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Biota are found in glaciers, ice sheets and permafrost. Ice bound micro-organisms evolve
in a complex mobile environment facilitated or hindered by a range of bulk and surface
interactions. When a particle is embedded in a host solid near its bulk melting temperature,
a melted film forms at the surface of the particle in a process known as interfacial
premelting. Under a temperature gradient, the particle is driven by a thermomolecular
pressure gradient toward regions of higher temperatures in a process called thermal
regelation. When the host solid is ice and the particles are biota, thriving in their
environment requires the development of strategies, such as producing exopolymeric
substances (EPS) and antifreeze glycoproteins (AFP) that enhance the interfacial water.
Therefore, thermal regelation is enhanced and modified by a process we term bio-
enhanced premelting. Additionally, the motion of bioparticles is influenced by chemical
gradients influenced by nutrients within the icy host body. We show how the overall
trajectory of bioparticles is controlled by a competition between thermal regelation and
directed biolocomotion. By re-casting this class of regelation phenomena in the stochastic
framework of active Ornstein-Uhlenbeck dynamics, and using multiple scales analysis, we
find that for an attractive (repulsive) nutrient source, that thermal regelation is enhanced
(suppressed) by biolocomotion. This phenomena is important in astrobiology, the
biosignatures of extremophiles and in terrestrial paleoclimatology.
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INTRODUCTION

Ice sheets are an essential reservoir of information on past climate and they contain an important
record of micro-organisms on Earth, recording ice microbes and their viruses over long periods [1,
2]. In these extreme environments, the abundance of virus is well correlated with bacterial
abundance, but is 10–100 times lower than in temperate aquatic ecosystems [3]. Even in these
harsh conditions, the virus infection rate is relatively high [4], leading to the expectation of low long-
term survival rates. However, recent studies have shown that some viruses develop survival strategies
to maintain a long-term relationship with their hosts [4, 5], possibly up to thousands of years [6]. For
example, viruses such as bacteriophages can switch to a lysogenic life strategy enabling them to
replicate and maintain themselves in the bacterial population without lysis over multiple generations
[4]. Moreover, among these viruses some can provide immunity to their hosts against other viruses
[4, 7], or manipulate their metabolism to facilitate nutrient acquisition by affecting motility genes [6].
Indeed, motile biota are found to be active in ice for substantial periods. For example, recently a
30,000 year old giant virus Pithovirus sibericum was found in permafrost along with microbes and
nematodes, and viable bacteria have been found in 750,000 year old glacial ice. Basal ice often
contains subglacial debris and sediment, which serve as a source of nutrients and organic matter,
providing a habitat for micro-organisms adapted to subfreezing conditions [8, 9]. Additionally, the
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microbiomes of sediment rich basal ices are distinct from those
found in glacial ice and are equivalent to those found in
permafrost [8], expanding the nature of subfreezing habitats.

Ice cores provide the highest resolution records of past climate
states [10–15]. Of particular relevance to our study is their role as
a refuge for micro-organisms, from the recent past [16, 17] to
millennia [18–20]. Ice microbes are taxonomically diverse and
have a wide range of taxonomic relatives [9, 19, 21–23]. Common
algae taxa are centric and pennate diatoms, dinoflagellates and
flagellates [24–26], whereas common bacterial taxa are
pseudomonadota, actinobacteria, firmicutes and bacteroidetes
[6, 27]. Many of these microbes have different motility
mechanisms [28, 29] from swimming (e.g., Chlamydomonas
nivalis [30] or Methylobacterium [6, 31, 32]) to gliding (e.g.,
diatoms [33, 34] or Bacillus subtilis [19, 35]), which can be used to
assess their locomotion. Examples of biological proxies include
diatoms [36] and bacteria colonies [37, 38], reflecting a unique
range of physical-biological interactions in the climate system.
Therefore, understanding the relationship between the evolution
of ice bound micro-organisms and proxy dating methods is a key
aspect of understanding the covariation of life and climate.

