownian
particle, where the reduction procedure can be outlined in detail.
We also provide a quantitative pointwise representation of the
reduction error, and derive response functions due to the original
and the reduced dynamics of the Brownian oscillator model.
Finally, we draw our conclusions in Section 4.

2 THE MODEL

In this work we exploit the Dynamic Invariance principle to
derive reduced descriptions for a class of Brownian dynamics.
Specifically, we consider the Brownian dynamics of particles
subject to a power law potential V(x) = xn, n ≥ 2 an integer,
described by a system of stochastic differential equations (SDEs)
written in the Itô form:

dx t( ) � v t( )dt
dv t( ) � − 1

m
zxV x( )dt − γv t( )dt +

�����
2Dγ2

√
dW t( ), (1)

whereW(t) is a one-dimensional Wiener process,m is the mass, γ
is the friction constant, D = (βmγ)−1 is the diffusion coefficient,
and β is the inverse temperature of the system. We recall that the
leading high friction approximation of the set of Eq. 1 is
commonly written in the Smoluchowski form:

dx t( ) � − 1
mγ

zxV x( )dt + ���
2D

√
dW t( ). (2)

We hence seek for a reduced description resembling the
structure of Eq. 2 and based on the following SDE:

dx t( ) � −χzxV x( )dt + ����
2Dr

√
dW t( ), (3)

where χ is the mobility and Dr the diffusion coefficient of the
reduced dynamics. The two coefficients χ and Dr are expected to
reduce to (mγ)−1 and D, respectively, in the overdamped limit
expressed by Eq. 2. The derivation of the mobility χ, in Eq. 3, shall
be pursued in Section 3 by exploiting the Dynamic Invariance
principle, which is shortly reviewed next.

2.1 The Dynamic Invariance Principle
The invariant manifold method is a procedure of model reduction
that was originally introduced as a special analytical perturbation
technique in the KAM theory of integrable Hamiltonian systems
[36–38]. The method was later exploited in the kinetic theory of
gases to derive the evolution equations of the hydrodynamic fields
from the Boltzmann equation or related kinetic models [18, 21,
22]. The basic picture underlying the invariant manifold method
can be shortly summarized as follows, see Refs. [20, 39]. There
exists a manifold of slow motions, in the phase space of the
system, parameterized by a set of distinguished macroscopic
variables, which is positively invariant: if a trajectory starts on
the manifold at time t0, it will remain on the manifold for all times
t 〉 t0. Trajectories starting from arbitrary initial conditions
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quickly reach a neighborhood of the manifold, and then evolve
along such slowmanifold, until the equilibrium state is eventually
attained. More explicitly, for kinetic equations we let f(r, v, t)
denote the (single-particle) distribution function, whose
evolution in a domain U is described by the equation:

ztf � J f( ). (4)
Let m: f → M be a surjective linear map, with M denoting the

macroscopic variables (moment fields) and also let fM denote a
manifold parametrized by a set of macroscopic fieldsM. We look
for an invariant manifold fM obeying the self-consistency
condition m(fM) = M. The “microscopic” and “macroscopic”
time derivatives of f on the manifold fM are defined as:

z micro( )
t fM ≔ J fM( ), (5)

z macro( )
t fM ≔ DMfM( )m J fM( )( ), (6)

where the differentialDMfM, in Eq. 6, is evaluated at the pointM =
m(fM). While J(fM) in Eq. 5, corresponds to a value of the vector
field J evaluated on the manifold fM, Eq. 6 codifies a chain rule:
one computes the time derivative of the moment M via the map
m, as _M � m(J(fM)), and then exploits the time dependence of f
which is expressed through the time dependence of M. The
invariance equation is written in the form:

z micro( )
t fM � z macro( )

t fM, (7)
or, alternatively, as:

ΔM ≔ z micro( )
t fM − z macro( )

t fM � 0, (8)
where ΔM is called defect of invariance. The Dynamic Invariance
principle requires that the equality in Eq. 8 is fulfilled for any
values of the macroscopic variables M. Solutions to Eq. 8 have
been obtained from the study of various kinetic models, see e.g.,
[16, 17, 19]. Determining the structure of fM constitutes an
instance of the closure problem in kinetic theory [40]. Note,
indeed, that if a solution of Eq. 8 is found, then the moments M
obey the following closed system of evolution equations:

_M � m J fM( )( ). (9)
We also recall that if a functional E(f) is conserved for the

dynamics (Eq. 4), then E(fM) remains constant along the
trajectories of the reduced system described by Eq. 9.
Moreover, if the time derivative of a functional H(f) is
nonpositive due to the dynamics (Eq. 4), then so is also the
time derivative of the functional H(fM) due to the reduced
dynamics (Eq. 9).

