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We present an experimental demonstration of an optically controllable phononic low-pass
filter in a multimode optomechanical system. By coupling two spatially separated
nanomechanical resonators via optomechanical interactions, the phononic signal below
a cutoff frequency can be transferred between mechanical resonators, while the signal
above the cutoff frequency is attenuated, which resembles an electronic low-pass filter.
Moreover, the cutoff frequency is controllable by tuning the optomechanical interaction via
the intracavity field. Our results provide an essential element in phononic circuits and have
potential applications for information processing in hybrid quantum systems.

Keywords: cavity optomechanics, phononic device, multimode optomechanical system, silicon nitride membrane,
phonon filter

1 INTRODUCTION

Phonons, the carriers of heat or acoustic excitations, have attracted tremendous attention and
become an emerging research field recently [1]. In contrast to photons and electrons, phonons are
usually considered as a waste of energy and detrimental to information processing due to their
relatively short lifetime and incoherence. Owing to recent progresses of optomechanics and micro/
nano fabrication, not only the lifetime of phonon has been pushed to an unprecedented level [2–5],
but also the coherent manipulation of single quanta of sound has been realized [6–9]. Combined with
the successes of strong interactions with other types of particles [10–14], and phonon reservoir
engineering [15–18], these achievements together make phonons as a promising candidate for
classical and quantum information processing. Various phononic devices, such as phononic diodes
[19–22], logic gates [23], memories [24–27], and waveguides [28–31], have been developed in the
past few decades.

A phononic filter or mechanical filter, which is an essential ingredient for phononic circuits, has
been utilized for signal processing since the 1940s [32]. Different approaches and systems have been
used to realize phononic filters, for example, liquid helium [33], superlattices [34], coupled
mechanical resonators [35–37], and phononic crystals [38–40]. In spite of extensive studies of
phononic filters in various systems, most of them are based on purely mechanical or
electromechanical devices, the phononic filter with the photon-phonon interface is less
investigated, which could play an important role for information processing in future hybrid
quantum networks.

In this work, we present a proof-of-principle demonstration of a phononic low-pass filter in a two-
membrane-in-the-middle optomechanical system [41–43]. Such a phononic low-pass filter is based
on two spatially separated nanomechanical membranes, which are coupled through radiation
pressure induced interaction. By sending the mechanical vibration as the input signal upon one
membrane and detecting the output signal on the other, we observe that the phononic signal below a
cutoff frequency can be transferred, while the signal above the cutoff frequency is attenuated, similar
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to an electronic low-pass filter. The phase shift is also measured at
different frequencies. By analyzing the response function of such
a phononic low-pass filter, we find that it depends on the
optomechanical coupling strength, therefore, the cutoff
frequency of the low-pass filter can be simply tuned by
changing the optical intensity.

The remainder of this paper is organized as follows. In Section
2, we describe the experimental setup for the realization of the
phononic low-pass filter in the two-membrane-in-the-middle
optomechanical system. In Section 3, the theoretical model of
the two-membrane-in-the-middle system and the basic principle
of such a phononic low-pass filter are presented. In Section 4, we
show the experimental results. Section 5 serves as the conclusion.

2 EXPERIMENTAL SETUP

The phononic low-pass filter is realized in a two-membrane-in-
the-middle optomechanical system, as shown in Figure 1A. Two
flexible stoichiometric silicon nitride (SiN) membranes are placed
inside an optical Fabry-Perot cavity separately with a distance of
~60 mm. The membranes have a thickness of 50 nm and a 1 ×
1 mm2 size. The vibrational (1, 1) modes are utilized in the
experiment, and the mechanical frequencies can be tuned to
be degenerate with the piezos [44]. The optical cavity consists of
two identical mirrors with a cavity length of 140 mm and a finesse
~1,000. The cavity is driven by a red-detuned laser field, which
interacts with both membranes simultaneously due to the
dynamical backaction. Consequently, two individual

membranes are effectively coupled by the cavity field, which
provides a channel for transferring phononic information
between two membranes. The motions of membranes are
monitored by two weak probe laser fields separately.

The experimental setup is similar to the one used to study the
phonon heat transport and coupled-mode heat engine [45, 46].
The difference is that a coherent signal is used, instead of the
thermal noise. More specifically, the signal with amplitude
modulation (AM) is applied as the input signal upon one
nanomechanical membrane through the piezo. The dynamics
of two membranes are recorded in real-time by a two-channel
lock-in amplifier, as the output and reflection signals,
respectively. The schematic diagram of such a phononic low-
pass filter is shown in Figure 1B.