Finally, such understanding is essential for the study of
extraterrestrial life. In our own solar system, despite the debate
regarding the existence of bulk water on Mars [39], thin water
films, such as those studied here, hold the most potential for
harboring life under extreme conditions. Indeed, lipids, nucleic
acids, and amino acids influenced by active motility may serve as
biosignatures of extra terrestial life. Combining measurements of
diffusivity-characterized-motility [40, 41] with bioparticle
distribution observed on Earth, provides crucial information
for development of new instrumentation to detect the presence
of extra terrestrial life [41, 42]. Indeed, recently micro-organisms
trapped in primary fluid inclusions in halite for millions of years
have been discovered [43], providing promise for both terrestrial
and extraterrestrial biosignature detection.

When a particle is embedded in ice near the bulk melting
temperature, the ice may melt at the particle-ice surface in a
process known as interfacial premelting [44]. The thickness of the
melt film depends on the temperature, impurities, material
properties and geometry. A temperature gradient is
accompanied by a thermomolecular pressure gradient that
drives the interfacial liquid from high to low temperatures,
and hence the particle migrates from low to high temperatures
in a process called thermal regelation [44–48]. Thermal regelation
of inert particles plays a major role in the redistribution of
material inside of ice, which has important environmental and
composite materials implications [44–48]. Moreover, surface
properties are central to the fact that extremophile organisms
in Earth’s cryosphere–glaciers, sea ice and permafrost–develop
strategies to persist in challenging environments. Indeed, many
biological organisms secrete exopolymeric substance (EPS) [49]
or harness antifreeze glycoproteins (AFP) [50, 51] to maintain
interfacial liquidity. For example, sea ice houses an array of algae
and bacteria, some of which produce EPS to protect them at low
temperature and high salinity [52, 53]. Additionally, the
enhanced liquidity associated with high concentrations of EPS

alters the physical properties of sea ice and thereby play a role in
climate change [54, 55].

In bulk solution, active particles act as simple microscopic
models for living systems and are particularly accurate at
mimicking the propulsion of bacteria or algae [56–60]. By
converting energy to motion using biological, chemical, or
physical processes, they exhibit rich collective emergent
motion from ostensibly simple rules [61, 62]. Algae and
bacteria operate in complex geometries and translate
environmental conditions into microscopic information that
guides their behavior. Examples of such information include
quorum sensing (e.g., particle population density), used by
bacteria to regulate biofilm formation, defense against
competitors and adapt to changing environments [63–65];
chemotaxis (e.g., concentration gradients of nutrients), used
by algae/bacteria to direct their motion toward higher
concentrations of beneficial, or lower concentrations of toxic,
chemicals [66–70]. It is important to emphasize that factors
such as surface adhesion, salinity, the segregation of impurities
of all types from the ice lattice, among other factors [67, 69, 71,
72], make our treatment of chemotaxis a simplified starting
point. However, field samples and laboratory experiments have
shown that cell motility is influenced by chemotaxis at low
temperature [40, 73, 74]. Thus, although there are many
complicated interactions that provide scope for future work,
the basic role of chemotaxis in the distribution of biota in ice
must start with a self-consistent framework, which is the focus
of our work.

The confluence of thermal regelation, bio-enhanced
premelting and intrinsic mobility underlie our study. Indeed,
intrinsic mobility and chemotaxis may compete with thermal
regelation, which constitutes a new area of research–ice bound
active particles in premelting ice, as illustrated in Figure 1.
Moreover, including micro-organism protection mechanisms
that enhance interfacial liquidity, such as the secretion of EPS,

FIGURE 1 | Schematic of few active particles embedded in ice under an
external temperature gradient ∇T along the ~z-axis. The nutrient source is
shown by the purple gradient. The external temperature gradient induces a
drift velocity, and particles move toward regions of higher temperature, in
a process known as thermal regelation (black arrow). An additional drift
velocity is associated with particle motion towards higher concentration of
nutrients (black dotted arrow). Thus, depending on a particle’s position, and
the background temperature and nutrient gradients, these two drift effects
can compete or amplify each other.
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constitute a unique class of regelation phenomena. Finally,
treating this corpus of processes quantitatively is particularly
relevant for climatology and the global carbon cycle [75, 76].

