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The financial risk spreads widely on the financial network and the risk information diffuses
broadly on the social networks. How the information diffusion affects the financial risk
spreading still lacks mathematical study. This paper proposes a model to describe the
coevolution of financial information diffusion and financial risk spreading on a two-layered
network. We use a mean-field approach to describe the spreading dynamics and adopt
extensive numerical simulations to simulate the dynamics.We find that financial information
diffusion can suppress the financial risk generally. Notably, there exists an optimal
information diffusion probability at which the financial risk is greatly suppressed. Our
results may shed some light on controlling the financial risk spreading dynamics.
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1 INTRODUCTION

Financial risk can spread in the financial networks, in which the nodes represent the financial
institutions (e.g., banks) and edges stand for the loan relationships among that those financial
institutions [1–4]. Generally, some poorly run enterprises may trigger a financial risk since they can
not repay debts. As a result, those bad debts may result in their creditors being not ableunable to
repay their debts, thus triggering cascading failures, and a global financial risk may arise.
Investigating the financial risk spreading mechanisms and contagion models attracts the
researchers from the field of network science and management science [5–8].

By using cascading failure or contagion models, extensive research revealed that the financial
network topology markedly affects the spreading of financial risk [9–14]. Gai and Kapadia [15]
investigated the financial risk spreading on the weighted directed network and revealed that the few
hubs make the financial systems exhibit a robust-yet-fragile character. They used a generalized
percolation theory to study the critical threshold point. Inspired by the phenomena in the field of
epidemiology, Garas et al. [16] used the susceptible-infected-recovered (SIR) model and studiedy the
probability of triggering the global crisis for different initial conditions. Huang et al. [17] investigated
the financial risk spreading on the bipartite banking network and accurately predicted the failed
banks with the natural failed banks after 2007.

The CEO (Chief Executive Officer) of the a financial institution will take measures to protect his/
hertheir company from being infected based on his/her their risk perception. A CEO can percept the
financial risk information from his/her CEO friends on the social network their CEO associates on
social networks. How does that perceived information affect the financial risk spreading? To our best
knowledge, there still lacks a systematical theoretical study on this is still lacking. Lin and Duan [18]
revealed that the financial information spread dynamics depend on the topologies of the social
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network. To build a mathematical model to investigate the above
stated problem, we will propose a coevolution spreading
dynamics, which is inspired by information-epidemic
coevolution spreading [19–25]. Granell et al. [21] used an
unaware-aware-unaware–susceptible-infected-susceptible
(UAU–SIS) model to study the effects of information diffusion on
the epidemic spreading. They found that the epidemic spread size
is greatly suppressed for large information diffusion probability.

The motivations of this paper have two aspectsare two-fold.
On the one hand, the effects of the financial risk information
diffusion on the financial risk spreading still are still lacking. On
the other hand, the effects of heterogeneous CEO’s risk
perception on the financial risk spreading need further
investigation. In this paper, we will propose a mathematical
model on two-layered networks to study the financial risk
spreading, in which the financial risk spreading on the
financial networks and the risk information diffuse diffusion
on the CEOs social network are used. Different CEOs have
different attitudes when receiving financial risk information,
and we thus divide the CEOs into two types: risk aversion and
risk patience. Therefore, the population is heterogeneous.
Previous studies indicated that a heterogeneous population
induces distinct spreading phenomena [26–28], such as the
emergence of hybrid transition. Then we use a mean-field
approach to describe the spreading dynamics and study the
density of how each state evolves versus time. We find that
the risk information spreading among CEOs can suppress the
financial risk spreading through extensive numerical simulations.
There is optimal information spreading probability at which the
financial risk will be greatly suppressed. Finally, we find that the
average degree of the two layers does not qualitatively affect the
phenomena qualitatively.

The organizations of this paper are as follows This paper is
organized as follows. In Section 2, we describe the spreading
dynamics. In Section 3, we present the theory and numerical
results. Finally, we make conclusions in Section 4.

2 MODEL DESCRIPTIONS

In this section, we propose a systemic risk spreading model on a
two-layered network (or multiplex networks [29–33]). We denote
the two layers as A and B, respectively. We use layer B to denote
the topology among banks. The nodes stand for financial
institutions (e.g., banks), and the edge represents financial
relationships (e.g., lending). Assuming there are N nodes in
network B,. fFor layer A, we use it to describe the interactions
among the CEOs of among the financial institutions. For each
financial institution, there is only one CEO. Therefore, the nodes
in two layers are matched one-to-one. An interlayer edge einterij
connecting two nodes iA and iB respectively in layers A and B
represents the node iA is the CEO of iB.

We use an uncorrelated configuration model to describe the
financial risk spreading dynamics on the two-layer networks by
using a given degree distribution pA (kA) and pB (kB) for layers A
and B, respectively. The average degree of layer A is
〈kA〉 � ∑kApA(kA)kA. Similarly, the mean degree of layer B

can be expressed as 〈kB〉 � ∑kBpB(kB)kB. The interlayer links
are randomly connected one-to-one.

