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A time-averaged error indicator with POD-hGreedy is developed to drive

parametric model order reduction (pMOR) for 2D unsteady natural

convection in a high-aspect ratio slot parameterized with the Prandtl

number, Rayleigh number, and slot angle with respect to the gravity. The

error indicator is extended to accommodate the energy equation and Leray

regularization. Despite being two-dimensional and laminar, the target flow

regime presents several challenges: 1) there is a bifurcation in the angle

parameter space; 2) the solution can be multivalued, even at steady state;

and 3) the solution exhibits spatio-temporal chaos at several points in the

parameter space. The authors explore several reduced-order models (ROMs)

and demonstrate that Leray-regularized Galerkin ROMs provide a robust

solution approach for this class of flows. They further demonstrate that

error-indicated pMOR can efficiently predict several QOIs, such as mean

flow, mean Nusselt number and mean turbulent kinetic energy, even in the

presence of a bifurcation. Finally, they show that spatio-temporal chaos can

lead to lack of reproducibility in both the full-order model and the reduced-

order model and that the variance in the full-order model provides a lower

bound on the pMOR error in these cases.
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1 Introduction

Fluid-thermal analysis via direct numerical (DNS), large-eddy (LES), and even

unsteady Reynolds-averaged Navier-Stokes (uRANS) have became tractable in

geometries of ever increasing complexity due to advances in high-performance

computing and modern algorithms over the past several decades. Despite these

advances, when it comes to routine analysis and design of thermal hydraulic systems,

which requires running hundreds of cases, the cost remains prohibitive. To overcome this
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issue, a rapid turn-around tool for engineering query is required;

parametric model order reduction (pMOR) is one of the

promising approaches.

The main idea of pMOR is to reduce the computational

burden by employing reduced-order models (ROMs) built on

data from full-order models (FOMs) such as DNS, LES, or

RANS-based simulations. A fundamental requirement in this

case is to determine how well these approaches can reproduce the

flow dynamics with same input parameters as the originating

FOM, which is known as the reproduction problem. For turbulent

flows, FOM can require N � 107 − 1011 degrees-of-freedom,

while ROMs could potentially represent the flow dynamics

which govern the behavior of quantities of interest (QOIs)

with only N ≈ 101–102 basis functions. Most often, the basis is

obtained from a proper orthogonal decomposition (POD) of the

FOM flow snapshots (i.e., the velocity and temperature fields).

The basis is then used in conjunction with the governing partial

differential equation to form a low-dimensional dynamical

system that, ideally, captures the principal features of the

underlying flows [1–8].

As noted in [9], a successful pMOR for unsteady flows must

be able to address 1) the reproduction problem and 2) the

parametric problem. In the reproduction problem, the ROM

and FOM are evaluated at the same pj* ∈ Panchor and the

ability of the ROM to recover the QOIs at pj* is examined. In

the parametric problem, ROMs are built from a small number of

FOMs that are generated over a set of anchor points in the

parameter space, Panchor � {p1*, . . . , pm* }, and the ability of

ROMs to predict the QOIs at p ∉ Panchor is examined. An

error indicator to assess the ROM’s fidelity at any given

p ∈ Ptrain is usually required to efficiently construct Panchor.

Error-indicated pMOR has the potential to be an important

engineering analysis tool [10, 11].

In this work we explore the pMOR process for a surprisingly

challenging 2D natural convection problem that serves as a

surrogate for more difficult 3D buoyancy-driven flows

encountered in a variety of mechanical and nuclear

engineering applications. The geometry is the tilted slot

configuration of Figure 1 and the governing equations are

the unsteady Boussinesq equations. The problem is

characterized by four parameters, the Rayleigh number, Ra,

the Prandtl number, Pr, the slot angle with respect to gravity, θg,

and the aspect-ratio, Γ. However, for small aspect ratios, Γ ≤ 8,

we find the flow is rather simple. Hence in this work, we focus

on the more challenging case of Γ = 40 with (Pr, Ra, θg) as the

parameter space.

FIGURE 1
(A) Problem configuration. (B) FOMmean (or steady) temperature for 19 uniformly-spaced θg ∈ [0°, 180°] at Ra = 104 and Pr = 7.2. (C) FOMmean
temperature for 6 uniformly-spaced Ra ∈ [2 × 105, 7 × 105] at θg = 90° and Pr = 7.2.
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Figure 1A illustrates the problem configuration. The aspect

ratio is defined as Γ = L/H, where H is the width of the slot and L

is the height of the slot. We takeH = 1 and L = 40 throughout the

study. With θg = 0° the flow corresponds to standard Rayleigh-

Bénard convection, 90° corresponds to vertical slot convection,

and θg = 180° leads to a pure conduction solution with the cold

side on the bottom of the horizontal slot. The Rayleigh and

Prandtl numbers are

Ra � ρβΔTH3g

]α
, Pr � ]

α
, (1)

where ρ is the fluid density, β is the thermal expansion

coefficient, ΔT = 2 is the wall-to-wall temperature difference, H

is the gap width, g is the gravitational acceleration, ] is the

kinematic viscosity, and α is the thermal diffusivity. Figure 1B

illustrates representative mean (or steady) temperature fields

for 19 uniformly-spaced θg ∈ [0°, 180°] at Ra = 104 and Pr = 7.2.

Figure 1C shows the mean temperature field for 6 uniformly-

spaced Ra ∈ [2 × 105, 7 × 105] at θg = 90° and Pr = 7.2. The

configuration has many interesting applications. For example, it

represents energy-efficient double-glazed windows, in which

the sealed air gap between the two panes acts as an added layer

of insulation. Finding the optimum angle θg that enhances the

heat transfer is an important question. Convection in a tilted

fluid layer is also of meteorological and oceanographic interest.

More information on the impact of θg and Γ on heat transport

and flow organization for this configuration can be found

in [12].

There has been significant work on pMOR development for

the steady Boussinesq equations, including rigorous error

estimation [10, 11, 13–15]. For pMOR, the steady problem is

easier than the unsteady problem for several reasons: 1) rigorous

error estimates are usually achievable, 2) there is often a well

defined attractor, and 3) no temporal instability needs to be

considered. Once the problem becomes unsteady many open

research issues remain. To our knowledge, there are few pMOR

works addressing the unsteady parameterized Boussinesq

equations. In [16], the authors develop rigorous a posteriori

error bounds applied to a 2D Rayleigh-Bénard problem

parameterized with Gr and θg. However, due to exponential

instability in time, the rigor is not for very high Gr and large final

times. In [17], the authors overcame the high Gr issue by

considering a space-time formulation which enabled effective

long-time certification of a reduced basis approximation of

noncoercive PDEs. However, the approach is limited due to

large offline computational effort since only one snapshot is

generated from one FOM solve due to the formulation. For

example, to cover the parameter space, 125 FOMs are solved

during the offline in their case.

Fick et al. [9] developed a POD-hGreedy pMOR to study

challenging incompressible flow using a time-averaged error

indicator. The authors showed that the error indicator is

highly-correlated with the error in mean flow prediction and

can be efficiently computed through an offline/online strategy.

We view the methodology as having high potential for routine

analysis and design of turbulent flows that are characteristic of

thermal hydraulic systems. Hence, we explore that approach here

by extending the time-averaged error indicator to accommodate

the energy equation. In previous work [18] on ROM stabilization

and turbulent thermal transport problems, we investigated the

performance of pMOR with constrained stabilization [9], and

Leray regularization [19]. Here, we extend the error indicator to

support Leray regularization. For each approach, we assess the

performance through the mean flow and QOIs including, mean

Nusselt number (Nu), standard deviation in Nu, mean

temperature fluctuation and mean turbulent kinetic energy

(TKE)1.

Even though our 2D model problem generates only

laminar flows, pMOR is quite challenging in this

application for several reasons: 1) there is bifurcation in θg
parameter space; 2) the solution can be multivalued, even at

steady state; and 3) the solution exhibits spatio-temporal

chaos at several points in the parameter space. As our

initial efforts happened to be focused in one of the spatio-

temporal chaos regimes, we decided to map out a larger space

to identify where pMOR could succeed, where it would have

difficulty, and where it a priori could not succeed. Table 1

reflects a broad range of flow regimes identified inside the

high-aspect ratio slot from hundreds of FOM simulations

conducted at multiple Ra, θg with Pr = 0.07, 0.71, 7.2. We

categorize the flow into six types: 1) motionless, 2) steady, 3)

periodic, 4) quasi-periodic, 5) chaotic and 6) spatio-temporal

chaotic. We identify the flow regimes by examining the

(mean) solution field and the energy and Nu histories.

Such analysis can readily distinguish the motionless, steady

and periodic flow cases. Even though the energy and Nu

analysis seem to be a reliable way to distinguish the quasi-

periodic and chaotic flow, it is only a heuristic—a more

rigorous analysis is through computing the power

spectrum of Nu or energy [20]. Tools such as Lyapunov

exponent and fractal dimension are probably the most

widely used diagnostic for chaotic systems [21, 22]. The

first five types of low have consistent mean flow in

differing time windows, each averaged over 500 convective

time units (CTUs). We define a flow to be spatio-temporal

chaotic [23] if its mean solution is not consistent in at least

three different time windows. This type of flow has strong

irregularities in both space and time and has been observed in

Rayleigh Bénard convection and in other complex dynamical

systems [24]. To characterize spatio-temporal chaos, one

1 Technically, since these flows are not turbulent the TKE should be
referred to as velocity variance. Because the is more widely used and
the mathematical formulation is the same in either case, we prefer to
use the more widely recognized appellation, TKE.
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could also consider Lyapunov exponents at each grid point. A

detail analysis of spatio-temporal chaos is beyond the scope

of this paper. A comprehensive review on this topic can be

found in [25].

In the present work, we start with solution reproduction

problem, which represents the first step towards the

development of a ROM for the parametric problem. We

study the reproduction capability of the FOM, ROM and

ROM with stabilization for the six types of flow reported in

Table 1. We report only the cases of chaotic and spatio-

temporal chaotic flow. Notice that it has been reported that

ROM can often capture the first five types of flow accurately,

in some cases, with the need of stabilization methods.

However, for the spatio-temporal chaotic flow, to our

knowledge, it has not been studied. We believe this is the

first work investigate ROM’s reproducibility of spatio-

temporal chaotic flow.