Our framework is the active Ornstein-Uhlenbeck particle
(AOUP) [77–83]. The active force is governed by an Ornstein-
Uhlenbeck process with magnitude ~Da, which is the active
diffusivity. This force can be compared to a colored noise process
[79, 84]. In addition to the active diffusivity, the AOUP is
characterized by a time τa, which defines the noise persistence,
fromwhich the system switches from a ballistic to a diffusive regime.
The active diffusivity ~Da and characteristic time τa can be measured
experimentally [85–87]. The AOUP has been shown to provide
accurate predictions for a range of complex phenomena [78, 80, 81,
88], and is theoretically advantageous due to its Gaussian nature
[79]. These issues motivate our use of the AOUP model framework
to describe the motion of active particles in ice under an external
temperature gradient with a nutrient source. We analyze these
particles in three dimensions using a multiple scale expansion to
derive the associated Fokker-Planck equation.

The paper is organized as follows. In order to make our
treatment reasonably self-contained we note that we are
generalizing our previous approach [48, 89], which we recover
in the appropriate limit. Thus, in §2 we introduce the active
Ornstein-Uhlenbeck model for bio-premelted particles and in §3
we derive the associated Fokker-Planck equation using a multiple
scale expansion. We then compare our analytic and numerical
solutions after which, in §4, we draw conclusions.

METHODS

Thermal regelation is understood as a consequence of the
premelted film around a particle, originally treated as inert,
that 1) executes diffusive motion in the ice column with
diffusivity ~D(~z)I, where I is the identity matrix, and 2)
experiences a drift velocity ~v(~z) � U(~z)~̂z parallel to the
temperature gradient [48]. Therefore, regelation biases the
motion of an active particle by the drift velocity U(~z)~̂z.

For inert particles with a sufficiently large number of moles of
electrolyte impurities per unit area of surface, Ni, the premelted
film thickness d ∝ Ni [48, 90]. However, the production of EPS/
AFP enhances liquidity at the ice surface by increasing the
impurity concentration [9, 54, 72, 91], which we treat here
using an enhancement factor as N = nNi, which gives

d � RgT
2
m N

ρlqmΔT
, (1)

where the universal gas constant is Rg, the latent heat of fusion per
mole of the solid is qm, the molar density of the liquid is ρl, the
undercooling is ΔT = Tm − T with Tm = 273.15K the pure bulk
melting temperature and T the temperature of ice.

The velocity and premelting-controlled diffusivity are given by

U ~z( ) � −A3

A3
2

1

~z3
and (2)

~D ~z( ) � RgTmN( )3
8π]R4A3

2

kBTm

~z3
, (3)

respectively, where A2 � ρlqm
|∇T|
Tm

and A3 � ρsqm|∇T|(RgTmN)3
6]RTm

,
with |∇T| the external temperature gradient. The viscosity of
the fluid is ], the particle radius is R and kB is the Boltzmann
constant. Here, ρsqm ~ 334 × 106 J m−3 [48]. The evolution of the
particle position ~r � (~r1, ~r2, ~r3) � (~x, ~y, ~z) and its activity are
described by two overdamped Langevin equations.

d

d~t
~r ~t( ) � βD∇~r

~C ~r,~t( ) + ����
2 ~Da

√
~η + ~v ~z( ) +

������
2 ~D ~z( )

√
ξp ~t( ) and

(4)
d

d~t
~η ~t( ) � − 1

τa
~η ~t( ) + 1

τa
ξa ~t( ). (5)

The first term on the right-hand side of Eq. 4 treats the chemotaxis
response, representing the effect of the nutrient source of
concentration ~C on the particle dynamics, where βD is the
chemotactic strength [92–95], which we treat as a constant
determined by the parameters in our system. We note, however,
that the transport properties of sea- and glacial-ice depend on their
unique phase fraction evolution [96–99], which would clearly
influence the effective–porosity dependent βD. In the ideal case,
wherein the nutrient source is isotropic and purely diffusive, we have

z

z~t
~C ~r,~t( ) � ~Dch∇

2
~r
~C ~r,~t( ), (6)

where ~Dch is the nutrient diffusivity. The activity, or self-
propulsion, is given by the term