Appropriate iterative schemes have been developed to solve
the invariance Eq. 8. One of the first systematic procedures of
constructing invariant manifolds was the celebrated Chapman-
Enskog method for the Boltzmann equation [41], whose main
steps are also shortly recalled here. One starts with the singularly
perturbed dynamics:

ztf + A f( ) � 1
ε
Q f( ), (10)

with ε 〉 0 a small parameter. One requires that m(Q( f)) = 0 and
that, for each M ∈ m(U), the equation Q( f ) = 0, with m( f ) = M,
has a unique solution denoted by feq

M (corresponding to the
Maxwellian distributions, in Boltzmann’s theory), which is also
asymptotically stable and globally attracting for the fast dynamics

ztf � 1
ε
Q f( ). (11)

The invariance Eq. 8 can be adapted to the singularly
perturbed system (Eq. 10) in the form:

1
ε
Q fM( ) � A fM( ) + DMfM( ) m A fM( )( )( ). (12)

In the Chapman-Enskog scheme, a solution to Eq. 12 is sought
in the form of a series in powers of a small parameter ε:

fM � feq
M +∑∞

i�1
εif i( )

M . (13)

In the set-up of Boltzmann’s theory, the zero-order
approximation fM ≃ feq

M leads, upon integrating the
Boltzmann equation over the velocity space, to the inviscid
Euler equations of fluid dynamics, whereas the first-order
correction fM ≃ f(eq)

M + εf(1)
M gives rise to the compressible

Navier-Stokes equations supplied with transport coefficients
which depend on the underlying collision model.

3 RESULTS

The aim of this Section is to exploit the method of the invariant
manifold to derive suitable expressions for the mobility χ
introduced in Eq. 2. In Section 3.1 we thus address the
general case described by Eq. (1), and outline useful iterative
schemes based on the Maximum Entropy principle. The
Brownian oscillator model, corresponding to the case n = 2, is
studied in detail in Section 3.2. Next, the analysis of the reduction
error and of correlation functions is deferred to Sections 3.3, 3.4.

3.1 Quasi-Equilibrium Closures
We start with the Fokker-Planck equation associated to the SDE
(Eq. 3), which reads:

zρ x, t( )
zt

� Dr
z

zx
ρ x, t( )zxU x( ) + z

zx
ρ x, t( )( ), (14)

where we enforced the Einstein relation χ � βDr and set U(x) =
βV(x). Letting x(t) = (x(t), v(t)), we denote by 〈. . .〉 the
conditional average referring to a deterministic initial datum
x(0) = x = (x, v). We then write M(t) ≡ 〈zxU(x)〉 and
introduce the closure:

〈v t( )〉 � −χM t( ), (15)
whereM(t) plays the role of a slow variable, driving the evolution
of the fast variable 〈v(t)〉. Application of the Dynamic Invariance
principle, introduced in Section 2.1, requires the evaluation of the
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two operators z(micro)
t 〈v(t)〉 and z(macro)

t 〈v(t)〉 for the dynamics
obtained upon averaging Eq. 1 over noise. We thus find:

z micro( )
t 〈v t( )〉≔ − 1

m
M t( ) + γχM t( ) (16)

z macro( )
t 〈v t( )〉≔ − χ _M t( ) (17)

Upon equalizing the two expressions in Eqs 16, 17 one
establishes the invariance equation

− 1
m
M t( ) + γχM t( ) + χ _M t( ) � 0, (18)

to be solved for the mobility χ. Note that the classical form 1/(mγ)
of the mobility is recovered from Eq. 18 as γ→∞,m→ 0 with γm
finite (provided χ remains bounded as well). In order to solve Eq.
18, and find corrections to the Smoluchowski equation, it is thus
necessary to determine an explicit expression for _M(t). This task
can be pursued iteratively via the Maximum Entropy method
(MaxEnt), often invoked in statistical mechanics; see e.g., [20, 42].
We start by defining the entropy:

S ρ[ ] � −∫ ρ x, t( )ln ρ x, t( )
ρ0 x( ) dx, (19)

which is a monotonically growing function attaining its
maximum at equilibrium, i.e., when ρ = ρ0. Let M = {M0, . . .,
Mk} be a set of linearly independent moments of ρ defined as:

∫mi x( )ρ x, t( )dx � Mi t( ), i � 0, . . . , k, (20)

where themi’s are the microscopic densities of the moments, with
m0 = 1. The so-called quasi-equilibrium density ρ*(x, M) is
obtained by maximising the entropy S[ρ] under the constraints
of fixed M, which yields:

ρ* x,M( ) � ρ0 x( )exp ∑k
i�0

Λimi x( )⎡⎣ ⎤⎦ (21)

where Λ = {Λ1, . . ., Λk} denotes the set of Lagrange multipliers
which depend on the set of moments M. The quasi-equilibrium
projector is then defined as:

Π*• �∑k
i�0

zρ*
zMi

∫mi x( )•dx (22)

By acting with the projector Π* on both sides of Eq. 14 one
obtains the following moment equations in the quasi-equilibrium
approximation:

_Mi � −∑k
j�0

Λj ∫ zxmi x( )ρ* x, t( )zxmj x( )dx. (23)