The pMOR development is broken into several

parametric problems. We start with a problem at Ra = 103

and Pr = 7.2 in which the solution is steady for all θg but

nonetheless exhibits a bifurcation at θg = 20°2. We find either

h- or p-Greedy with the error indicator based on the dual

norm of the residual is able to drive pMOR successfully3. We

next consider two sets of parametric problems: 1) problem

parameterized with θg at higher Ra. 2) Problem

parameterized with Ra. In the first set, similar to the

steady case, a bifurcation is observed and the solution

space is a blend of steady and unsteady solutions. In the

second set, no bifurcation is observed and the solutions are all

unsteady.

By proceeding in this manner, we are able to isolate

several difficulties and eventually come up with an

important observation for the pMOR: Accurate prediction

(< 10%) with pMOR is achievable if the solution in the

parametric space is either only chaotic or the spatio-

temporal chaos is not significant, regardless a bifurcation

exists or not. Once the spatio-temporal chaos becomes

significant, the performance of the pMOR deteriorates and

the maximum errors of the mean flow and QOIs are

dominated by the flow chaos.

The paper is organized as follows. In Section 2, we

introduce the model problem and governing equations. In

Section 2.1, we introduce the Galerkin formulation for the

FOM. The ROM, as well as Leray regularization is introduced

in 2.2. In Section 3, we consider the solution reproduction

problem and assess the numerical performance. The

parametric problem is discussed starting from Section 4.

We first introduce POD-hGreedy algorithms in Section 4.1

with some remarks on applying POD-pGreedy to this model

problem at the end of the section. We then introduce the

time-averaged error indicator with thermal extension in

Section 4.2. A straight-forward integration with Leray

regularization is also shown in the same section. In

Sections 4.3 and 4.4, we present the pMOR results with θg
variation and Ra variation. In Section 5, we discuss the spatio-

temporal chaos and multiple states issues found in this model

problem. Finally, we conclude the paper in Section 6.

TABLE 1 Distribution of six flow types with Ra and θg at Pr = 0.07, 0.71, 7.2.

flow ∖Pr Pr = 0.07 Pr = 0.71 Pr = 7.2

motionless Ra < 1.1 × 103, θg = 0° Ra < 8.75 × 102, θg = 0° Ra < 9 × 102, θg = 0°

steady Ra = 103, θg = 90° Ra = 103, θg ∈ [0°, 180°] Ra = 103, θg ∈ [0°, 180°]
Ra = 104, θg ∈ [0°, 40°] ∪ [170°, 180°] Ra = 104, θg ∈ [0°, 30°] ∪ [70°, 80°] ∪ [120°, 180°] Ra = 104, θg ∈ [0°, 180°]\{30°}

Ra = 1.5 × 104, θg = 90° Ra ∈ [2 × 104, 105], θg = 90°

Ra = 8 × 104, θg ∈ [80°, 180°]
Ra = 3 × 105, θg ∈ [130°, 180°]

periodic Ra ∈ [5 × 103, 7 × 103], θg = 90° Ra = 104, 1.75 × 104, θg = 90° N∖A

quasi-periodic Ra = 104, θg ∈ [50°, 110°] Ra ∈ [1.8 × 104, 2 × 104], θg = 90° N∖A
Ra = 8 × 103, 9 × 103, 2 × 104, θg = 90°

chaotic Ra = 104, θg ∈ [120°, 160°] N∖A Ra = 8 × 104, θg ∈ [40°, 70°]
Ra ∈ [6 × 104, 1.5 × 105], θg = 90° Ra = 3 × 105, θg ∈ [50°, 120°]

Ra ∈ [2 × 105, 8 × 105], θg = 90°

spatio-temporal chaotic Ra ∈ [3 × 104, 5 × 104], θg = 90° Ra = 104, θg ∈ [40°, 60°] ∪ [100°, 110°] Ra = 104, θg = 30°

Ra = 1.25 × 104, θg = 90° Ra = 8 × 104, θg ∈ [0°, 30°]
Ra ∈ [2.05 × 104, 3 × 105], θg = 90° Ra = 3 × 105, θg ∈ [0°, 40°]

Ra ∈ [2 × 105, 8 × 105], θg = 0°, 10°

2 The ROM coefficients in the steady problems are typically found
through a Newton minimization over the POD approximation space
[10, 11].

3 The pMOR greedy strategy uses the maximal indicated error among
the parametric training set to select the next anchor point. p-Greedy
combines basis functions from FOMs at different anchor points to form
an enriched approximation space; h-greedy builds an independent
ROM for each anchor point Ngoc Cuong et al. [10].
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2 A parametrized natural convection
problem

We start with the Boussinesq equations for buoyancy-driven

flow [26],

zu
zt

+ u · ∇( )u + ∇p � ]∇2u + Tg θg( ), ∇ · u � 0, (2)
zT

zt
+ u · ∇( )T � α∇2T, (3)

where u is the velocity, p is the pressure, T is the

temperature and g(θg) is the unit vector represents the

direction of the buoyancy force and it is defined by

g(θg) � cos(θg )̂ı + sin(θg )̂J, with θg the angle of the slot

with respect to the gravity. The velocity boundary

conditions are no-slip (u = 0). The temperature boundary

conditions are no-flux (insulated) on the top and bottom,

heated (T = 1) on the left wall, and cooled (T = −1) on the right

wall. The initial conditions are u = 0 and T = 0.

In our non-dimensional setting, we set ] = (Pr/Ra)1/2 and α =

(Pr Ra)−1/2. The Rayleigh number, Ra = ρβgH3ΔT/(]α), represents
the ratio of buoyancy force to thermal and momentum diffusive

force The Prandtl number Pr = ]/α, reflects the relative

importance of momentum diffusivity compared to thermal

diffusivity. With this nondimensionalization the characteristic

velocity is Uc �
�������
βgHΔT

√
, the characteristic length is the slot

width H, and the reference time is tr = H/Uc. The temperature is

made dimensionless by subtracting the temperature on the right

wall and scaling with ΔT = 2. We note that Uc is sometimes

referred to as the “free-fall” velocity, indicating that one might

expect ‖u‖ ≈ 1, with only a weak dependence on Ra. While that

expectation is realized for θg = 0, we in fact see much larger

velocities (‖u‖ ≈ 40) for θg = 90° because the domain height L =

40H in that case.

For unsteady problems, the QOIs are the mean flow, mean

Nu, standard deviation in Nu, mean TKE and mean temperature

fluctuation. The symbol 〈·〉 is used to indicate a time-averaged

quantity. The mean velocity and temperature field are defined as:

〈u〉 � 1
J − J0

∑J
j�J0+1

u tj( ), 〈T〉 � 1
J − J0

∑J
j�J0+1

T tj( ), (4)

with tj = jΔt and Δt being the time step. The selection of J0 is

based on when the solution reaches it statistically steady state.

The mean quantities are then averaged over 500 CTUs, with the

time scale defined above. The instantaneous Nusselt number is

defined as

Nu t( ) � q′′w
k ΔT( )/H, (5)

with q′′w � −∫
zΩh

k∇T · n̂ dS being the integrated heat flux on

the heated wall, zΩh. The mean Nu and the its standard deviation

are then defined as

〈Nu〉: � 1
J − J0

∑J
j�J0+1

Nu tj( ),
Std(Nu): �

�����������������������
1

J − J0
∑J

j�J0+1
Nu tj( ) − 〈Nu〉( )

√√
. (6)

The mean TKE and mean temperature fluctuation are

defined as

〈TKE〉 � 1
2 J − J0( ) ∑J

j�J0+1
‖u tj( ) − 〈u〉‖2L2 ,

〈Tfluc〉 � 1
J − J0

∑J
j�J0+1

‖T tj( ) − 〈T〉‖2L2 . (7)

For steady problems, the QOIs are simply the steady

solutions to Eqs. 2 and 3 and the corresponding Nu using Eq. 5.

2.1 Galerkin formulation for the full-order
model

The FOM is constructed through the spectral element

method (SEM) and the Pq–Pq−2 velocity-pressure coupling

[27], where the velocity is represented as a tensor-product

Lagrange polynomial of degree q in the reference element

Ω̂ ≔ [−1, 1]2 while the pressure is of degree q − 2. The

solution in Ω = ⋃eΩe consists of local representations of u, p,

and T that are mapped from Ω̂ toΩe for each element, e = 1, . . . ,

E. In the current FOMs for the slot problem we use E = 516

elements (an array of 6 × 86 in the H × L directions), of order q =

9, for a total ofN ≈ 42000 grid points. The FOM simulations are

performed using the open-source code Nek5000 [28].

For any u(x, t), we have a corresponding vector of basis

coefficients u � [u1 . . . uN ]T such that

u x, t( ) � ∑N
j�1

uj t( )ϕj x( ) ∈ XN
0 ⊂ {H}10, (8)

with ϕj(x) the underlying spectral element basis functions

spanning the FOM approximation space, XN
0 . Because the SEM

is nodal-based, each uj(t) represents the two velocity components

at grid point xj in the spectral element mesh at time t. Similarly,

the temperature is given by

T x, t( ) � ∑�N
j�1

Tj t( )ϕj x( ) ∈ XN
0 ⊂ H1

0. (9)

Here,H1 is the set of square-integrable functions onΩwhose

gradient is also square-integrable and XN ⊂ H1 is the finite

dimensional SEM approximation space spanned by {ϕj(x)}. H1
0

is the set of functions in H1 that vanish wherever Dirichlet

conditions associated with Eq. 3 are applied on the domain

boundary zΩ andH1
b is the set of functions inH1 that satisfy the

prescribed Dirichlet conditions for temperature. Bold-face
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indicates that the space is spanned by vector-valued functions

having d components (d = 2 or 3) and, in the case of XN
0 ⊂ {H}10,

that the functions vanish where Dirichlet conditions are applied

for Eq. 2. The pressure p is in YN ⊂ L2(Ω), which is the space of

piecewise continuous functions onΩ such that ∫Ωp2 dx <∞. For

convenience, we denote �ZN � (XN , YN , XN ) as the collection of

the relevant finite-dimensional spaces and will add a subscript

0 or bwhere required to explicitly indicate the imposed boundary

conditions.

Both the FOM and ROM are cast within the same Galerkin

framework. To begin, we introduce several inner products for

elements in the FOM space, �ZN . For any pair of scalar fields

(p, q) ∈ L2(Ω) and d-dimensional vector fields, v(x) = [v1(x) . . .

vd(x)], u(x) = [u1(x) . . . ud(x)] whose components are also in

L2, let

q, p( ): � ∫
Ω

q p dx, v, u( ): � ∫
Ω

v1u1 +/ + vdud( ) dx.