����
2 ~Da

√
~η in Eq. 4, with ~Da the

active diffusivity. The latter represents the active fluctuations of
the system, such as those originating in particular processes
described in Refs. [100–103]. Nutrient sources, such as
dissolved silica, oxygen, nitrogen and methane, play a vital
role in the life of ice-bound micro-organisms, such as algae
and bacteria [104–109]. Here we assume that ~Dch > ~Da,
consistent with [110–112], and ~Dch > ~D(~z). The function ~η �
(~η1, ~η2, ~η3) is described by an Ornstein-Uhlenbeck process, with
correlations given by

〈η̃i ~t′( )η̃j ~t( )〉 � δij
2τa

e−
|~t′−~t|
τa , (7)

where τa is the noise persistence as noted above. In the small τa
limit, ~η reduces to Gaussian white noise with correlations
〈~ηi(t′)~ηj(t)〉 � δijδ(~t′ − ~t). In contrast, ~η does not reduce to
Gaussian white noise when τa is finite, and Eq. 4 does not reach
equilibrium. Hence, τa controls the non-equilibrium properties of
the dynamics [79, 80]. Finally, the random fluctuations in Eqs 4, 5
are given by zero mean Gaussian white noise processes
〈ξpi

(~t′)ξpj
(~t)〉 � δijδ(~t′ − ~t) and 〈ξai(~t′)ξaj(~t)〉 � δijδ(~t′ − ~t).

The Langevin Eqs 4, 5, allow us to express the probability of
finding a particle at the position ~r � (~r1, ~r2, ~r3) � (~x, ~y, ~z) at a
given time ~t through the Fokker-Planck equation, which
describes the evolution of the probability density function
P(~r, ~η,~t|~r0, ~η0,~t0), with the initial condition
P(~r, ~η,~t � ~t0|~r0, ~η0,~t0) � δ(~r − ~r0)δ(~η − ~η0). To simplify the
notation, we write the conditional probability as
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P(~r, ~η,~t|~r0, ~η0,~t0) ≡ P(~r, ~η,~t) and eventually arrive at the
following system of coupled equations

z

z~t
P ~r, ~η,~t( ) � −βD∇~r · P ~r, ~η,~t( )∇~r

~C ~r,~t( )[ ]
− z

z~r3
~v ~r3( )P ~r, ~η,~t( )[ ] − ����

2 ~Da

√
~η · ∇~rP ~r, ~η,~t( )

+∇2
~r
~D ~r3( )P ~r, ~η,~t( )[ ]

+ 1
τa
∇~η · ~ηP ~r, ~η,~t( )[ ] + 1

2τ2a
∇2

~η
P ~r, ~η,~t( ) and

(8)
z

z~t
~C ~r,~t( ) � ~Dch∇

2
~r
~C ~r,~t( ). (9)

Equations 8, 9 describe the space-time evolution of the
probability of finding a particle and the concentration of
nutrients respectively, akin to those of [77, 79, 94], but
including the effects of thermal regelation discussed above.
Both equations contain microscopic and macroscopic scales.
The regime of interest is the long time behavior, computed by
deriving the effective macroscopic dynamics as described next.

RESULTS

Method of Multiple Scales
The macroscopic length characterizing the heat flux is

L � Tm

|∇T|. (10)

The particle scale l is such that l≪ L, and hence their ratio defines
a small parameter ϵ

ϵ � l

L
. (11)

We use the microscopic length l and a characteristic time τ,
determined a posteriori, and introduce the following
dimensionless variables

η � ��
τa

√
~η, r � ~r

l
, t � ~t

τ
, v � ~v

u
, va � ~va

vac
, D � ~D

Dc
,

Dch �
~Dch

Dn
and C �

~C
ch
, (12)

where ~va �
���
2 ~Da
τa

√
[113, 114], vac is the characteristic active

velocity, u and Dc are the characteristic values of the
regelation velocity and the premelting enhanced diffusivity
respectively, and Dn and ch are the characteristic values of the
diffusivity and nutrient concentration respectively. With these
scalings, Eqs 8, 9, become

Pl
z

zt
P � −βD

ch
Dc

∇r · P∇rC[ ] − Pe
z

zr3
vP[ ] − Pavaη · ∇rP

+∇2
r DP[ ] + PA∇η · ηP[ ] + 1

2
PA∇

2
ηP (13)

and (14)