A step forward can be made by splitting the set of moments as
M =MI ∪MII, withMI = {M0, . . .,Mℓ} andMII = {Mℓ+1, . . .,Mk}.
We assume that the (first) quasi-equilibrium distribution ρ*(x)
can be derived explicitly for the setMI, i.e., ρ* = ρ*(x,MI), and we
hence seek for the second quasi-equilibrium closure in the form ρ
= ρ*(1 + φ). An expansion of the functional (Eq. 19) in a
neighbourhood of ρ* to second order in φ yields:

ΔS φ[ ] � −∫ ρ*φ 1 + ln
ρ*
ρ0

[ ]dx − 1
2
∫ ρ*φ2dx. (24)

The deviation φ is determined from the following
maximization problem, called “Triangle MaxEnt
approximation” [43]:

ΔS → max, ∫mI x( )ρ*φ dx � 0, ∫mII x( )ρ*φ dx � ΔMII,

(25)
where ΔMII ≡ MII − MII(MI) represents the deviations of the
moments MII from the values attained in the first quasi-
equilibrium state.

To solve the invariance Eq. 18, we restrict to the one-moment
quasi-equilibrium closures, i.e., we setMI =M0 (i.e., ρ*(x) = ρ0(x))
and MII = M, with ∫m(x)ρ dx = M. We thus find:

zφ

zt
� Lφ, , L• � ρ−10 Dr

z

zx
ρ0

z

zx
•. (26)

The triangle one-moment quasi-equilibrium distribution is
found in the form:

φ 0( ) x, t( ) � m 0( ) x( ) M t( ) − 〈M〉0( ), (27)
with

m 0( ) x( ) � m x( ) − 〈m〉0
〈m2〉0 − 〈m〉20

. (28)

We can thus construct a refinement of the quasi-equilibrium
dynamics (Eq. 23), by defining the new projection operator:

Π 0( )• � ρ0 x( ) m 0( ) x( )
〈m 0( )m 0( )〉0

∫m 0( ) x( )•dx. (29)

After inserting the expression (Eq. 27) in (Eq. 26) and upon
acting on both sides with Π(0), one finally obtains:

_M � −ℓ0 M t( ) − 〈M〉0( ), (30)
with

ℓ0 � −〈zxm
0( )Drzxm 0( )〉0

〈m 0( )m 0( )〉0
, (31)

which defines the relaxation dynamics of the moment M to the
corresponding value attained in the equilibrium state.We observe
that the strategy exploited so far can be prosecuted further, by
using the iterative scheme discussed in Ref. [43]:

1 − Π j( )( )Lm j+1( ) � 0, (32)
with j = 0, 1, . . ., where m(j+1) � m(j + μ(j+1), and in which the
orthogonality condition 〈μ(j+1)m(j〉0 � 0 is exploited. At the k-th
iteration step, a refinement of the inverse relaxation time (Eq. 31)
attains the form:

ℓk � −〈zxm
k( )Drzxm k( )〉0

〈m k( )m k( )〉0
. (33)

The sequence (ℓk)k∈N is found to converge to the eigenvalue of
the operator L with the minimal non-zero absolute value.
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In the next Section we will address the case with n = 2,
corresponding to a harmonically bound particle, which can be
solved explicitly without adopting the foregoing iterative scheme
based on the MaxEnt principle.

3.2 The Brownian Oscillator
We now turn to study in detail the case of a Brownian particle
bounded in a harmonic potential V(x) � 1/2 mω2

0x
2, which

constitutes one of the classical exactly solvable models of
nonequilibrium statistical mechanics [44]. We refer also the
reader to Ref. [45] for some recent inspection of the ergodic
properties of Ornstein-Uhlenbeck systems. The dynamics of the
Brownian oscillator is described by a system of linear SDEs:

dx t( ) � v t( )dt
dv t( ) � −ω2

0x t( )dt − γv t( )dt +
�����
2Dγ2

√
dW t( ), (34)

where ω0 �
����
k/m

√
is the natural frequency of the oscillator with

mass m and elastic constant k, see Supplementary Appendix S1
for details. We shall refer to Eq. 34 as the original dynamics of the
Brownian oscillator. We introduce the drift matrixM, defined as:

M � 0 −1
ω2
0 γ

( ), (35)

whose eigenvalues read:

λ± � γ ± γs
2

, (36)

with γs �
�������
γ2 − 4ω2

0

√
� λ+ − λ−. Henceforth we shall restrict our

discussion to the overdamped regime, namely the region in the
parameter space in which γs is real and larger than zero.

An exact reduced description, not requiring a separation of
time scales, is available for the Brownian oscillator model [46].
This is obtained by integrating over time the second of Eq. 34 and
by then inserting the obtained expression in the first equation.
The resulting reduced dynamics, expressed in terms of the
configuration variable x(t), turns out to be non-Markovian.
Nevertheless, in the regime of high friction, and for times
much longer than γ−1, the Markovian structure of the reduced
dynamics can be restored [7, 47].