(10)
Further, for S, T ∈ XN and v, u ∈ XN , let

a S, T( ): � ∇S,∇T( ), a v, u( ): � ∇v,∇u( ), (11)
c S, u, T( ): � S,u · ∇T( ), c v, u,w( ): � v,u · ∇w( ). (12)

For the FOM, we consider the (semi-discrete) weak form of

Eqs. 2 and 3 [29], Find (�u, p, �T) ∈ �ZN
b such that, for

all (v, q, S) ∈ �ZN
0 ,

v,
z�u
zt

( ) + ] a v, �u( ) − ∇ · v, p( ) � −c v, �u, �u( ) + v, g θg( )�T( ),
(13)

− q,∇ · �u( ) � 0, (14)

S,
z�T

zt
( ) + α a S, �T( ) � −c S, �u, �T( ). (15)

Here, we have introduced �u � u + u0(x) and �T � T +
T0(x) as functions that have been augmented by

(potentially trivial) lifting functions, u0 and T0, which are

functions of space only. If these functions satisfy the (time-

independent) boundary conditions, then one can account

for inhomogeneous boundary conditions by moving them to

the right-hand side. In the case of the ROM, the lifting

functions can also provide an initial approximation to the

solution. In the sequel, our principal unknowns will be u

and T.

Following [30], we consider a semi-implicit scheme BDFk/

EXTk to discretize Eqs. 13–15 in time; kth-order backward

differencing (BDFk) is used for the time-derivative term, kth-

order extrapolation (EXTk) is used for the advection and

buoyancy terms and implicit treatment on the dissipation

terms. As discussed in [30], k = 3 is used to ensure the

imaginary eigenvalues associated with skew-symmetric

advection operator are within the stability region of the

BDFk/EXTk time-stepper. Denoting the solution at time tn =

Δt · n as (�un, pn, �T
n), the full discretization of the FOM reads Find

(un, pn, Tn) ∈ �ZN
0 such that, for all (v, q, S) ∈ �ZN

0 ,

β0
Δt v,un( ) + ] a v,un( ) − ∇ · v, pn( ) � v, fn( ), (16)

− q,∇ · un( ) � q,∇ · u0( ), (17)
β0
Δt S, Tn( ) + α a S, Tn( ) � S, Qn( ). (18)

Equations 16–18 represent a linear unsteady Stokes plus

unsteady heat equation to be solved at each time-step tn. The

inhomogeneous terms comprise the BDF, advection, buoyancy

and lifting terms

v, fn( ): � −∑k
s�1

βs
Δt v,un−s( ) + αs c v, �un−s , �un−s( ) − v, g θg( )�Tn−s( )( )[ ] − ] a v, u0( ),

(19)

S, Qn( ): � −∑k
s�1

βs
Δt S, Tn−s( ) + αs c S, �un−s, �Tn−s( )[ ] − α a S, T0( ).

(20)
Here, the βss and αss are the respective sth-order BDF and

extrapolation coefficients for the BDFs/EXTs time-stepper [30].

Note that the right-hand side of Eq. 17 will be zero if u0 is

divergence free or at least satisfies the weak divergence-free

condition Eq. 14.

Under the assumption that ∇ ·u0 = 0, the compact matrix

form [27, 31, 32] for Eqs. 16–20 is

H −DT

−D 0
[ ] u n

p n( ) � f̂ �un, �T
n
; θg( )

0
( ), (21)

Hα T
n � Q̂ �un, �T

n( ). (22)

Here, u n, p n, and T n are the vectors of spectral element basis

coefficients. The corresponding block matrices are

H � H]

H]
[ ], D � D1 D2[ ], (23)

with H] � β0
ΔtM + ]A and Hα � β0

ΔtM + αA, with matrices M

and A defined below. The velocity data vectors are

f̂ (�un, �Tn
; θg) � [f̂

1
f̂

2
]T, with

f̂
m
: � −∑k

s�1

βs
ΔtMu n−s

m + αs C �u n−s( )�u n−s
m − gmM�T n−s( )[ ]

− ]Aum,0,

m � 1, 2. (24)

where g1 = cos(θg) and g2 = sin(θg) represent the parametric

forcing. The thermal load in Eq. 22 is

Q̂ �un, �T
n( ): � −∑k

s�1

βs
ΔtM

�T n−s + αsC �u n−s( )�T n−s[ ] − αAT 0.

(25)
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Entries of the respective stiffness, mass, convection, and

gradient matrices are

Aij � ∫
Ω

∇ϕi∇ϕj dx, (26)

Mij � ∫
Ω

ϕiϕj dx, (27)

Cij w( ) � ∫
Ω

ϕi · w · ∇( )ϕj dx, (28)

Dm,ij � ∫
Ω

ψi

zϕj

zxm
dx, m � 1, 2. (29)

Note that {ϕi(x)} forms the spectral element velocity/

temperature basis while {ψi(x)} constitutes the pressure basis.

2.2 Galerkin formulation for the reduced-
order model

Within the Galerkin framework of the preceding section it is

relatively straightforward to develop a ROM. One defines a set of

functions ζj(x) ∈ XN ⊂ XN , θj(x) ∈ XN ⊂ XN such that the

coarse-space (ROM) solution, is expressed as

�uc x( ) � ∑N
j�0

ζj x( )uc,j, �Tc x( ) � ∑N
j�0

θj x( )Tc,j. (30)

For the ROM, we insert the expansions Eq. 30 into Eqs. 13–15

and require equality for all (v, S) in ZN
0 . In order to set the

boundary conditions, we have augmented the trial

(approximation) spaces XN and XN with the lifting function

ζ0: = u0 and θ0: = T0. The corresponding test spaces, XN
0 : �

{ζj}Nj�1 and XN
0 : � {θj}Nj�1, satisfying homogeneous boundary

conditions, as is standard for Galerkin formulation. The coarse

space ZN
0 ≔ (XN

0 , X
N
0 ) is typically based on a linear combination

of full spectral element solutions of Eqs. 21 and 22, such as

snapshots at certain time-points, tn, or solutions at various

parametric values. Under these conditions and with a carefully

chosen u0,X
N is a set of velocity-space functions that are (weakly)

divergence-free and the pressure terms drop out of Eqs. 13 and

14. We also note that ζj and θj are modal, not nodal, basis

functions. In this work, we consider proper orthogonal

decomposition (POD) to construct the reduced-basis. The N-

dimensional POD-space is the space that minimizes the averaged

distance between the snapshot set and the N-dimensional

subspace of the snapshots set in the H1 semi-norm. Further

details of the POD basis selection are provided in [18] and

references therein.

The matrix form for the ROM is readily derived by

constructing a pair of rectangular basis matrices, B and B,

having entries

Bij � ζj xi( ), Bij � θj xi( ), (31)

where the xis are the spectral element nodal points. The

coarse-system matrices are Hc,] = BTHB and Hc,α = BTHαB and

the governing system for the ROM becomes

Hc,] û c
n � BT f̂ �un

c , �T
n
c ; θg( ), Hc,α T̂

n

c � BT Q̂ �un
c , �T

n
c( ). (32)

We refer Eq. 32 as Galerkin ROM (G-ROM) throughout the

paper. The ROM coefficient vectors, û c
n � [unc,1 . . . unc,N]T,

T̂
n
c � [Tn

c,1 . . .T
n
c,N]T, are determined by solving the 2 N × N

linear systems. Note that the coefficients for the lifting functions

are prescribed: uc,0 = Tc,0 = 1. The initial coefficients for the ROM

are obtained by projecting the initial condition onto the coarse

space ZN
0 with the H1 semi-norm,

û c
0 � BTAu 0, T̂

0

c � BTAT 0, (33)

which follows from the fact that the columns of B and B are,

respectively, A- and A-orthonormal, where A = block-

diagonal(A). To recover the spectral element representation,

we simply prolong the N-length vectors û c
n and T̂

n

c with the

set of basis functions and add it with the lifting functions u0
and T0

�u n
c � Bû c

n + u 0, �T
n
c � BT̂

n

c + T 0. (34)

The functional representations, �unc(x) and �T
n
c(x), are then

obtained from Eqs. 8 and 9.

Next we consider the Galerkin ROM with Leray

regularization using a spatial filter, following ideas presented

in [19]. The approach simply requires regularizing the

advecting field in the Navier-Stokes equations and energy

equation through a low-pass filter function F

(i.e., �u filtered � F(�u )). As noted in [33, 34], a small amount

of regularization is sufficient to make gains in proving existence

and uniqueness of the solution to the Navier-Stokes equations.

Thus, Leray regularization is of interest both from a numerical

(and physical) stabilization viewpoint and from a theoretical

perspective.

The formulation of G-ROM with Leray regularization is

shown in Eq. 35 and the only difference comparing to

G-ROM Eq. 32 are the velocity data and thermal load.

Hc,] û c
n � BT f̂ filtered �un

c , �T
n
c ; θg( ), Hc,α T̂ c

n

� BT Q̂
filtered

�un
c , �T

n
c( ), (35)

where f̂ filtered(�un, �Tn
; θg) � [f̂

1
f̂

2
]T
filtered

. We use the

subscript filtered to denote the advecting field in the velocity

data and thermal load are being filtered,

f̂
filtered,m

: � −∑k
s�1

βs
ΔtMu n−s

m + αs C �u n−s
filtered( )�u n−s

m − gmM�T n−s( )[ ]
− ]Aum,0,

m � 1, 2. (36)
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and

Q̂
filtered

�un, �T
n( ): � −∑k

s�1

βs
ΔtM

�T n−s + αsC �u n−s
filtered( )�T n−s[ ]

− αAT 0. (37)

In this work, we will be focusing on a PDE- (or differential-)

based filter, which is characterized by a filter width, δ [35].

Following [19, 36], such filters are developed in a POD

context as follows: Find �uc,filter ∈ XN such that

I − δ2∇2( )�un
c,filter, ζj( ) � �uc, ζj( ), ∀ j � 1, . . . , N. (38)

Besides the differential filter, one could also consider a

more economic spatial filter, namely, a POD-projection

(Proj) filter as discussed in [19]. In this case, one simply

truncates the higher POD mode contributions when

constructing �unc,filtered, just as one would do in a Fourier

reconstruction [18].