Pch
z

zt
C � Dch∇

2
rC, (15)

in which we have the following dimensionless numbers,

Pe � ul

Dc
, Pa � vacl

Dc
, Pl � l2

Dcτ
, PA � l2

Dcτa
andPch � l2

Dnτ
. (16)

We identify four characteristic time scales: tdiffl � l2/Dc,
tadvl � l/u, tdiffL � L2/Dc and tadvL � L/u, associated with
“microscopic” diffusion and advection on the particle scale, l,
and “macroscopic” diffusion and advection over the thermal
length scale, L. Nutrient and premelting enhanced diffusivity are
taken to operate on the same time scale; tdiffnl,L ~ tdiffl,L . The Péclet
number represents the ratio of the characteristic time for
diffusion to that of advection, and those associated with
regelation and activity are Pe and Pa respectively, and can be
defined over both length scales,

Pe � tdiffl

tadvl

and PL
e �

tdiffL

tadvL

. (17)

The temperature gradient across the entire system drives thermal
regelation and hence advection dominates on the macroscopic
scale, so that PL

e � O(1/ϵ), or equivalently, tadvL � ϵtdiffL ~ ϵtdiffnL .
Whence, Pe � O(1), or equivalently, tadvl � tdiffl ~ tdiffnl . On the
macroscopic scale PL

e becomes large, as ϵ tends to zero, and thus
we use the macroscopic advection time τ � tadvL as our
characteristic time, so that Péclet numbers based on L are
O(1/ϵ) and those based on l are O(ϵ). In consequence, Eqs
13, 15 become leading to PL � O(1/ϵ) and Pl � O(ϵ), as well as
Pch
L � O(1/ϵ) and Pch

l � O(ϵ). The system of Fokker-Planck
equations, Eqs 13–15, becomes

ϵ z

zt
P � −βD

ch
Dc

∇r · P∇rc[ ] − z

zr3
vP[ ] − Pavaη · ∇rP

+∇2
r DP[ ] + PA∇η · ηP[ ] + 1

2
PA∇

2
ηP and

(18)

ϵ z

zt
C � Dch∇

2
rC. (19)

Now, we let R � ~r/L describe the macroscopic length scale, and
T � ~t/tadvl describe the microscopic time scale, leading to the
following stretching of the microscopic scales;

r � 1
ϵ R and T � 1

ϵ t. (20)

Next, we use a power series ansatz for the state variables,

P � P0 + ϵP1 + ϵ2P2 + h.o.t. and (21)
C � C0 + ϵC1 + ϵ2C + h.o.t., (22)

to derive a system of equations at each order in ϵ [115], which for
the concentration of nutrients, Eq. 19, are

O ϵ0( ): Dch∇
2
rC0 � 0, (23)

O ϵ1( ): Dch∇
2
rC1 � z

zT
C0 − 2Dch∇r · ∇RC0 and (24)
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O ϵ2( ): Dch∇
2
rC2 � z

zT
C1 + z

zt
C0 − 2Dch∇r · ∇RC1 −Dch∇

2
RC0,

(25)
shown to second order. We take the approach described in [116,
117] to solve Eqs 23–25. We integrate by parts over the
microscale variables r and use the periodic boundary
conditions to obtain the so-called weak formulation [118] of
the leading order Eq. 23, the solution of which relies on the
following product ansatz

C0 r,R, T, t( ) � ζ r( )c0 R, T, t( ). (26)
The existence and uniqueness of C0 is ensured using the Lax-
Milgram theorem [118], also known as the solvability condition
or the Fredholm alternative [116]. Thus, C0 is constant over
C0(r,R, T, t) � C0(R, T, t). The solvability condition for the
equation at O(ϵ) is