Another contracted description of the model can instead be
derived by considering the overdamped limit of Eq. 34 [48], that
is worth briefly recalling. By letting xε(t) = x(ε−1t), with ε = γ−1, the
original dynamics can be rescaled as follows:

dxε t( ) � ε−1v dt (37)
dvε t( ) � −ε−1ω2

0x
ε t( ) dt − ε−2vε t( ) dt + ε−1

�������
2 βm( )−1√

dW t( ),
(38)

where we exploited the scaling dW(ϵ−1t) = ϵ−1/2dW(t). It thus
holds:

ε−1vε t( )dt � −ω2
0x

ε t( ) dt +
�������
2 βm( )−1√

dW t( ) +O ε( ), (39)
and hence,

dxε t( ) � −ω2
0x

ε t( ) dt +
�������
2 βm( )−1√

dW t( ) +O ε( ). (40)

As ϵ → 0, Eq. 40 leads to the Smoluchowski equation for the
Brownian oscillator, which, after turning back to the original
variables, attains the well-known structure:

dx t( ) � −ω
2
0

γ
x t( )dt + ���

2D
√

dW t( ). (41)

Let us now turn to illustrate our reduction scheme, based on
the Dynamic Invariance principle. We aim at setting up a reduced
description which formally resembles the structure of Eq. 41, and
is based on the linear SDE:

dx t( ) � −αx t( )dt + ����
2Dr

√
dW t( ), (42)

where α and Dr denote the drift and diffusion coefficients of the
reduced dynamics, respectively. These coefficients will properly
recover the two corresponding expressions ω2

0/γ andD attained in
the overdamped limit, cf. Eq. 41. We remark that unlike the
inverse friction expansion method, see e.g., [8], which typically
starts from the Kramers equation associated to Eq. 34 and yields
Eq. 41 as the leading-order term of an expansion in powers of ε =
γ−1, our scheme applies to the deterministic component of the
Brownian dynamics. The drift coefficient α will be obtained from
the solution of an invariance equation, which is derived either
from an exact summation of the Chapman-Enskog expansion or,
equivalently, by the application of the Dynamic Invariance
principle. The coefficient Dr is then found by exploiting the
Fluctuation-Dissipation theorem. In the sequel we shall address,
separately, the two distinct steps of the reduction procedure.

3.2.1 Exact Summation of the Chapman-Enskog
Expansion
The Chapman-Enskog scheme, introduced in Section 2.1, can be
adapted to the reduction of the Brownian oscillator model as
follows. The procedure starts from averaging Eq. 34 over noise,

〈 _x t( )〉 � −M 〈x t( )〉. (43)
One regards 〈x(t)〉 as the variable characterizing the reduced

description, and assumes that the evolution of the fast variable
〈v(t)〉, after the initial layer, reaches a neighborhood of the slow
manifold parameterized by 〈x(t)〉. Next, the variable 〈v(t)〉 is
expanded in powers of ε = γ−1, viz.

〈v t( )〉 �∑∞
j�0

εjv j( ) t( ). (44)

The coefficients v(j)(t) are found from the recurrence
procedure

v j+1( ) � −∑j
k�0

D k( )
CEv

j−k( ), j≥ 1, (45)

where the Chapman-Enskog operators D(k)
CE act on the

coefficients v(j) as follows:

D k( )
CEv

j( ) ≔ zv j( )
z〈x〉v

k( ). (46)
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The recurrence Eq. 45 starts with v(0) = 0 and v(1) � −ω2
0〈x〉.

A direct computation shows that the coefficients v(j) have the
following structure to an arbitrary order j ≥ 0:

v j( ) t( ) � −�αj〈x t( )〉, (47)
with �α2j+1〉0 and �α2j � 0. Upon inserting the relation (Eq. 47)
into the recurrence Eq. 45, the Chapman-Enskog method results
in the nonlinear recurrence procedure for the coefficients �αj:

�αj+1 �∑j
k�0

�αk�αj−k, j≥ 1, (48)

with the initial conditions �α0 � 0 and �α1 � ω2
0. We observe that

the term

α1 � ω2
0

γ
, (49)

recovers the drift coefficient in the Smoluchowski Eq. 41. The
corresponding closure

〈v t( )〉 � −α1〈x t( )〉 (50)
does not allow to accurately reconstruct the behavior of the
trajectories of the dynamics (Eq. 43) in presence of moderate
damping effects, as visible in the left and central panels of
Figure 1.

We now aim at showing that the series

α �∑∞
j�0

�αjε
j �∑∞

j�0
αj (51)

can be summed up in closed form: this procedure will single out
an algebraic invariant manifold for the linear ODE system (Eq.
43). We start by multiplying both sides of (Eq. 48) by εj+1 and
then sum in j from 1 to ∞. We obtain:

ε−1 ∑∞
j�0

�αjε
j − �α0 − �α1ε⎡⎢⎢⎣ ⎤⎥⎥⎦ �∑∞

j�0
εj ∑j

k�0
�αk�αj−k⎛⎝ ⎞⎠ − �α2

0, (52)

which, using (Eq. 51), yields the invariance equation:

α2 − γα + ω2
0 � 0. (53)

Note that Eq. 53 is readily established from Eq. 18 by setting
χ � α/(mω2

0) and M � βmω2
0〈x〉. The roots of the quadratic Eq.