3 THEORETICAL MODEL

The total Hamiltonian of such a two-membrane-in-the-middle
optomechanical system in the rotating frame of the driving laser
frequency can be written as (Z � 1) [45].

Ĥ�−Δâ†â+ω0b̂
†

1b̂1+ω0b̂
†

2b̂2−g0â
†â(b̂†1+b̂1)−g0â

†â(b̂†2+b̂2)+iε(â†−â)
(1)

Here â and b̂1,2 are the annihilation operators of the cavity
mode and the mechanical oscillators, respectively. Δ � ωL − ωC is
the frequency detuning between the driving laser and the cavity
resonance. The two degenerate mechanical modes have the same
frequency ω0. g0 is the optomechanical coupling strength. ε ���������
Pκin/ZωL

√
is the driving strength, P is the input laser power, and

κin is the loss of the input cavity mirror.
When the damping rate of the cavity mode is much larger than

the mechanical damping rates, i.e., κ>>γ1,2, the cavity field
follows the dynamics of the mechanical modes adiabatically,
and can be eliminated according to Ref. [45]. Consequently,
the system can be described by an effective Hamiltonian

Ĥeff � ∑
i�1,2

(ω0 + Λ − iγi/2)b̂†1b̂i + Λ(b̂†1b̂2 + b̂
†

2b̂1) (2)

Here Λ � g2
0χeff is the effective coupling strength between

two membranes, and

χeff � Pκin/ZωL

κ2/4 + Δ2 ( Δ + ω0

κ2/4 + (Δ + ω0)2 +
Δ − ω0

κ2/4 + (Δ − ω0)2) (3)

is the effective susceptibility introduced by the intracavity field
[45–47]. According to Eq. 2, the coupled-mode equations of two
mechanical resonators can be obtained as follows

€x1 + γ1 _x1 + ω2
0x1 + 2Λω0(x2 + x1) � Fd/m (4)

€x2 + γ2 _x2 + ω2
0x2 + 2Λω0(x1 + x2) � 0 (5)

Here, x1,2 �
����
Z

2mω0

√
(b̂†1,2 + b̂1,2) is the mechanical displacement,

m is the effective mass of membrane, and Fd � F0(1 +
M cosωmt) cosω0t is the driving force upon the first
mechanical resonator with a modulation frequency ωm and

FIGURE 1 | (A) Experimental setup of the two-membrane-in-the-middle
optomechanical system. M1,2 is the membrane and Λ is effective
optomechanical coupling between twomechanical resonators. (B) Schematic
diagram of a three-terminal device as a phononic low-pass filter with
input, reflection, and output terminals.
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modulation depth M. The displacements x1,2 can be decomposed
into x1,2 � X1,2e−iω0t +X1,2

* eiω0t. Consequently, Eqs 4, 5 become

_X1 + γ1
2
X1 + iΛX1 + iΛX2 � iF0

4ω0m
(1 +M cosωmt) (6)

_X2 + γ2
2
X2 + iΛX2 + iΛX1 � 0 (7)

Eqs 6, 7 can be expressed in the frequency domain

χ−11 (ω)X1[ω] + iΛX2[ω] � iF0

4ω0m

(δ(ω) + M

2
δ(ω − ωm) + M

2
δ(ω + ωm)) (8)

χ−12 (ω)X2[ω] � −iΛX1[ω] (9)
Here, χ1,2(ω) � [γ1,2/2 + i(Λ − ω)]−1 is the susceptibility

function of mechanical resonator. By performing the inverse
Fourier transform f(t) � ∫+∞

−∞ F[ω]e−iωtdω, we can obtain
X1(t) and X2(t) in the time domain as follows

X1(t) � iF0

4ω0m
[χ1eff(0) + χ1eff(−ωm)M2 e−iωmt

+ χ1eff(ωm)M2 eiωmt] (10)

X2(t)� ΛF0

4ω0m
(χ2(0)χ1eff(0)+χ2(−ωm)χ1eff(−ωm)M2 e−iωmt

+χ2(ωm)χ1eff(ωm)M2 eiωmt) (11)

with χ1eff(ω) � [χ−11 (ω) + Λ2χ2(ω)]−1. Thus, X1(t) and X2(t)
represent the reflection and output (see Figure 1B), respectively.
We can also obtain X1(t) at Λ � 0 as the input, which is denoted
as X10(t). Therefore, the response function can be defined as the
ratio between the output and reflection, or the output and input,
which are respectively represented by