∫ dr ζ
z

zT
c0( ) � 0, (27)

from which we find that c0 is stationary over T, leading to
C0(R, T, t) � C0(R, t) and C1(R, T, t) � C1(R, t). Substituting C1
into the O(ϵ2) Eq. 25 and using the solvability condition, gives
nutrient diffusion on the macroscale as

z

zt
c0 � Dch∇

2
Rc

0, (28)

showing that, as expected, the homogenization procedure is
consistent with the well-known self-similar behavior of
diffusion [119]. The order by order equations for the
probability density function described by Eq. 18 are simplified
by the observation that C0 and C1 do not depend on r, and C0 only
contributes at order O(ϵ2), and hence we obtain

O ϵ0( ): LP0 � 0, (29)
O ϵ1( ): LP1 � z

zT
P0 + βD

ch
Dc

∇r · P0∇RC
0[ ] + z

zR3
vP0[ ] + Pavaη · ∇RP

0

−2∇r · ∇R DP0[ ], and

(30)
O ϵ2( ): LP2 � z

zT
P1 + z

zt
P0 + βD

ch
Dc

∇r · P1∇RC
1[ ] + ∇r · P0∇RC

0[ ] + ∇R · P0∇RC0[ ]{ }
+ z

zR3
vP1[ ] + Pavaη · ∇RP

1 − 2∇r · ∇R DP1[ ] − ∇2
R DP0[ ],

(31)

where L � M +Q, with M � − z
zr3

v − Pavaη · ∇r + ∇2
rD, and

Q � PA∇η · η + PA
2 ∇

2
η.

Finally, as shown in Supplementary Material Section S1, upon
substitution of P1 into Eq. 31 and using the solvability condition,
we obtain the effective macroscopic dynamics as

z

z~t
ρ � −βD∇~r · ρ∇~r~c[ ] − z

z~z
~vρ[ ] + ∇2

~r
~Da + ~D( )ρ[ ] and (32)

z

z~t
~c � ~Dch∇

2
~r
~c, (33)

which are the dimensional forms of Eqs 31, 28 respectively. These
capture the long time behavior wherein the active force is treated

through the effective diffusivity, which is enhanced by thermal
regelation, consistent with our previous work [89] and that in
active matter systems generally [57, 78, 85].

Equations 32, 33 can be mapped onto the well-known
Keller–Segel equations for chemotaxis [93–95, 120], where ρ is
the cell density and the sign of βD determines whether a cell is
attracted or repelled by the nutrient. Finally, when nutrients are
neglected, βD = 0, we recover our previous results [48,
89].Although Eq. 32 has an analytical solution in the large
Péclet number limit, which previously allowed us to study the
effect of the activity ([48, 89] or Supplementary Material Section
S2), here we fix the activity and focus on the competition between
thermal regelation and bio-locomotion that require solving Eqs
32, 33 numerically. We show dimensional results because of our
specific interest in these processes in ice.

In the absence of nutrients, βD = 0, Figure 2 shows how the
distribution of bio-particles parallel to the temperature gradient
(the ~z-axis) is influenced by EPS/AFP production, which is
modeled as a surface colligative effect. Namely, with Ni =
50μMm−2 and four biological enhancement factors n ∈ {1, 2,
3, 4}. The active diffusivity is ~Da � 100 ~D and the particle radius is
R = 9.0, ×, 10−6 m.

Figure 3 shows the evolution of the nutrient concentration
along the ~z-axis computed from Eq. 33, at ~x � ~y � 0. The
nutrients are centered at ~z0 � 55m at ~t � 0 and we use a
nutrient diffusivity of ~Dch � 10−10m2s−1 [121–124].

In order to study the effect of nutrients on bio-locomotion, we
fix the interfacial concentration of impurities and vary the
chemotaxis strength βD, where nutrients either attract (βD > 0)

FIGURE 2 | Consequences of bio-enhanced premelting in the absence
of nutrients (βD = 0). The evolution of the probability density along the ~z-axis,
computed from Eq. 32 with Ni = 50μM m−2 and four biological enhancement
factors n ∈ {1, 2, 3, 4}, where N = nNi. The probability density is shown at
~x � ~y � 0 and at time ~t � 300 years. The analytic solution (solid lines), (see
Supplementary Material Section S2), is compared with the numerical
solution (dots) of Eq. 32. The particle radius is R = 9.0, ×, 10−6 m.
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or repel (βD < 0) the bio-particles. Because we are interested in the
situation wherein the effects of chemotaxis compete with
regelation, this constrains the magnitude of βD as follows. We
ask for what order of magnitude of βD are the typical chemotactic
speeds approximately the same as the regelation velocity in Eq. 4.