53 coincide with the two real-valued eigenvalues λ± of the drift
matrixM. Note that the eigenvalue λ+ diverges in the limit ε→ 0.
Hence, since we look for bounded solutions to the invariance
equation, we set

α � λ−. (54)
We remark that the parameter α, in Eq. 54, corresponds to the

exact summation of the Chapman-Enskog series (Eq. 51), and it
thus yields the desired correction of the drift term (Eq. 49) of the
Smoluchowski equation up to an arbitrary order of ε.

The same Eq. 53 can also be derived, in a non-perturbative
fashion, via the principle of Dynamic Invariance. To this aim, we
express the variable 〈v(t)〉 in terms of 〈x(t)〉 via the closure
Φ: R → R, which is endowed with the linear structure:

〈v t( )〉 � Φ 〈x t( )〉[ ] � −α〈x t( )〉, (55)
where the parameter α 〉 0 depends on γ and ω0. The relation (Eq.
55) highlights a key aspect of the invariant manifold method: the
variable 〈v(t)〉 depends on time only through the time
dependence of the variable 〈x(t)〉. Next, upon inserting the
closure (Eq. 55) in the ODE system (Eq. 43), one obtains the
so-called “microscopic” time derivative of 〈v(t)〉:

z micro( )
t 〈v t( )〉≔〈 _v t( )〉 � −ω2

0〈x t( )〉 + γα〈x t( )〉. (56)
We then define a projection operator Px, such that

Px〈 _v(t)〉|〈v(t)〉�Φ[〈x(t)〉] yields the evolution of the fast variable
along the slow manifold parametrized by 〈x(t)〉. The action ofPx

on 〈 _v(t)〉 is expressed, in this case, via the chain rule:

Px〈 _v t( )〉|〈v t( )〉�Φ 〈x t( )〉[ ] � D〈x t( )〉Φ 〈x t( )〉[ ]〈 _x t( )〉. (57)
In the sequel, to ease the notation, we shall denote the

projected dynamics of 〈v(t) by Px〈 _v(t)〉, where the closure
(Eq. 55) is implicitly assumed. The “macroscopic” time
derivative of 〈v(t)〉 is thus defined with the aid of the
projection operator Px as follows:

z macro( )
t 〈v t( )〉 ≔ Px〈 _v t( )〉 � α2〈x t( )〉. (58)

FIGURE 1 |Behavior of the solutions of the ODE system (Eq. 43), for different initial data, with ω0 = 1 and with γs = 0.04 (A), γs = 1.5 (B) and γs = 4 (C). The tiny solid
lines correspond to individual trajectories, the thick solid lines denote the eigenvector uM and the dashed lines represent the solution obtained with the closure given in
Eq. 50.
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The Dynamic Invariance principle, recall Eq. 8, states that
the two “microscopic” and “macroscopic” time derivatives Eqs
56, 58 coincide, and the equality should hold independently of
the value of the variable 〈x(t)〉: this leads again to the invariance
Eq. 53. It is worth pointing out that by reintroducing the
expansion (Eq. 51) in Eq. 53, one may reconstruct
“backward” the recurrence relation (Eq. 48) with the
corresponding initial conditions. This observation clarifies
that the invariance Eq. 53 stands as the central result of the
invariant manifold method, whereas the Chapman-Enskog
expansion can be interpreted an iterative procedure for
solving the invariance equation via a power series
representation. Relying on approximate solutions is, in fact,
the only feasible approach when the invariance equation can not
be solved analytically. Alternative iterative methods (based e.g.,
on the Newton’s method), which may help circumvent some
well-known instabilities appearing in low-order truncations of
the Chapman-Enskog expansion, were considered in the
framework of kinetic theory of gases [16, 17].

We conclude this Section by remarking that the invariant
manifold method neglects, by construction, the fast relaxation
dynamics in the initial layer, ruled by the eigenvalue λ+, whereas it
accurately captures the evolution along the slow manifold,
encoded by the eigenvalue λ−. A meaningful application of the
method thus requires that the parameter γs be large enough to
guarantee the existence of an appropriate separation of time
scales [49]. This, in turn, allows to retain the Markovian
approximation also in the contracted description, as
commonly done in the context of the Mori-Zwanzig
projection operator approach [46].

3.2.2 The Fluctuation-Dissipation Theorem
Let us characterize, then, the fluctuations in Eq. 42, by properly
embedding the diffusion coefficient Dr in the framework of the
Fluctuation-Dissipation theorem. By integrating Eq. 42 with a
deterministic initial datum x(0) = x, one obtains:

x t( ) � e−αtx + ∫t

0
e−α t−s( )dW s( ). (59)

The two-time correlation function of the position variable can
be then calculated explicitly. It reads:

〈x s( )x t( )〉 � e−α t+s( )x2 + 2Dr ∫min s,t( )

0
e−α t+s−2τ( )dτ

� x2 − Dr

α
( )e−α t+s( ) + Dr

α
e−α|t−s|.