Besides G-ROM and LDF-ROM, we also consider the

constrained-evolution stabilization introduced in [9]. The idea

behind this approach is to use information from the snapshot set

to establish a priori limits on the ROM coefficients û c by

replacing Eq. 32 with a constrained minimization problem. At

each time-step, the coefficients satisfy

û
n

c � arg min
û c∈RN

1
2
‖Hc,]û c − BT f̂ �un

c , �T
n
c ; θg( )‖2H−1 ,

s.t. mj ≤ un
j ≤Mj. (39)

where the constraintsmj andMj on the basis coefficients unc,j,

j = 1, . . . , N are derived from the observation snapshot set. A

constrained minimization problem for the thermal ROM

coefficients, T̂ c, is derived similarly. We denote Eq. 39 as

C-ROM. Further implementation details can be found in [9, 18].

3 The solution reproduction problem

In this section, we consider the solution reproduction

problems for Ra = 2 × 105, 7 × 105 at Pr = 7.2 and θg = 90°,

where the solutions are chaotic. We assess the performance of

G-ROM, C-ROM and LDF-ROM introduced in Section 2.1

through the accuracy of the mean field and the QOIs. The

mean field is computed by averaging the POD coefficients and

reconstructing with the rectangular basis matrices B and B. The

QOIs are the mean Nu and Std(Nu), which are estimated through

Eq. 6, and the mean TKE and mean temperature fluctuation,

estimated through Eq. 7. The quantities are averaged over

500 CTUs.

Although of limited practical interest, the solution

reproduction problem is an important step towards the

development of a MOR procedure for the parametric

problem. The reproduction results for spatio-temporal chaotic

flow are presented and discussed in Section 5.1.

3.1 Numerical results

Results for Ra = 2 × 105 are shown in Figures 2A–D. The

performances of G-ROM, C-ROM and LDF-ROM are indicated

by blue, orange, green solid line. In LDF-ROM, the radius of the

differential filter is δ = 0.015625. Figure 2A shows the behavior of

the relative H1 error in the mean flow prediction versus N. We

observe less than 1% error in C-ROM with small N. The error in

G-ROM and LDF-ROM decreases as N increases and eventually

reaches 1% with N = 100. Similar trends for the mean Nu,

Std(Nu) and mean temperature fluctuation are observed in

Figures 2B–D. The FOM data is denoted as black solid line.

For mean Nu prediction, we observe around 0.1% error in

C-ROM for almost all N. The error in G-ROM and LDF-

ROM decreases as N increases and LDF-ROM has error

around 0.01% with N = 100. For Std(Nu) and mean

temperature fluctuation prediction, we observe convergence in

both QOIs with G-ROM and LDF-ROM. For C-ROM, the

predictions are in good agreement with the FOM data for all

values of N.Behaviors of the same quantities for Ra = 7 × 105 are

shown in Figures 2E–H. In LDF-ROM, the radius of the

differential filter is δ = 0.03125. We still observe convergence

in the mean flow and QOIs but it is much slower because the flow

is more chaotic. The error in the mean flow is around 10% in

G-ROM and the prediction in QOIs are over-estimated and less

accurate than for the other methods. With LDF-ROM, the

predictions are slightly better. C-ROM is still the most

effective and has 5% error in mean flow prediction. Although

the prediction in mean Nu is only as good as the LDF-ROM, the

Std(Nu) and mean temperature fluctuation are bounded from

above for all values of N and converge to the correct value as N

increases.

Note that the differential filter radius δ selected for the two

Ra yields the best accuracy in mean flow among the five

differential filter radius δ = 0.25, 0.125, 0.0625, 0.03125,

0.015625. Besides, we find δ = 0.015625 yield the best

results at smaller Ra and as Ra increases, results with δ =

0.03125 becomes better and are comparable with δ =

0.015625 at Ra = 7 × 105. The tendency is reasonable since

the flow is more chaotic as Ra increases, therefore one should

expect a larger δ to stabilize the flow.

From the results, we observe the mean flow and QOIs

converge with N for all ROMs. With higher Ra, convergence

in those quantities is much slower and a larger N is required to

reach to the same accuracy as in the lower Ra case. Note that,

because of the O(N3) online costs, requiring a large value of N for

convergence might require off-line resources for timely

simulation, which would greatly diminish the intrinsic

advantage of the ROM/pMOR framework. This potentiality

highlights the importance of stabilization methods. Indeed, we

find that C-ROM is able to predict the mean flow and QOIs with

a better accuracy with smaller N. On the other hand, although

LDF-ROM is not as effective as C-ROM, and only slightly better
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than G-ROM, it will play a key role in the pMOR presented in

Section 4, especially in the parametric problem with θg variation.

4 The parametric problem

We turn now to study the performance of pMOR for the slot

problem with G-ROM, C-ROM, and LDF-ROM. Two sets of

parameterization are considered. With Pr = 7.2 fixed, we seek to

estimate the solution and QOIs of Eqs. 13 and 15 for: 1) θg ∈ P �
[0°, 180°] at multiple Ra, and 2) Ra ∈ P � [2 × 105, 7 × 105]
with θg = 90°. Throughout, we take the lifting functions to be the

zero velocity field and the heat conduction solution.

For efficient selection of the pMOR anchor points we

consider the POD-hGreedy algorithm proposed in [9] which

combines POD in time with Greedy in parameter. The term

Greedy refers to the optimization strategy of basing anchor point

selection on the training point that exhibits the largest value in

the error estimate. Error-indicated selection of the anchor points

reduces the number of FOM solves and is thus critical for the

feasibility of pMOR. Here, the error indicator corresponds to the

dual norm of the residual associated with the time-averaged

momentum and energy equations.

The section is organized as follows. In Section 4.1 we present

the POD-hGreedy algorithm. In Section 4.2, we extend the time-

averaged error indicator introduced in [9] to accommodate the

energy equation and Leray regularization. Finally, in Sections 4.3

and 4.4, we present the numerical results.

4.1 Proper orthogonal decomposition-
hGreedy algorithm

In this section, we present the POD-hGreedy algorithm for

the construction of the reduced spaces {XN
0,ℓ , X

N
0,ℓ}Lℓ�1, and the

partition {I ℓ}Lℓ�1 of P, based on the results of L full-order

simulations associated with the parameters p1*, . . . , pL* . The

algorithm is similar to the one in [9] but with extensions for

thermal fields.

To begin, we introduce the discretized parameter space

Ptrain � {pi}ntraini�1 , p1 ≤ . . . ≤pntrain , the integers L which fix the

maximum number of offline solves, the integer ncand < L, which is

the number of ROM evaluations performed online for a given

value of the parameters, and an error indicator Δ. The error

indicator takes as input sequences {�unc }Jn�0 and {�Tn
c }Jn�0 and the

value of the parameter, p*, and returns an estimate of the error in

the prediction of the mean flow. We formally present the

indicator in Section 4.2.

Algorithm 1 presents the computational procedure for both

offline and online stage. The offline procedure starts with an

anchor point that could either be selected randomly from the

training space Ptrain or be user specified. At each iteration ℓ, a

FIGURE 2
Performance comparison between G-ROM, C-ROM and LDF-ROM for the solution reproduction problem at θg = 90° and Pr = 7.2. (A–D)
Behavior of the relativeH1 error in mean flow prediction, predicted mean Nu, Std(Nu), and mean temperature fluctuation as a function of number of
modes, N at Ra = 2 × 105 (δ = 0.015625 in LDF-ROM). (E–H) Performance for the same quantities at Ra = 7 × 105 (δ = 0.03125 in LDF-ROM).
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FOM simulation at the anchor point p
ℓ
* is conducted and returns

a set of snapshots. The snapshot set is then processed through

POD and returns the first N orthonormalized POD modes. The

value of N is determined by reproduction problem at the anchor

point. The ROM and the error indicator, Δℓ, are then built with

the reduced spaces XN
0,ℓ and XN

0,ℓ . The coefficients and the error

estimates are then computed for each p ∈ Ptrain and the next

anchor point is identified as the parameter that has the maximum

value in the current (including previous) error estimate. The

procedure starts again with the new selected anchor point. If the

error indicator is sufficiently small over all points in Ptrain or the

procedure reaches the maximum number of FOM solves L, the

offline stage terminates.

Given the ROM/anchor point data (XN
0,ℓ , X

N
0,ℓ , pℓ

*) for ℓ =
1, . . . , L, and error indicator, Δ, the hGreedy online stage

starts with finding the ncand candidate anchor points nearest

to the test parameter p. The ROMs associated to the candidate

anchor points are then used to compute the coefficients and error

estimate at p. The coefficients are then returned based on the ROM

that has smallest error estimate. The POD-hGreedy approach is

analogous to h-refinement in the finite element method in that the

POD bases are not shared between anchor points. Convergence is

therefore expected to be linear in the distance from the nearest

anchor point.

Algorithm 1. POD-hGreedy algorithm for the construction of

{XN
0,ℓ , X

N
0,ℓ , I ℓ}l.

Another strategy is the POD-pGreedy algorithm, following

the definitions of [37], as first proposed in [38] and analyzed in

[39]. The algorithm combines data from different parameters to

generate a single reduced basis set that covers the entire

parameter space P. The procedure is similar to Algorithm 1

but with few differences:

1) The reduced bases are shared between anchor points. POD is still

used to construct the new basis but the collected snapshot set is

projected onto the orthogonal complement of the existing basis.

2) In the online/training stage, only one ROM is used instead of

a set of ROMs and there is no need to check for the nearest

anchor points.

3) The anchor point is selected based on the single error estimate

Δ in current iteration, rather than the individual estimates for

each ROM.

Although it has a better convergence rate than POD-

hGreedy, POD-pGreedy can easily fail for unsteady problems.

Combining modes at different anchor points, especially ones

whose solution exhibits different physics, can easily lead to

instability and deteriorate the performance, as noted in [9].

Moreover, stabilizations that work for POD-hGreedy can fail

in the POD-pGreedy approach. For example, in C-ROM, it is not

clear how to construct the constraints for the combined basis. A

naive approach is to apply POD to all the snapshots at anchor

points. However, this approach is inefficient and can be limited

by the computer storage requirements during the offline phase.

Leray regularization with the projection filter (i.e., trivially

truncated basis set for the advector) is also limited since the

combined basis is no longer ordered in a Fourier-like, energy-

decaying, sequence. To address this, one could apply POD to all

the snapshots that have been collected but this approach is again

limited by the storage and therefore not practical. An alternative

is to consider DF filter, denoted as LDF-ROM here. Once the

radius δ is specified, it will filter right amount of energy in each

basis.