Figure 3 shows the Gaussian solution of the concentration field,
with a flux that becomes arbitrarily small at long times,
dominated by the algebraic contribution to
∇~r

~C(~r,~t)∝xt−3/2 exp(−x2

t ) ~ xt−3/2. For the parameters studied
here, the regelation speeds are 10−12 − 10−10m s−1 [48, 89], and
hence we capture this same range in βD∇~r

~C(~r,~t), with |βD| =
10−10 m2M−1s−1, which is realized across a large time span
wherein ∇~r

~C(~r,~t) varies by several orders of magnitude. This
is also reflected in the dimensionless ratio βD

ch
Dc
in Eq. 13. Namely,

for micron to nm scale premelted films surrounding micron sized
particles Dc ranges from about 10−14 − 10−13 m2s−1, and the
nutrient concentration over relevant time scales has mean values
ranging over 10−3 − 10−2 M. Therefore, βD

ch
Dc

ranges from 1 to 100
and hence chemotaxis is on a similar footing to regelation under
these circumstances. For all cases considered here we use βD =
±10−10 m2M−1s−1 for attractive/repulsive chemotaxis.

For attractive chemotaxis (βD > 0), we show in Figure 4A the
dependence of ρ(~r,~t) along the ~z-axis parallel to the temperature
gradient and at ~x � ~y � 0, with the concentration of nutrients
centered at ~z � 55m. For the same conditions in the absence of
chemotaxis, the net displacement from low to high temperatures
due to regelation is approximately 10 m [89]. We see here the
chemo-attractive modulation of ρ(~r,~t) during this displacement,
which “pulls up” the high temperature (low ~z) tail towards the
lower temperature (large ~z) but higher concentration regions
centered at ~z � 55m. The associated asymmetry depletes/attracts
the low temperature regions at larger ~z and concentrates the high
temperature regions at smaller ~z, and is reflected in the evolution
towards a sigmoidal region transecting the source at ~z � 55m. As
the maximum of ρ(~r,~t) advects through the source region it first
sharpens, due to the chemo-attraction from the source “behind” it

FIGURE 3 | Evolution of the nutrient concentration (in units of M, or
mol m−3) along the ~z-axis, computed from Eq. 33, at ~x � ~y � 0. At ~t � 0, the
nutrient concentration is centered at ~z0 � 55m and the nutrient diffusivity is
~Dch � 10−10m2s−1.

FIGURE 4 | Effect of nutrients on the particle dynamics. Evolution of the probability density function along the ~z-axis, at ~x � ~y � 0, for two values of the chemotaxis
strength βD (A) βD = 10−10 m2M−1s−1 > 0 (attractive) and (B) βD = −10−10 m2M−1s−1 < 0 (repulsive). At~t � 0 the distribution is centered at ~z0 � 60m. The solution of Eq. 32
is computed using a finite difference method. The particle radius is R = 10−6 m, the concentration of impurities is N = 100μM m−2, the temperature gradient is |∇T| =
0.1K m−1 and the active diffusivity is ~Da � 100~D.
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at ~z � 55m, and then begins to spread out again because of the
decay in the chemotactic gradient in time as seen in Figure 3 and
discussed above.

For repulsive chemotaxis (βD < 0), we see in Figure 4B the broad
sharpening of the initial distribution in the lower temperature (large
~z) regions as it regelates/advects into the diffuse repulsive tail
of nutrient field to the right of the source region centered at
~z � 55m. However, because the initial high temperature (small ~z)
tail of ρ(~r,~t) interacts with the nutrient source region at ~z � 55m,
chemo-repulsion quickly drives particles towards high temperature
(small ~z) regions, and is clearly reflected in the creation of a local
maximum. This maximum advects towards high temperature with a
decaying amplitude and width due to the decay in the chemotactic
gradient in time as seen in Figure 3.