(60)

We set s = t and require that the stationary value of 〈x(t)2〉
fulfills the Equipartition Theorem, namely:

lim
t→∞

〈x t( )2〉 � βmω2
0( )−1. (61)

As a direct consequence, we obtain a relation establishing a
connection between the exact drift coefficient α and the reduced
diffusion coefficient Dr:

α � βmω2
0Dr. (62)

Eq. 62 is an instance of the Fluctuation-Dissipation theorem of
the II kind [50] for the reduced dynamics (Eq. 42). In fact, since
for the harmonically bound particle the mobility takes the form
χ � α/(mω2

0), Eq. 62 establishes the Einstein relation χ � βDr

connecting the mobility to the diffusion coefficient of the reduced
dynamics.

We also note that using Eqs 49, 62, it is possible to relateDr to
the diffusion coefficient D of the original dynamics:

Dr � α1( )−1αD, (63)
which offers a multi-level characterization of the fluctuations in
the Brownian oscillator model. One may expand Dr in a power
series in ε, viz.:

Dr �∑∞
j�0

�Djε
j−1 �∑∞

j�0
Dj. (64)

Upon inserting (Eqs. 51, 64) into (Eq. 63), one obtains a
hierarchy of equations relating, for each j ≥ 0, the coefficients �Dj

to the coefficients �αj in (Eq. 51):

�Dj � �α1( )−1�αjD, j≥ 0. (65)
Thus, the leading-order term in Eq. 65 corresponds to

D1 � D, (66)
which recovers the diffusion coefficient in the
Smoluchowski Eq.41.

3.3 Quantitative Control of the Reduction
Error
We provide, here, some quantitative estimate of the error
introduced by the application of the reduction method to the
Brownian oscillator model. There are two relevant sources of
error coming with the proposed scheme. The first source, which is
somehow intrinsic in the procedure, traces back to the moment
parameterization introduced in Section 2.1 and is connected to
the existence of an invariant manifold parameterized by the
values of the slow variable. A proper choice of the initial data
allows one to control such first contribution. A second source,
instead, is related to the defect of invariance, and keeps track of
the approximation introduced in solving the invariance equation.
To see this, we denote by 〈y(t)〉 = (〈y(t)〉, 〈w(t)〉) the solutions of
the ODE system (Eq. 43) supplied with the closure (Eq. 55), viz.:

〈w t( )〉 � −α〈y t( )〉, (67)
with deterministic initial datum y(0) = y. Our purpose here is to
compare in a quantitative way 〈y(t)〉 with 〈x(t)〉, the latter being
the solution of the same ODE system when no closure is invoked.
We shall finally give a pointwise in time a priori representation of
the reduction error.

To be specific, we introduce the error terms e1(t)≔〈x(t)〉 −
〈y(t)〉, e2(t) ≔〈v(t)〉 − 〈w(t)〉, and e3(t) ≔ 〈 _v(t)〉 − 〈 _w(t)〉, as
well as the defect of invariance:

Δy ≔ 1 − Py( )〈 _w t( )〉, (68)
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which, by virtue of the closure (Eq. 67), takes the form:

Δy � − ω2
0 − αγ + α2( )〈y t( )〉. (69)

Since Eq. 67 gives 〈 _w(t)〉 � α2〈y(t)〉, using Eq. 69, we
arrive at:

e3 t( ) � −ω2
0〈x t( )〉 − γ〈v t( )〉 − α2〈y t( )〉

� −ω2
0 〈x t( )〉 − 〈y t( )〉( ) − γ 〈v t( )〉 − 〈w t( )〉( ) + Δy,

(70)
which can thus be rewritten as:

e3 t( ) � −ω2
0e1 t( ) − γe2 t( ) + Δy. (71)

Then, noticing that e3(t) � _e2(t) � €e1(t), we may rewrite Eq.
71 as:

€e1 t( ) + γ _e1 t( ) + ω2
0e1 t( ) � Δy, (72)

in which Δy stands as the source term in the second-order linear
ODE describing the dynamics of e1(t).