4.2 A time-averaged error indicator

In this section, we extend the time-averaged error indicator

proposed in [9] to accommodate the energy equation and Leray

regularization. The error indicator is based on the dual norm of

the discrete time-averaged residual. Given the ROM solution

sequence {�unc }Jn�J0+1 and {�Tn
c }Jn�J0+1 and the parameters of interest

p � (], θg, α), the discrete time-averaged residual for velocity

and temperature are defined as: 4

〈Ru〉 �un
c{ }Jn�J0 , v; ], θg( ): � 1

J − J0
∑J

n�J0+1
ru �un

c , v; ], θg( ), ∀ v ∈ Vdiv ,

(40)

〈RT〉 �T
n
c{ }Jn�J0 , S; α( ): � 1

J − J0
∑J

n�J0+1
rT �T

n
c , S; α( ), ∀ S ∈ XN

0 ,

(41)

4 In [16], the velocity and temperature residuals are coupled because the
velocity-temperature solutions are obtained through a coupled
Newton’s method. Here, we do not couple the residuals because
we solve Eqs. 21 and 22 separately.
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where ru(�unc , v; ], θg) ∈ Vdiv′ (dual space of Vdiv) and

rT(�Tn
c , S; α) ∈ XN

0 ′ (dual space of XN
0 ) are the residual

associated with Eq. 32 at time tn and defined as

ru �un
c , v; ], θg( ) � ∑3

s�1
αs v, g θg( )�Tn−s

c( ) − c v, �un−s
c , �un−s

c( )[ ]
−∑3

s�0

βs
Δt v, un−s

c( ) − ]a v, �un
c( ), (42)

rT �T
n
c , S; α( ) � −∑3

s�1
αsc S, �un−s

c , �T
n−s
c( ) −∑3

s�0

βs
Δt S, Tn−s

c( )
− α S, �T

n
c( ). (43)

Note for simplicity, we assume only BDF3/EXT3 is used for time

discretization in Eqs. 42 and 43. Besides, the residual is defined over

{V}div: � {v|v ∈ XN
0 ,∇ · v � 0} andXN

0 , rather thanXN
0 ⊂ H1

0 and

XN
0 , because wemeasure our reduced-basis error relative to the FOM.

We define the time-averaged error indicator,

Δ: ⊗J
n�J0X

N × XN × P → R+, as follows:

Δ �un
c{ }Jn�J0 , �T

n
c{ }Jn�J0 ;p( ): �

��������������������������������������������
‖〈Ru〉 �un

c{ }Jn�J0 , ·; ], θg( )‖2Vdiv′ + ‖〈RT〉 �T
n
c{ }Jn�J0 , ·; α( )‖2XN

0 ′

√
. (44)

The residuals Eqs. 42 and 43 canbe further expressed in thematrix-

vector form since the spaces {V}div and XN
0 are finite dimensional,

ru �un
c , v; ], θg( ) � v Tr n

u

� v T f̂ �un
c , �T

n
c ; θg( ) − v THBû c

nn, ∀ v ∈ R2N ,

(45)
rT �T

n
c , S; α( ) � S Tr n

T � S TQ̂ �un
c , �T

n
c( ) − S THαBT̂ c

n
, ∀ S ∈ RN .

(46)
The matrix-vector version of the discrete time-averaged

residual Eqs. 40 and 41 is then expressed as

〈Ru〉 �un
c{ }Jn�J0 , v; ], θg( ) � v TR u

� v T 1
J − J0

∑J
n�J0+1

f̂ �un
c , �T

n
c ; θg( ) −HBû c

n⎛⎝ ⎞⎠, (47)

〈RT〉 �T
n
c{ }Jn�J0 , S; α( ) � S TR T

� S T 1
J − J0

∑J
n�J0+1

Q̂ �un
c , �T

n
c( ) −HαBT̂ c

n⎛⎝ ⎞⎠,

(48)
∀ v ∈ R2N and ∀ S ∈ RN . The norm of the residual is closely

related to the error and it is tempting to use ‖R u‖2 and ‖R T‖2 to
estimate the error. However, this is not correct since

〈Ru〉({�unc }Jn�J0 , ·; ], θg): Vdiv → R and

〈RT〉({�Tn
c }Jn�J0 , ·; α): XN

0 → R are bounded linear functionals

whose size is appropriately measured through the dual norm:

‖〈Ru〉 �un
c{ }Jn�J0 , ·; ], θg( )‖{V}div′ � supv∈Vdiv

〈Ru〉 �un
c{ }Jn�J0 , v; ], θg( )
‖v‖Vdiv

,

(49)

‖〈RT〉 �T
n
c{ }Jn�J0 , ·; α( )‖XN

0
� supS∈XN

0 ′
〈RT〉 �T

n
c{ }Jn�J0 , S; α( )

‖S‖XN
0

. (50)

Thanks to the Riesz representation theorem, there exist a

unique 〈R̂u〉 ∈ Vdiv and 〈R̂T〉 ∈ XN
0 such that

〈R̂u〉, v( )
Vdiv

� 〈Ru〉 �un
c{ }Jn�J0 , v; ], θg( ), ∀ v ∈ Vdiv , (51)

〈R̂T〉, S( )
XN
0

� 〈RT〉 �T
n
c{ }Jn�J0 , S; α( ), ∀ S ∈ XN

0 . (52)

It thus follows that

‖〈Ru〉 �un
c{ }Jn�J0 , ·; ], θg( )‖Vdiv′ � ‖〈R̂u〉‖Vdiv

, (53)
‖〈RT〉 �T

n
c{ }Jn�J0 , ·; α( )‖XN

0 ′ � ‖〈R̂T〉‖XN
0
. (54)

Equations 51 and 52 allows one to compute the Riesz
representers 〈R̂u〉 and 〈R̂T〉 and Eqs. 53 and 54 allows one to
evaluate the dual norm of the residual through Riesz
representation without computing the supremum.

In practice, determination of the Riesz representers, 〈R̂u〉
and 〈R̂T〉, is relatively straightforward because the coarse

(i.e., ROM) and truth (FOM) representations live in finite-

dimensional spaces, meaning that there is a direct linear-

algebra problem to be solved for the Riesz representers.

Expanding Eqs. 51 and 52, we have the corresponding linear

algebra statement,

A −DT

−D 0
[ ] 〈R̂ u〉

p
( ) � R u

0
( ), (55)

A 〈R̂ T〉 � R T. (56)

Here, A corresponds to H introduced in Eq. 23 with β0 = 0

and ] = 1. We remark that the essential difference between the

velocity and temperature representers is that the former

satisfies the divergence-free constraint by virtue of the 2 × 2

block system in Eq. 55. Evaluation of the error indicator Δ
entails solving Eqs. 55 and 56, computing the correspondingH1

norms of the outputs, and ultimately using these results in

Eq. 44.

While use of the direct approach requires access to the FOM

machinery in order to generate an error indicator, we note that such

access is readily available during the pMOR training/construction

phase. The advantage of this approach is that the number of Stokes/

Poisson solves scales as the number of points in the training space,

which is typically less than N2. The other is through the offline/

online computational decomposition which takes the advantage of

the affine decomposition and expands the residual. By expanding

the residuals 〈Ru〉 and 〈RT〉, 2(N + 1)2 + 6(N + 1) linear functionals

are derived, where 2(N + 1)2 is due to the convection term in the

Navier-Stokes and energy equations. Applying the Riesz

representation theorem to each linear functional, we end up

solving 2(N + 1)2 + 6(N + 1) Riesz representers, where (N + 1)2

+ 4(N + 1) of them are solved through Stokes problems and (N + 1)2

+ 2(N + 1) of them are solved through Poisson problems. Note that
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the Riesz representers must be stored in order to accomplish the

decomposition and each is a vector of size N since it lives in the

FOM space. For example, if N = 60, one would have to store at least

7,200 vectors of size N which can be prohibitive, even for large

multicore workstations. Even if there is no storage limitation, the

offline cost is quite high when N is large as it scales quadratically.

Once it is done, the online cost isO(N2J +N4), whereO(N2J) is
to solve Eq. 32 andO(N4) is required to compute the error estimate.

Further details of the decomposition are provided in [9].

4.2.1 Time-averaged error indicator with Leray
regularization

The integration of the time-averaged error indicator Δ with Leray

regularization is rather straightforward. Recall the difference between

G-ROMEq. 32 andLDF-ROMEq. 35 is simply the advectingfield being

filtered. Hence, the residuals ru(�unc , v; ], θg) and rT(�Tn
c , S; α) for all

n = J0 + 1, . . . , J are simply modified with the filtered advecting field,

ru �un
c , v; ], θg( ) � ∑3

s�1
αs v, g θg( )�Tn−s

c( ) − c v, �un−s
c,filtered, �u

n−s
c( )[ ]

−∑3
s�0

βs
Δt v,un−s

c( ) − ]a v, �un
c( ),

(57)

rT �T
n
c , S; α( ) � −∑3

s�1
αsc S, �un−s

c,filtered, �T
n−s
c( ) −∑3

s�0

βs
Δt S, Tn−s

c( )
− αa S, �T

n
c( ), (58)

for all v ∈ Vdiv and S ∈ XN
0 . The corresponding time-

averaged error indicator Δ is then defined based on the

modified residuals Eqs. 57 and 58.

4.3 Parametric model order reduction
results: θg variation

In this section, we consider the parametric problem
parameterized with θg at Pr = 7.2. The problem has three
characteristics: bifurcation, spatio-temporal chaos over a
certain range of θg, and a solution manifold that is a blend of
steady and unsteady solutions. To identify the major pMOR
challenges for this case, three values of Ra are considered:

1) Ra = 1 × 104 where the FOM is steady except at θg = 30°.

2) Ra = 8 × 104 where the FOM is unsteady for θg ∈ [0°, 70°] and

steady for θg ∈ [80°, 180°].

3) Ra = 3 × 105 where the FOM is unsteady for θg ∈ [0°, 120°] and
steady for θg ∈ [130°, 180°].

In each case, the ROM is constructed through Algorithm 1.

In order to assess performance, we generate FOM data for θg = 0°,

10°, . . ., 180° (ntrain = 19 datapoints). The FOM solution is

obtained by solving Eqs. 2 and 3. For parameters where the

problem is steady, the solution and the Nu are collected after the

solution difference between ten time steps is less than 10–6. For

unsteady problems, the mean flow, mean Nu, Std(Nu), mean

TKE and mean temperature fluctuation are averaged over

500 CTUs after the solution has reached a statistically steady

state.