In Figure 5, we show the combined effects of EPS/AFP surface
enhancement of impurities in the absence of chemotaxis (βD = 0),
as shown in Figure 2, and the influence of chemotaxis on particle
dynamics for fixed surface impurities, as shown in Figure 4. As
we vary the surface concentration of impurities we observe the
same basic features as described in Figures 2, 4 and hence the
same physical description applies in their interpretation. Namely,
regardless of whether chemo-attraction or chemo-repulsion is
operative, if the interfacial concentration of impurities N is
sufficiently large then the interfacial film thicknesses are
sufficiently thick that thermal regelation dominates the
evolution of ρ(~r,~t). As the interfacial concentration of
impurities N decreases chemotaxis exerts more control on the
distribution, and the basic dynamics are the same as described in
Figure 4. Because the magnitude of βD is fixed, and the
characteristic concentration ch is 10−2 M, this N-dependence is
simply assessed as discussed above, in terms of the dimensionless
ratio βD

ch
Dc

in Eq. 13. Namely, the numerator is fixed, but as N

increases so too is the film thickness d through Eq. 1, and sinceDc

∝ d3 [47], then βD
ch
Dc

decreases as N−3, and the balance between
chemotaxis control of the distribution gives way to regelation
control. The corpus of effects studied here are reflected in this
basic balance and shown in Figures 2, 4, 5.

CONCLUSION

Micro-organisms in ice exhibit complex processes to persist and
evolve in their harsh environments. They have developed different
survival strategies, such as producing exopolymeric substances or
antifreeze glycoproteins, and directing theirmotion toward nutrients
or away fromwaste [34, 69, 125, 126].We havemodeled suchmicro-
organisms using active Ornstein-Uhlenbeck particles subject to
thermal regelation and biolocomotion in three dimensions.
Firstly, we used a multi-scale expansion to derive the relevant
coupled Fokker-Planck and diffusion Eqs 32, 33. Secondly, when
nutrients are neglected, and the chemotactic strength βD = 0, we
model the bio-production of surface chemicals, such as
exopolymeric substances or antifreeze glycoproteins, as a surface
colligative effect, and find that the associated bio-enhanced thermal
regelation can dominate the distribution of particles in ice.
Consistent with previous results [89], in a large Péclet number
limit analytical solutions for the particle distributions are possible,
and are consistent with the numerical solutions as shown in
Figure 2. Thirdly, we studied the competition between thermal
regelation and biolocomotion, as function of the chemotaxis
strength βD, the interplay between which is shown in Figures 4,
5. The relative importance of chemo-attraction and chemo-
repulsion to thermal regelation is captured by the dimensionless
ratio βD

ch
Dc
. When this ratio is large we find a complex modulation of

FIGURE 5 | The combined effects of the surface concentration of impurities and nutrients. The probability density function along the ~z-axis, at ~x � ~y � 0 and at
~t � 300years, for (A) attractive (βD = 10−10 m2M−1s−1) and (B) repulsive (βD = −10−10 m2M−1s−1) chemotaxis, for different surface concentration of impurities N,
computed from Eqs 32, 33 using a finite difference method. The particle radius is R = 10−6 m, the temperature gradient is |∇T| = 0.1K m−1 and the active diffusivity is
~Da � 100~D. The nutrient source is centered at ~z = 55 m.
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regelation by chemotaxis, and when small, due to increased surface
impurity concentration, leads to regelation dominated redistribution
of particles. We note, however, that we have not treated the process
wherein nutrients themselves have a colligative effect, which would
introduce a particularly complex spatio-temporal dynamics.

Finally, we describe settings to which our analysis is applicable.
It is of general interest to understand how particles in ice migrate
in response to environmental forcing, as they are used as proxy to
infer past climate [14, 127, 128]. Moreover, bioparticles in ice
migrate in response to environmental forcing, and micro-
organisms play an important role in climate change
[129–131]. For example, an increase in temperature activates
algae/bacteria trapped in ice, producing chemicals that increase
their mobility [131]. Indeed, an increase in algae/bacteria
decreases the albedo of the ice [132–134], thereby enhancing
melting. Finally, understanding the distribution and viability of
bioparticles in partially frozen media on Earth [135, 136] is
essential in astrobiology [41, 42, 137].
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