A double integration over time of Eq. 72 yields:

e1 t( ) � e1 0( ) + e2 0( )t − ∫t

0
ds∫s

0
dτ ω2

0e1 τ( ) + γe2 τ( )( ) + ∫t

0
ds

× ∫s
0

dτΔy,

(73)
which can be cast in the form:

e1 t( ) + ω2
0 ∫t

0
ds∫s

0
dτ e1 τ( )[ ] + γ∫t

0
ds∫s

0
dτ e2 τ( )[ ] � R t( ),

(74)
where the residual

R t( ) ≔ e1 0( ) + e2 0( )t + ∫t

0
ds∫s

0
dτΔy (75)

quantifies the quality of the reduction method. Note that the
definition of the residual in Eq. 75 includes the defect of

invariance Δy expressed by Eq. 69. If Δy vanishes, then
controlling the error of the reduction method amounts to
guessing the initial value y such that the first two terms on the
r.h.s. of (Eq. 75) are small. The behavior of e1(t) for different
values of γs and for different choices of the closure (Eq. 67) is
displayed in Figure 2. In each panel, solid, dotted and dashed
lines correspond to the solution of the invariance equation Δy = 0
(see Eq. 54), the first-order term of Chapman-Enskog expansion
(cf. Eq. 49) and the third-order approximation of the same
expansion, respectively.

3.4 Response and Correlation Functions
We now turn to the study of correlation functions, which
constitute a useful test-bed to assess the range of applicability
of the proposed reduced description of the Brownian
oscillator model. Following the basic tenets of linear
response theory, correlation functions are connected to the
response of the system to an external stimulus; we refer the
reader to Ref. [51] for an exhaustive review on this subject
and also to the concise theoretical guidelines provided in
Supplementary Appendix S2. An extension of linear
response theory to chaotic non-Hamiltonian systems has
also been discussed in [52]. We assume that the system
described by Eq. 42 is initially in equilibrium with a heat
bath at inverse temperature β. The stationary distribution of
the reduced dynamics (Eq. 42) takes the form:

ρ0 x( ) �
�����
βmω2

0

2π

√
exp −1

2
βmω2

0x
2{ }. (76)

We then probe the dynamics (Eq. 42) by adding on the right
hand side, at time t = 0, a small, purely time-dependent,
perturbation F(t).

The perturbation induces the following structure of the
Fokker-Planck equation:

FIGURE 2 | Solutions of the ODE (Eq. 72), with x = 2, v = −1, y = 1 and with different choices of the closure (Eq. 67). Shown are the reduction errors corresponding
to the first-order term of the Chapman-Enskog expansion (dotted curve), the corresponding third-order approximation of the same expansion (dashed curve) and the
solution of the invariance equation (solid curve). The values of ω0 and γs in the various panels correspond to those considered in Figure 1.
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zρ x, t( )
zt

� L* + Lext*( )ρ x, t( )
ρ x, 0( ) � ρ0 x( ),

(77)

where the operator L* and Lext* acts on probability densities as
follows:

L*ρ x, t( ) � α
z

zx
x +Dr

z2

zx2
( )ρ x, t( ) (78)

Lext* ρ x, t( ) � −F t( ) z

zx
ρ x, t( ). (79)

To write the response formula, we introduce the observable

B x( ) � −ρ0 x( )−1zxρ0 x( ),
which takes here the form:

B x( ) � βmω2
0x. (80)

We then look at the response of the observable A(x) = x. To
this aim, we shall denote by 〈. . .〉0 the complete average taken
with initial density ρ0. According to the basic guidelines of linear
response theory, the response function Rx,x(t), for t 〉 0, attains the
structure:

Rx,x t( ) � ∫A x t( )( )B x( )ρ0 x( )dx
� C 0( )−1C t( ),

(81)

where C(t) = 〈x(t)x〉0 is the autocorrelation function of the
position variable, and

C 0( ) � 〈x2〉0 � Dr

α
� βmω2

0( )−1. (82)

We also note in passing that the drift coefficient α is connected
to the autocorrelation time τc, defined as:

τc � C 0( )−1 ∫∞
0

C t( ) dt � α−1. (83)

Starting from (Eq. 42), C(t) is found to obey for any t 〉 0 the
equation:

d

dt
C t( ) + αC t( ) � 0, (84)

with the initial condition fixed by Eq. 82.
The connection between correlation and response functions

can be further unveiled as follows. By the Wiener-Khinchin
Theorem [8], the spectral density S(ω) of a stationary random
process x(t) is equal to the Fourier transform of its
autocorrelation function, i.e.:

S ω( ) � 1
2π
∫+∞

−∞
e−iωtC t( )dt. (85)

The dynamics described by Eq. 42, admits a dynamical
mobility [50] (or generalized susceptibility) μ(ω) of the form:

μ ω( ) � 1
α + iω

. (86)

By multiplying both sides of Eq. 84 by the factor e−iωt, and by
integrating over time from 0 to +∞, an integration by parts gives:

α + iω( )∫∞

0
e−iωtC t( )dt − C 0( ) � 0, (87)

which, using Eq. 86, leads to the following remarkable expression
of the mobility:

μ ω( ) � C 0( )−1 ∫+∞

0
e−iωtC t( )dt. (88)

Owing to the fact that C(t) = C( − t) is a real, symmetric
function of time, we use the relation (Eq. 88) to reshape Eq. 85 in
the form:

S ω( ) � C 0( )
π

R μ ω( )[ ], (89)

whereR[μ(ω)] denotes the real part of the mobility μ(ω). The
relation (Eq. 89) is a classical version of the Fluctuation-
Dissipation theorem of the I kind [50], as it connects the
response to an external stimulus, represented by the
dynamical mobility, to the fluctuations spontaneously
produced in the system described by Eq. 42, encoded by
the spectral density. By now putting the explicit
expressions (Eqs 82, 86) in Eq. 89, we recover the standard
Lorentzian form of the spectral density of the reduced
dynamics (Eq. 42):

S ω( ) � 1
π

Dr

ω2 + α2
. (90)

One may analogously repeat the foregoing derivation for the
original dynamics of the Brownian oscillator, described by Eq. 34,
which constitutes an exactly solvable example [8, 48]. The
invariant density for the unperturbed dynamics has the
explicit representation:

ρ0 x, v( ) � mω0β

2π
exp −mβ

2
v2 + ω2

0x
2( ){ }. (91)

We probe Eq. 34 by adding a time-dependent term F(t) in the
dynamics of the position variable and check the response in the
variable x itself, as above. The perturbed operator Lext in the
Fokker-Planck equation reads:

Lextρ x, v, t( ) � −F t( ) z

zx
ρ x, v, t( ), (92)

and it holds:

A x( ) � x, B x( ) � βmω2
0x. (93)

Using the explicit expression of the element Gxx of the
Green’s matrix, see Supplementary Appendix S1, we end up
with the following response formula for the original
dynamics:

Rx,x t( ) � λ+e−λ−t − λ−e−λ+t

γs
, (94)
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which inherits the contributions of both the “fast” and the “slow”
time scales of the system, encoded by the eigenvalues λ± of the
matrixM in Eq. 35. For any finite time t 〉 0, it makes thus sense to
compare the response formulae computed with both the reduced
and the original dynamics, Eqs 81, 94, respectively. Thus, from
Eqs 81, 84 one finds the following structure for the response
function of the reduced dynamics:

Rx,x t( ) � e−αt, t> 0. (95)
Recalling (Eq. 54), one thus finds:

Rx,x t( ) − Rx,x t( )∣∣∣∣ ∣∣∣∣≤ λ−
γs
. (96)

Using the explicit dependence of λ− and γs on γ, one finds that
λ−/γs → 0 as γ → +∞, which implies the uniform-in-time
convergence of Rx,x(t) to Rx,x(t).

We emphasize that the upper bound (Eq. 96) guarantees
that the response function of the reduced dynamics converges
to the response function of the original dynamics in the high
friction limit, namely when the time scale separation,
controlled by γs, grows. In this context, it is instructive to
observe in Figure 1 the first plot in comparison with the
third plot.

4 CONCLUSIONS

In this work we considered a classical problem of statistical
mechanics, concerning the extraction of a reduced
description for Brownian dynamics in a confining
potential. Adiabatic elimination techniques were already
introduced in the 1970s to derive the Smoluchowski
equation from the Kramers equation in the high friction
limit. Application of the Chapman-Enskog scheme to the
Fokker-Planck equation paved the way to a systematic
derivation of the Smoluchowski formula and its higher
order corrections via an expansion in power of the inverse
friction coefficient. The same procedure is traditionally
exploited, in kinetic theory of gases, to obtain the Euler
and the Navier-Stokes equations from the Boltzmann
equation. Nevertheless, the method is also known to suffer
from the onset of short wavelength instabilities, which violate
the H-theorem. As evidenced by the study of different kinetic
models, the failure of the Chapman-Enskog expansion does
not lie in the scheme itself, but in its truncation to lower order
levels. The invariant manifold method is a non-perturbative
reduction technique leading to hydrodynamic equations that
are, instead, stable at all wavelengths. The method stipulates a
condition of dynamic invariance which, for the class of
kinetic models known as linearized Grad’s moment
systems, was shown to yield the same result as the exact
summation of the Chapman-Enskog expansion. The aim of
the present work is, hence, to outline the use of the invariant
manifold set-up to the reduction of a class of Brownian
dynamics.

The main results can be summarized as follows:

(1) By exploiting the Dynamic Invariance principle, we derived
an equation of invariance whose solutions generalize the
structure of the mobility coefficient beyond the overdamped
limit, thus making the reduced description prone to real
world applications. While analytical solutions to the
invariance equation are available in the presence of power
law potentials, in the simplest case of the Brownian oscillator
model we also succeed to sum up exactly the Chapman-
Enskog expansion.

(2) We obtained a quantitative estimate of the error encoded in
the reduction procedure, which can be controlled through a
suitable choice of the initial data and by minimizing the
defect of invariance.

(3) We used linear response theory to shed light on the response
functions due to the original and the reduced dynamics. We
proved the convergence of the two response functions in the
high friction limit.

We believe that the procedure outlined in this work can
provide useful insights on a wider class of Brownian
dynamics. Even when exact solutions of the invariance
equation are not available, the combined use of an iterative
scheme of solution of the equation and the Fluctuation-
Dissipation relation may help unravel meaningful reduced
descriptions.
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