Although not shown here, we remark that at Ra = 1 × 103, the

problem is steady with a bifurcation at θg = 20°. In this case, either

h- or p-Greedy with residual dual-norm base error indicator

accurately estimates the solution and QOIs over the parameter

space θg ∈ [0°, 180°].

4.3.1 Ra = 1 × 104

To examine the feasibility of the pMOR (Algorithm 1) in the

unsteady case, we begin with Ra = 1 × 104, in which only one

unsteady solution is introduced at θg = 30°.

Figure 3E shows the steady (or mean) velocity magnitude for

19 uniformly-space training points θg = 0°, 10°, . . ., 180°. The

corresponding temperature distributions are in Figure 1B. At θg =

180°, we observe no flow and the temperature is simply the

conduction solution. As θg decreases, we observe slot convection

and then about θg = 40° there is a bifurcation to the wavy flow and

rolls in the velocity. Moreover, we observe spatial-temporal chaos

at θg = 30°. Figures 3A–D show the results of the application of

Algorithm 1 for the construction of the G-ROM, C-ROM and

LDF-ROM for the pMOR. The algorithm starts with θg,1* � 0°

and is performed with L = 8 iterations.

Figure 3A demonstrates the selection process of anchor

points (denoted by red circles) for the G-ROM case. We

briefly walk through the process: At the first iteration, the

error estimate Δ1(θg) for θg ∈ Ptrain is computed (blue dashed

line). With the largest error estimate, θg = 90° is then identified as

the second anchor point. The third anchor point is then selected

from θg ∈ Ptrain which maximizes the error estimate Δ1,2(θg): =

min{Δ1(θg), Δ2(θg)} over Ptrain. (We reiterate that minimizing

over the individual error estimates is a property of the h-Greedy

process—there is not a single unifying error estimate as is the case

for p-Greedy.) The process continues until the error estimate

reaches the desired tolerance or the number of offline solves

reaches its maximum. The black solid line denotes the minimum

of all error estimates computed up to current iteration. In this

case, it represents min{Δ1(θg), . . ., Δ8(θg)}. Note that the error

estimate at θg = 180° in each model Δℓ(θg = 180°) is small due to

the choice of lift function.

From Figure 3A, we observe the error estimate is small at

anchor points where the problem is steady. On the other hand,

although the error estimate Δ3(θg) (greed line) is small at θpg,3 �
30° compared to other points in Ptrain, it is not as small as the

estimate at other anchor points. Because of the unsteadiness, it

can’t reach the same magnitude as in the steady cases.

Following this procedure for the other cases, we present

models results for the G-ROM, C-ROM and LDF-ROM cases,

denoted respectively blue, orange, green solid lines in Figures

3B–D. The behavior of the relative H1 error in the predicted
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solution is shown in Figure 3B. The corresponding Galerkin

projection is denoted as the black dashed line. We found that

G-ROM and LDF-ROM have a similar performance: the error

in the solution is nearly identical to the Galerkin projection

for cases where the problem is steady, including those that are

not in the Panchor. The maximum error is at θg = 30° where the

problem is unsteady. Both methods have around 15% error in

the mean flow. Note that at θg = 30°, the number of modes N is

carefully selected since the ROM diverges after certain N due

to the spatio-temporal chaos (15% error with N = 70, 17%

error with N = 80 and 23% error with N = 90). On the other

hand, the mean solution prediction made by C-ROM has 73%

in maximum error and in order for C-ROM to reach same

accuracy as in G-ROM and LDF-ROM, two more iterations

are required. Already, with this modest Ra = 1 × 104, we find

C-ROM is less efficient than G-ROM and LDF-ROM. The

pMOR behavior for mean Nu and mean TKE are shown along

with the FOM results in Figures 3C,D. Again, G-ROM and

LDF-ROM are able to make accurate predictions while

C-ROM has maximum 22% error in mean Nu and in

particular is unable to capture the peak in mean TKE at

θg = 30°.

Before closing this section, we highlight some observations

with respect to the solution manifolds.

1) The solutions at θg ∈ [0°, 30°] are Rayleigh-Bénard with

differing numbers of rolls, analogous to orthogonal sine

and cosine functions at different wave numbers. Therefore,

there is little hope in reproducing the solution except at

selected anchor points. QOI’s such as mean Nu, however,

are less sensitive to precise mean flow fields and are therefore

more tractable.

2) At θg = 170° and θg = 180° the thermal metrics are not too

different despite the O(1) difference in velocity solutions.

The first issue is resolved by the error indicator picking θg ∈
[0°, 30°] as anchor points. The second issue can be a source of

error as Ra increases. With θg = 160° as an anchor point and the

solution at θg = 180° as the lift function, the error at θg = 170° is 9%

for Ra = 1 × 104, 16% for Ra = 8 × 104, and 19% for Ra = 3 × 105.

4.3.2 Ra = 8 × 104

Figure 4 shows pMOR results analogous to Figure 3 for

the case Ra = 8 × 104. Here, we consider only the G-ROM and

FIGURE 3
POD-hGreedy performance comparison betweenG-ROM, C-ROM and LDF ROM for the parametric problem parameterized with θg at Ra = 1 ×
104 and Pr = 7.2. (A) Behavior of the error indicator Δ defined in Eq. 44 for eight iterations with G-ROM. (B–D) Behavior of the relative H1 error in
predicted solution, mean Nu and mean TKE with θg based on eight anchor points. (N = 1 for all θg ∈ Panchor except N = 70 at θpg,3 � 30°.). (E)Mean (or
steady) velocity magnitude for 19 uniformly-spaced θg ∈ [0°, 180°]. (The corresponding temperature solutions are in Figure 1B).
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LDF-ROM. The algorithm starts with θpg,1 � 0° and terminates

at L = 6 iterations. Figures 4E,F show the FOM mean (or

steady) temperature and velocity solution at the training

points. (In an actual pMOR, these FOMs would of course

not be computed a priori.) With this Ra, the bifurcation

occurs at θg = 40°. Moreover, we observe spatio-temporal

chaos for θg ∈ [0°, 30°] with the lower values being more

chaotic.

The anchor-point selection process with LDF-ROM is

demonstrated in Figure 4A. Starting with θpg,1 � 0° the peak

error in first iteration is at 110°, which is chosen to be θpg,2, and so

on. Again, we find the error indicator is small at anchor points

where the problem is steady and that it is larger where it is

unsteady (θg ∈ [0°, 60°]). Nonetheless, the error indicator is still

able to identify where solution changes rapidly and select most of

the anchor points in the region [0°, 40°].

The behaviors of the relative H1 error in the predicted solution

with θg using G-ROMand LDF-ROMare shown in Figure 4B. For θg
∈ [80°, 180°], where the solution is steady, we find the estimation is

almost identical to the Galerkin projection in both models. On

the other hand, for θg ∈ [0°, 70°], where the solution is unsteady,

we find the error at anchor points θg = 0°, θg = 10° is large due to

the spatio-temporal chaos. The maximum error is around 19%

at θg = 10° with LDF-ROM while 69% at θg = 40° with G-ROM.

Although the maximum error in G-ROM can be reduced by

further iterations of the algorithm, the error will eventually be

dominated by the high reproduction error arising from spatio-

temporal chaos at θg = 0° and 10°.

The behavior for mean Nu and mean TKE are shown in

Figures 4C,D for G-ROM and LDF-ROM. Despite large errors in

the mean flow prediction at θg = 0°, 10°, the LDF-ROM is able to

predict mean Nu with a maximum error around 5% whereas

FIGURE 4
POD-hGreedy performance comparison between G-ROM and LDF ROM for the parametric problem parameterized with θg at Ra = 8 × 104 and
Pr = 7.2. (A) Behavior of the error indicator Δ defined in Eq. 44 for six iterations with LDF-ROM. (B–D) Behavior of the relative H1 error in predicted
solution, mean Nu, andmean TKE with θg based on six anchor points. (N = 100 at θg = 0°, 20°,N = 80 at θg = 10°, 30°, 40°,N = 1 at θg = 110°, 140°, 160°).
(E,F) Mean (or steady) temperature and velocity solution for 19 uniformly spaced θg ∈ [0°, 180°].
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G-ROM has maximum error around 28%. In addition, LDF-

ROM is able to more accurately predict mean TKE than G-ROM.

4.3.3 Ra = 3 × 105

For (Pr,Ra) = (7.2, 3 × 105) the flow is quite chaotic (similar to

what is found for Pr = 0.71 at lower Ra). Figures 5E,F show the

mean (or steady) temperature and velocity solution at θg = 0°, 10°,

. . ., 180° (19 datapoints). This time, the bifurcation occurs at θg =

60°. We use this elevated Rayleigh-number case to explore the

behavior of the h-Greedy pMOR convergence by considering

application of the algorithm to two different training sets, P1 �
[60°, 70°, . . . , 180°] and P2 � [0°, 10°, . . . , 180°]. The set P1

excludes the spatio-temporal chaotic regime while P2 spans the

full range of flow phenomena.

The anchor point selection process for P1 with LDF-ROM is

demonstrated in Figure 5A, starting with θpg,1 � 60° and

proceeding for L = 5 iterations. Again, we observe that the

error estimate at the anchor points, θpg,1 � 60°, θpg,3 � 80° and

θpg,5 � 120° are larger than other anchor points because of

unsteadiness. The behavior of the relative H1 error in

predicted solution is shown in Figure 5B. For θg ∈ [130°,

180°], where the solution is steady, the ROM estimates at the

anchor points are almost identical to the Galerkin projection. For

θg ∈ [60°, 120°], where the solution is unsteady, the errors at the

anchor points (θg = 60°, 80°, 110°, 120°) are less than 10%.

However, because of the irregular solution manifold, there is a

20% maximum error at θg = 170°, despite the ROM being based

on the nearby θg = 160° anchor point.

FIGURE 5
POD-hGreedy performance comparison between G-ROM and LDF ROM for the parametric problem parameterized with θg ∈ [60°, 180°] at Ra =
3 × 105 and Pr = 7.2. (A) Behavior of the error indicator Δ defined in Eq. 44 for five iterations with LDF-ROM. (B–D) Behavior of the relativeH1 error in
predicted solution, meanNu andmean TKEwith θg based on five anchor points. (N= 80 at θg= 60°, 80°, 110°,N= 50 at θg= 120° andN= 1 at θg= 130°,
140°, 160°). (E,F) Mean (or steady) temperature and velocity solution for 19 uniformly spaced θg ∈ [0°, 180°].
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The behavior of the mean Nu and mean TKE are shown in

Figures 5C,D. The maximum error in the predicted mean Nu is

around 5% with LDF-ROM and 8% with G-ROM. The mean

TKE estimation is also reasonable but is underestimated at

θg = 70°.