R1(ωm) � X2
*[0]X2[−ωm] +X2[0]X2

*[ωm]
X1

*[0]X1[−ωm] +X1[0]X1
*[ωm]

� Λ2
χ2
*(0)χ2(−ωm)χ1eff* (0)χ1eff(−ωm) + χ2(0)χ2*(ωm)χ1eff(0)χ1eff* (ωm)

χ1eff
* (0)χ1eff(−ωm) + χ1eff(0)χ1eff* (ωm)

(12)
and

R2(ωm) � X2
*[0]X2[−ωm] +X2[0]X2

*[ωm]
X10

* [0]X10[−ωm] +X10[0]X10
* [ωm]

� γ1
4
(γ1/2 + iωm)Λ2[χ2*(0)χ2(−ωm)χ1eff* (0)χ1eff(−ωm)

+χ2(0)χ2*(ωm)χ1eff(0)χ1eff* (ωm)] (13)

Please note that R1(ωm) and R2(ωm) only contain the
frequency components at ωm. The DC and high-order
harmonics are ignored in order to be consistent with the
experimental results. The reason why two response functions
are used is that R1 is defined to be consistent with the
experimental measurements and R2 is the typical definition for

a low-pass filter in electric circuits. As one will see that these two
response functions have similar behaviors and only slightly
different in the magnitude and the phase shift.

The magnitude (10Log|R1,2|) and phase shift (arg [R1,2]) of the
response function as a function of the modulation frequency in
the weak coupling regime are plotted in Figure 2. As one can see
in Figure 2, the magnitude has a flat response at a relatively small
frequency, and has high attenuation above a specific frequency.
By analogy to the electronic low-pass filter, we define the
frequency at which the transition occurs, i.e. the cutoff
frequency, as the magnitude is reduced by 3dB compared to
the DC response. The cutoff frequency is marked in Figures
2A,C, which is ~10 Hz. Similar to the electronic low-pass filter, a
phase shift also exists for such a phononic low-pass filter, which
indicates the output signal phase lags behind the reflection or
input signal. As one can see in Figures 2B,D, the phase shift is
−60 at the cutoff frequency. Compared to the typical passive low-
pass filter in electric circuits, the attenuation of such a phononic
filter at low frequencies is relatively large. This is due to the
relatively large reflection, which means the energy of the input
signal partly remains in membrane 1 rather than completely
transferring to membrane 2. This situation can be circumvented
by introducing mechanical gain and breaking Lorentz
reciprocity [20].

When the coupling strength Λ is relatively large, and beyond
the critical point, i.e., Λ2 − (γ1 − γ2)2/16 � 0, the system enters
into the strong coupling regime, where the normal modes
become nondegenerate with the eigenfrequencies ω+ � ω0

and ω− � ω0 + 2Λ [45]. Figure 3 illustrates the response
function as a function of ωm in the strong coupling regime.
In contrast to the weak coupling, the magnitude increases
gradually as ωm becomes larger, and reaches a maximum
value at ωm � 2|Λ|. As ωm is further enhanced, the magnitude
decreases, as shown in Figures 3A,C. Although the magnitude
doesn’t have a flat response at low frequencies as the weak
coupling case does, we can still define a cutoff frequency similar
to the weak coupling case. The reason why there is a peak in the
magnitude of the response function is due to the fact that the
mechanical power spectrum splits, i.e., the normal mode
splitting, in the strong coupling regime [46]. This means that
the mechanical susceptibility is modified to be two peaks instead
of a single peak in the weak coupling regime. The peaks shown
in Figures 3A,C correspond to the situation when sidebands
induced by AM are in resonance with the normal modes. In
contrast to the weak coupling case, the phase shift at the cutoff
frequency is −140, as shown in Figures 3B,D.

4 EXPERIMENTAL RESULTS

The displacements of membranes x1,2 can be decomposed into
x1,2(t) � Xlock

1,2 (t) cosωot − Ylock
1,2 (t) sinωot, where Xlock

1,2 and Ylock
1,2

are the quadrature components of the lock-in amplifier, and the
reference frequency is tuned to be resonant with the mechanical
frequency. Figure 4 shows the amplitude of the measured signal,
i.e.