Next we examine the same problem configuration but with

the full parameter space P2. The problem now includes spatio-

temporal chaos for θg ∈ [0°, 40°] with the lower values being more

chaotic. Figure 6 show the results of the application of Algorithm

1 for the construction of the LDF-ROM for the parametric

problem with P2. The algorithm starts with θg,1* � 0° and is

performed with L = 6 iterations. The anchor point selection

process is demonstrated in Figure 6A. We observe the same issue

as in the previous cases, where unsteadiness leads to larger error

estimates than with the steady regimes.

The relative H1 error in predicted solution is shown in

Figure 6B. Again we find the estimation is almost identical to

the Galerkin projection for θg ∈ [130°, 180°] where the solution is

steady. For θg ∈ [0°, 120°] where the solution is unsteady, the

errors at anchor points θg = 20°, 40°, 90°, 120° are less than 10%

but 35% at θg = 0°, which corresponds to “simple” Rayleigh-

Bénard convection. Note that 35% is the error after carefully

chosen N and spatial radius δ in Leray filtering. The

corresponding mean Nu and mean TKE behavior are shown

in Figures 6C,D. Themaximum error in the predicted meanNu is

around 12%. For mean TKE, the estimation for θg ∈ [60°, 180°] is

acceptable, while it is overestimated for θg ∈ [0°, 50°].

We are also aware that in some applications, the Std(Nu)

could be considered as QOI. However, comparing to the mean

Nu and mean TKE, we find Std(Nu) is in general a more

challenging QOI. Figure 7 shows the predicted Std(Nu) in the

three Ra cases. We observe accurate prediction in Ra = 1 × 104

case. However, unlike the mean TKE, the Std(Nu) soon becomes

intractable with Ra = 8 × 104 even with Leray regularization and

is even worse in Ra = 3 × 105.

4.4 Parametric model order reduction
results: Ra variation

In this section, we consider the slot problem at θg = 90° and

Pr = 7.2 with the parametric space defined by

Ra ∈ P � [2 × 105, 7 × 105]. Unlike the problem with θg
variation, all solutions are unsteady and there is no

parametric bifurcation. In order to assess performance, we

generate FOM data, including mean flow, mean Nu, Std(Nu),

mean TKE and mean temperature fluctuation, for Ra = 2 × 105,

2.5 × 105, . . . , 7 × 105 (ntrain = 11 datapoints). The quantities are

averaged over 500 CTUs once the solution reaches the

statistically steady state.

Figure 8 shows the results of the application of Algorithm 1

for the pMOR using G-ROM, C-ROM and LDF-ROM. The solid

line denotes the performance of the reduced model which

minimizes the error indicator, and thus is selected by the

Greedy procedure (cf. Algorithm 1, ncand = 2). Anchor points

are denoted as red circle while FOM data is denoted as black solid

line. The algorithm starts with Rap1 � 2 × 105 and is performed

with L = 5 iterations. The number of POD basis N with anchor

points are listed in the figure caption.

Figure 8A shows the behavior of the relative H1 error in

mean flow prediction with Ra. First, we observe the errors at the

anchor points are less than 10% with C-ROM and LDF-ROM

while G-ROM has 10% error at Rap2 � 7 × 105. The maximum

error is roughly 11% in G-ROM, 10% in LDF-ROM and 8% in

C-ROM. Comparing with the Galerkin projection error (denoted

by the black dashed line), the pMOR accuracy is seen to be quite

satisfactory throughout P.
Figure 8B shows the behavior of the predicted mean Nu with

Ra. At the anchor points, we observe good agreement between

ROMs and FOM and that stabilization does improve its accuracy.

The maximum relative error is roughly 8% in G-ROM, 6.5% in

C-ROM and 5% in LDF-ROM. Figures 8C,D show the behavior

FIGURE 6
POD-hGreedy performance comparison between G-ROM and LDF ROM for the parametric problem parameterized with θg ∈ [60°, 180°] at Ra =
3 × 105 and Pr = 7.2. (A) Behavior of the error indicator Δ defined in Eq. 44 for five iterations with LDF-ROM. (B–D) Behavior of the relativeH1 error in
predicted solution, mean Nu andmean TKEwith θg based on five anchor points. (N = 80 at θg = 10°, 20°, 40°, 60°, 90°, 100°,N = 70 at θg = 0°,N = 50 at
θg = 120° and N = 1 at θg = 160°.)
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of the predicted Std(Nu) and mean temperature fluctuation. In

both QOIs, we find C-ROM outperforms the other two models.

At Ra = 7 × 105, LDF-ROM is only slightly better than G-ROM.

This parametric space is in general more tractable than those

involving variation in θg. This outcome might be anticipated by

observing the mean temperature fields shown in Figure 1C,

which suggests that the solution manifold with respect to Ra

is quite smooth. This is also reflected in the QOIs, for example,

the mean Nu, Std(Nu) and mean temperature fluctuation behave

almost linearly as Ra increases.

5 Discussion

In this section, we investigate some of the flow behaviors

exhibited by the FOM to better understand how they influence

the relative performance of the ROMs. We note that we cannot,

in general, expect a ROM to be able to predict FOM behavior if

the flow itself is not predictable. Thus, variability in the FOM

provides an anticipated lower bound on ROM performance for

the reproduction problem.

5.1 Spatio-temporal chaos

As pointed out in the introduction, we classify a flow to be

spatio-temporal chaotic by examining its consistency in mean

flow over various time windows. (We use this simple metric

here for convenience—we have also examined the flow fields

and the time traces of multiple QOIs.) Here, we explore how

lack of consistency influences four QOIs, mean Nu, Std(Nu),

mean temperature fluctuation, and mean TKE, at three

successive time windows, W1, W2 and W3. These quantities

are used to indicate the variability in the FOM. As with the

FIGURE 7
Behavior of the predicted Std(Nu) with θg. (A): G-ROM, C-ROM and LDF-ROM estimation at Ra = 1 × 104 with eight anchor points. (B): G-ROM
and LDF-ROM estimation at Ra = 8 × 104 with six anchor points. (C): G-ROM and LDF-ROM estimation at Ra = 3 × 105 with six anchor points.

FIGURE 8
POD-hGreedy performance comparison between G-ROM, C-ROM and LDF ROM for the parametric problem parameterized with Ra at
θg = 90° and Pr = 7.2. (A–D) Behavior of the relative H1 error in predicted mean flow, predicted mean Nu, Std(Nu) and mean temperature
fluctuation based on five anchor points. (N = 80, Rap1 � 2 × 105, Rap2 � 7 × 105, Rap3 � 2.5 × 105, Rap4 � 3.5 × 105, Rap5 � 5 × 105 for C-ROM and
LDF-ROM and Rap5 � 4.5 × 105 for G-ROM).
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preceding cases, we consider averaging times of 500 CTUs for

each of the three windows. The starting time forW1 differs with

given parameters as some cases take a longer time to reach a

statistically steady state. For example, for Pr = 0.71 at Ra = 1.8 ×

104 and θg = 90°, the flow is chaotic until 6,000 CTUs and then

becomes periodic.

Figures 9A–D show the behavior of the four QOIs with Ra at

three Pr for θg = 90°. Pr = 0.07 is denoted as green line, Pr = 0.71 is

denoted as orange line, while Pr = 7.2 is denoted as blue line.

Window W1 is denoted by a solid line, W2 by a dashed line, and

W3 by a dotted line.

From Figures 9A–D we can see the following:

1) For Pr = 0.07 the QOIs are fairly consistent except for Ra ∈
[3 × 104, 5 × 104].

2) For Pr = 0.71, we find large variability in Std(Nu), mean

temperature fluctuation and mean TKE for Ra > 2 × 104.

3) Pr = 7.2 exhibits the least variability.

For Ra where we find that the QOI variability is high, we have

also examined the mean flow at multiple time windows and

found that those are also inconsistent. In all cases, the mean Nu is

quite repeatable.

Figures 9E–H show the behavior of the same QOIs as a

function of θg. For Pr = 7.2, we consider three different values of

Ra. We find for most of the θg, the variability is small except for

small θg where we also report spatio-temporal chaotic flow. For

Pr = 0.07, we find the QOIs has small variability with

Ra = 1 × 104. However, for Pr = 0.71, we find large

variability, especially in the mean TKE. Not only it has spatio-

temporal chaotic flow (for example θg = 100°), but also the

solution manifold is not smooth. By varying θg = 80° to θg =

100°, the solution changes from steady to periodic then spatio-

temporal chaotic.

From Figures 9E–H we observe the following:

1) For Pr = 0.07, Std(Nu) exhibits up to 50% variability (e.g., at

θg = 70°) while 〈Tfluc〉 and 〈TKE〉 have orders-of-magnitude

relative variability at θg = 0°.

2) For Pr = 0.71, 〈Tfluc〉 and 〈TKE〉 exhibit significant

variability for θg ∈ [60°, 110°].

3) For Pr = 7.2, the most notable variation is at θg = 30° for

Std(Nu), 〈Tfluc〉, and 〈TKE〉 at Ra = 104. Remarkably, the

higher Rayleigh number cases do not exhibit as much

variance.

As in Figures 9A–D, the mean Nu is seen to be a repeatable

QOI. It is worth noting the real challenge and sensitivity of this

class of problems is illustrated in Figure 9H. Here, we observe for

the (Pr, Ra) = (0.71, 104) case that the flow alternates from steady

FIGURE 9
Parametric variability in the FOM: green–Pr = 0.07, orange–Pr = 0.71, and blue–Pr = 7.2. Each plot reveals absence/presence of chaotic effects
by presenting statistics taken over three timewindows,W1, W2, andW3. (A–D): Ra-dependence ofmeanNu, Std(Nu), mean temperature fluctuation,
and mean TKE computed over time windows W1, W2 and W3. (E–H): θg-dependence at fixed Ra.
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to unsteady at multiple points along the one-dimensional θg
parameter space as indicated by several distinct zeros in the

TKE.In Figure 10, we further explore the influence of spatio-

temporal chaos by examining the mean-flow distributions and

ROM performance for (Pr, Ra) = (7.2, 3.5 × 104) at θg = 0° and

θg = 20°. Figures 10A–C show the behavior of the H1 error and

mean Nu predictions as a function of N, along with the mean-

velocity magnitude distributions over seven time windows for

θg = 0°. Figures 10D–F show the same quantities but with θg = 20°

and only three time windows. In Figure 10C, we observe that for

θg = 0° the number of rolls in the mean velocity field changes

across different time windows. Similar changes are observed, to a

lesser extent, at θg = 20°. Hence, both solutions are categorized as

spatio-temporal chaotic flow, but the θg = 0° case is more

significant. Comparing the mean flow error and mean Nu, we

observe that the ROM convergence for the reproduction problem

is slower (or nonexistent) at θg = 0°, while the convergence

behavior is more favorable at θg = 20°.