���������������
(Xlock

1,2 )2 + (Ylock
1,2 )2

√
, as a function of time at different ωm. The
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red and blue curves represent the signals measured on
membranes 1 and 2, respectively. As one can see in Figure 4,
the shift lag between twomechanical resonators becomes larger as
ωm increases. The phase shift in Figures 4A–D are −0.5°, −55°,

−105°, and −145°, respectively. In addition, the amplitude is
reduced at a relatively high ωm. It is worth mentioning that
the modulation frequency ωm is what we are interested in rather
than ω0, which is the carrier frequency.

FIGURE 2 | (A) The magnitude and (B) the phase shift of the response function R1 as a function of ωm. (C) The magnitude and (D) the phase shift of the response
function R2 as a function of ωm. The dashed lines are used to indicate the cutoff frequency. The parameters for the theoretical simulations are Λ = ‒2π×1 Hz, γ1 =
2π×6 Hz, and γ2 = 2π×12 Hz.

FIGURE 3 | (A) The magnitude and (B) the phase shift of the response function R1 as a function of ωm. (C) The magnitude and (D) the phase shift of the response
function R2 as a function of ωm. The dashed lines are used to indicate the cutoff frequency. The parameters for the theoretical simulations are Λ = ‒2π×15 Hz, γ1 =
2π×6 Hz, and γ2 = 2π×12 Hz.
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By extracting the amplitude and phase information of both
membranes at different ωm, we can plot the measured
magnitude and phase shift of the response function R1 as a
function of ωm. Figures 5A,B illustrate the experimental

measurements for the weak coupling regime (Λ = ‒
2π×1 Hz), and Figures 5C,D are for the strong coupling
regime (Λ = ‒2π×15 Hz). The experimental measurements
agree with the theoretical simulations very well (see Figures

FIGURE 4 | The measured signals of two mechanical resonators as a function of time at different modulation frequencies (A) ωm = 2π×0.1 Hz, (B) ωm = 2π×17 Hz,
(C) ωm = 2π×25 Hz, and (D) ωm = 2π×40 Hz. The red and blue curves represent the signals measured on membranes 1 and 2, respectively. The parameters for the
experimental measurements are Λ = ‒2π×15 Hz, γ1 = 2π×6 Hz, and γ2 = 2π×12 Hz, and M = 0.6.

FIGURE 5 | (A,B) The measured magnitude and phase shift of the response function R1 as a function of ωm in the weak coupling regime (Λ = ‒2π×1 Hz). (C,D) The
measured magnitude and phase shift of the response function R1 as a function of ωm in the strong coupling regime (Λ = ‒2π×15 Hz). The dashed lines are used to
indicate the cutoff frequency. Other experimental parameters are the same as in Figure 4.
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2, 3). In both cases, the response is attenuated rapidly above a
critical frequency, accompanying with a phase shift. The
difference is that the magnitude has a flat response at small
frequencies in the weak coupling regime, while the magnitude
has a peak response in the strong coupling regime. Moreover,
the cutoff frequency is enhanced in the strong coupling regime
compared to the weak coupling regime.

Figure 6 presents the cutoff frequency derived from R1 as a
function of |Λ|. The blue dots are the experimental data and the
black curve is the theoretical calculation. According to Figure 6, the
cutoff frequency can be widely tuned by changing |Λ|, which can be
realized by simply modifying the input laser power. The cutoff
frequency approaches a constant (~10Hz) when |Λ| is close to zero,
and increases linearly at a large |Λ|. Although the cutoff frequency
demonstrated in this work is in the range ofHz, themethod is universal
and the cutoff frequency can be extended to a much higher frequency
by using mechanical resonators with frequencies at gigahertz [11].

5 CONCLUSION

A phononic filter is an important component in the phononic
circuits for information processing. We have demonstrated a
controllable phononic low-pass filter with cavity
optomechanics. The phononic low-pass filter consists of two
flexible nanomechanical membranes. The signal applied on
one mechanical resonation can be transported to the other
over a long distance through light by utilizing cavity-mediated
optomechanical interactions. Meanwhile, such a
transportation of signal shows a characteristic response
function, which is analogous to the low-pass filter in
electric circuits. The studies of phononic filters in cavity
optomechanical systems could lead to useful tools for
classical and quantum information processing.
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