We have also computed the relative error between FOM

mean flows across seven time windows for the two values of θg.

The maximum relative H1 error is 34% for θg = 0° and 10% for

θg = 20°. These FOM discrepancies can be considered as a bound

on the predictive capabilities of the ROM. Indeed, the values of 34

and 10% are consistent with the lower bounds realized in

Figures 10A,D.

In Figure 11, we examine the influence of Prandtl number

by comparing results for Pr = 0.71 and 7.2 at (Ra, θg)= (3 ×

105, 90°). Figures 11A–D show the convergence behavior for

theH1 error and mean Nu as well as mean temperature and x-

velocity fields at three time windows for Pr = 0.71, while

Figures 11E–H show the same quantities for Pr = 7.2. From

the mean fields, we observe that the number of rolls and its

position changes with time window at Pr = 0.71, while

minimal variance is observed at Pr = 7.2. Hence the

solution at Pr = 0.71 is considered to be spatio-temporal

chaotic while only chaotic at Pr = 7.2. Comparing the

behavior of the relative H1 error in the mean flow and

mean Nu, we observe convergence issues in the ROM at

Pr = 0.71, while the same metrics converge at Pr = 7.2. We

further compute the relative variance between two FOM

mean flows across seven time windows for the two

considered θg. The maximum relative H1 error is 14% for

FIGURE 10
ROM performance comparison between problem having significant (θg = 0°) and less significant (θg = 20°) spatio-temporal chaotic flow at Pr =
7.2 and Ra = 3 × 105. (A–C) Behavior of the relative H1 error and mean Nu as a functions of N and magnitude of the mean velocity at multiple time
windows W1, . . . , W7 at θg = 0°. (D–F) performance for the same quantities at θg = 20°.
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Pr = 0.71 and only 1% for Pr = 7.2. This again explains why

the approximation errors are different between the two cases.

Considering these variance levels as a lower bound for the

ROM, we can view 20% error in C-ROM as acceptable. On the

other hand, the approximation error for Pr = 7.2 is able to

reach below 10%.

In summary, the results of this section show that convergence

issues and variations in the QOIs in the ROM can have high a

correlation with the flow being spatio-temporal chaotic. From

Table 1 and Figure 9, we see that Pr = 0.71 has a more

complicated solution manifold found with the other two

Prandtl numbers and also exhibits spatio-temporal chaos at a

relatively small Rayleigh number, Ra = 104.

5.2 Multiple steady-state solutions

In this section, we report the existence of multiple steady-

state solutions observed for the case (θg, Ra)=(0°, 10
4). The

variations are characterized by different numbers of

recirculation rolls, which are induced by using different initial

conditions. Figure 12 shows steady temperature solutions

generated by starting with steady solutions, χn from other

values of θg = n°, save for the χ90 case, which corresponds to a

single snapshot of the unsteady flow/temperature field at θg = 90°.

Multiple steady states are also observed for this Prandtl number

at θg = 10° and 20° and have been reported by other authors as

well [12, 14, 40].

For solution reproduction, the multiplicity of the

solutions is not an issue as long as the ROM uses the same

initial condition as the FOM. However, for parametric

problem, these multiple states could easily lead to an

incorrect (or at least, unexpected or unverifiable)

conclusion. For example, if the ROM anchor at θg = 10° is

used to approximate the solution at θg = 0°. With the initial

condition at θg = 10°, the approximate solution will be the

third temperature solution shown in Figure 12. However, if

one collects the FOM data at θg with zero initial condition,

one will consider the first temperature solution as the truth

solution. As we could consider those roll solutions as sine and

FIGURE 11
ROM performance comparison between Pr = 0.71 and Pr = 7.2 at Ra = 3 × 105 and θg = 90°. (A–D) Behavior of the relativeH1 error andmean Nu
as a functions ofN, temperature andmean x-velocity at three timewindows,W1, W2 andW3 at Pr = 0.71. (E–H): Performance for the same quantities
at Pr = 7.2.

Frontiers in Physics frontiersin.org20

Tsai and Fischer 10.3389/fphy.2022.903169

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.903169


cosine functions, the first and third solution are nearly

orthogonal; their difference is O(1) and one would thus

conclude that the pMOR had failed when it in fact had

generated a valid solution.

5.3 Discussion summary

We have noted in Table 1 the broad range of flow regimes

encountered for the tilted slot problem and in this section

have illuminated a correlation between the flow states and

predictive power of the MOR/pMOR framework. The cases

with spatio-temporal chaos are generally the most

challenging for model-order reduction and the pMOR

errors are found to be (approximately) bounded from

below by the variance observed in successive FOM

simulations performed at the same parametric point. The

development of the pMOR thus needs to be performed

with care.

Two parameterizations were considered: 1) θg-variation,

where a bifurcation exists and solution space is a blend of

unsteady and steady solutions, and 2) Ra-variation, where no

bifurcation exists and one finds only unsteady solutions. In

the θg-variation problem, accurate prediction in mean flow

and other QOIs by the pMOR was demonstrated in the Ra = 1

× 104 and Ra = 8 × 104 cases. In high Ra cases, acceptable

prediction of Nu is achieved with LDF-ROM but a small

mean-flow error is not realizable because of spatio-temporal

chaos.

The results also indicate that the LDF-ROM is a better

candidate for parametric problems with bifurcation than

C-ROM. This observation is new, yet consistent with the

results of [9], where the authors show that C-ROM is effective

for parametric problems that do not have a bifurcation. For

the parametric problem parameterized with Ra, without

spatio-temporal chaos, we find that pMOR with any of the

three methods, G-ROM, C-ROM, or LDF-ROM, is able to

predict the mean flow quite well. In this case, C-ROM is the

most accurate in mean flow prediction and other targeted

QOIs. This result is not surprising given that the solution

manifold does not have a bifurcation. Lastly, we remark that

Std(Nu) is generally the most challenging QOI of those

explored here.

From the results, we are able to make an important

observation. For parametric problems where pMOR is

successful (e.g., errors < 10%), the solution is either only

chaotic (e.g., Ra variation with θg = 90°) or the solution does

not have significant spatio-temporal chaos (e.g., θg variation

with Ra = 1 × 104, 8 × 104). Once the spatio-temporal chaos

becomes significant, the predictive power of pMOR deteriorates

and the maximum errors are dominated by variance in the truth

solution.

Although not shown here, we have also applied POD-

pGreedy to this problem. In the parametric problem

parameterized with θg, it works only in the steady case

Ra = 1 × 103. Once the unsteady solution emerges, for

example at Ra = 1 × 104, combining modes associated with

different values of θg leads to an unstable ROM even with the

Leray regularization. Although no rigorous proof is given, we

hypothesize that the issue is due to the bifurcation in solution

behavior. This point was also suggested in [9], which

empirically showed that combining modes associated with

qualitatively different behaviors might lead to poor

prediction. By contrast, when the current problem is

parameterized with Ra we find that POD-pGreedy is more

efficient than the h-refinement approach.

6 Conclusion

In this paper an error-indicated pMOR is applied to a 2D

unsteady natural convection in a tilted high-aspect ratio slot.

FIGURE 12
Different steady temperature solutions at θg = 0°, Ra = 1 × 104 and Pr = 0.71. The solutions were computed from different initial conditions, χn,
corresponding to FOM solutions at θg = n°. For n = 2, 10, 20, and 180 the solution is steady, whereas χ90 is simply a snapshot from the θg = 90° case.
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We first considered the solution reproduction problem (non-

predictive case) to demonstrate the convergence of the ROMs

and the effectiveness of the stabilization methods. We next

addressed the parametric problem (predictive case) to validate

the error indicator and, more broadly, the stabilized POD-

hGreedy procedures. Principal contributions include, 1)

extension of the error indicator proposed in [9] to

buoyancy-driven flows; 2) demonstration that Leray-

regularized Galerkin ROMs provide a robust solution

approach for this class of flows; 3) identification of spatio-

temporal chaos as a source of irreproducibility in both the

FOM and the ROM and that the variance in the FOM provides

a lower bound on the pMOR error in these cases; 4)

observation that accurate prediction (< 10%) with pMOR

is achievable if the solution in the parametric space is

either only chaotic or the spatio-temporal chaos is not

significant, regardless of whether a bifurcation exists or not.

Once the spatio-temporal chaos becomes significant, the

performance of the pMOR deteriorates and the maximum

errors of the mean flow and QOIs are dominated by the flow

chaos.

We also highlight a number of challenges that are particularly

relevant for buoyancy-driven flows and which should be taken

into consideration in the design of pMOR strategies for 3D

buoyancy driven turbulent flow. First, one needs to be aware

of potential convergence issues for the mean flow and other QOI

predictions when the FOM exhibits large-scale spatio-temporal

chaos. Second, it is difficult to combine modes associated with

different flow regimes, especially for the pGreedy case. Third,

even relatively simple (e.g., steady) flows can exhibit multiple

states at a given parameter. And fourth, there are large offline

costs both in terms of computational time and required storage

for error indicator and O(N4) costs for online-only error

indicators5.

We outline potential next steps in pMOR development for

this class of problems.

1) Extension to higher dimensional parameter space. In this

work, we considered only one-dimensional parameter

space since the pMOR behavior needed to be carefully

diagnosed; however higher dimensional parameter

spaces are more interesting for engineering

applications.

2) hp-Greedy with a bifurcation detection technique. Although

we find LDF-ROM is more efficient than C-ROM for

parametric problems that have a bifurcation, the h-

refinement strategy considered in this paper might

require an infeasible number of offline simulations as the

dimension of the parameter space increases. To tackle

complex parametrizations, more advanced sampling

strategies that combine h- and p-refinement [37],

potentially with bifurcation detection, could be

beneficial [42].
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