We simulate the financial risk spreading dynamics on the two-
layer networks by using interacting spreading dynamics. The
financial risk spreading on layer B follows a susceptible-infected-
recovered-vaccination model, widely used to describe the failures
and epidemics. A susceptible node means the financial institution
is healthy (i.e., good financial condition) but can be infected once
its infected neighbors cannot fulfill economic obligations. The
infected node stands for the bad financial institution, and can not
fulfill their economic obligations, and thus may transmit the
financial risk to neighbors. The removed node means that a
financial institution does not have any financial activities and can
not trigger additional financial risk. The vaccination means that
the financial institution has adopted measures to protect itself
from being infected. On layer A, i.e., the CEO network where the
information about the state of those financial conditions spreads,
we divide the CEOs into two types: risk aversion and risk
patience. A risk averse CEO means that he/shethey will take
measures to protect his/hertheir financial institution from being
infected once he/shethey obtains one piece of information from
friends. Differently, a risk patient CEO takes measures only when
he/she obtainsthey obtain ample information, i.e., T, from friends.
For each CEO, they belonghe/she belongs to a risk aversion with
probability p, and the remaining nodes 1 − p belong to the risk
patience. We use a susceptible-informed-removed model to
describe the information-spreading dynamics.

To stimulate the financial risk spreading, we randomly select
one financial institution in layer B, and set it to be in the infected
state. At each time state, the infected node jB in layer B transmits
the financial risk to each neighbor iB with probability λB. If the
infection is successful, its corresponding node iA in layer A
becomes informed, i.e., he/shethey know the “bad”
information about his/hertheir financial institution, once iA is
in the susceptible state. The node jB becomes a removed state with
probability γB. On layer A, we use ℓA to record the number
amount of the received information from neighbors for node jA.
We set ℓA = 0 initially, which means he/she doesthey do not know
any information about the financial risk. At each time step, each
node jA transmits the information to every susceptible neighbor
iA with probability λA. If the node iA obtains the information
successfully, he/shethey becomes an informed state, and we set ℓA
→ ℓA + 1. If the node jA represents a risk patient CEO, its
corresponding node jB becomes vaccination state with probability
φ when ℓA ≥ T. If the node jA is a risk aversion CEO, he/she
becomesthey become vaccinated with probability φ. Therefore,
the information spreading among the CEOs suppresses the
financial risk spreading. The informed nodes become a
recovered state with probability γA. The spreading dynamics
evolve until there are no nodes in the infected or informed
state in the system.

3 RESULTS ANALYSES

We present the theoretical and Monte Carlo simulation results in
this section. In Section 3.1, we present a heterogeneous mean-

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 9052052

Lin et al. The Roles of Information Diffusion

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


field theory to describe the evolution of the financial risk
spreading dynamics in a two-layered network. Then, in
Section 3.2, we use Monte Carlo simulation to study the model.

3.1 Theoretical Results
We here adopt a mean-field approach to study the evolution of
the coupled dynamics. We assume there are no differences
among the nodes. That is to say, different nodes in the same
state have the same probability. Denoting SA(t), ρA(t), and
RA(t) as the probability of a node in layer A is in the
susceptible, infected, recovered, and vaccination state, while
as B is in the susceptible, infected, recovered, and vaccination
state as SB(t), ρB(t), RB(t), and VB(t), respectively. Since each
node can only be one of the three (or four) states in layer A (or
layer B), we have

SA t( ) + ρA t( ) + RA t( ) � 1,
SB t( ) + ρB t( ) + RB t( ) + VB t( ) � 1.

(1)

In the following, we investigate the rate equations of SA(t),
ρA(t), RA(t), SB(t), ρB(t), RB(t), and VB(t).

In the CEO network, i.e., layer A, the decrease of SA(t) has two
situations. Conversely, the susceptible node in layer A is informed
by neighbors with probability 〈kA〉λASA(t)ρA(t), where 〈kA〉 is
the mean degree of layer A. On the other hand, the corresponding
node in layer B changes from susceptible state to infected. To
compute the probability of this event, we should know that a node
in layer A is a susceptible state, which means that its
corresponding node in layer B is also in the susceptible state.
Thus, we know the second event happens with probability
〈kB〉λBSA(t)ρB(t), where 〈kB〉 is the mean degree of layer B.
Combining the above two situations, we know the evolution of
SA(t) as

dSA t( )
dt

� −SA t( ) λA〈kA〉ρA t( ) + λB〈kB〉ρB t( )[ ]. (2)

For the evolution of ρA(t), the increase of ρA(t) equals to the
decrease of SA(t). The decrease of ρA(t) is γAρA(t). We have

dρA t( )
dt

� SA t( ) λA〈kA〉ρA t( ) + λB〈kB〉ρB t( )[ ] − γAρA t( ). (3)

Similarly, we know the evolution of RA(t) is

dRA t( )
dt

� ρA t( ). (4)

We then investigate the financial risk spreading on layer B.
The decrease of SB(t) has two situations. For the first situation, a
susceptible node in layer B is infected by neighbors with
probability 〈kB〉λBSA(t)ρB(t). On the other hand, the
susceptible node may become change to a vaccination state. If
the susceptible state’s corresponding node in layer A is a risk
aversion CEO, it becomes a vaccination state with probability
φ〈kA〉λASA(t)ρA(t). If the susceptible state’s corresponding node
in layer A is a risk patient CEO, we should compute the obtained
pieces of risk information at time step t. The probability that a
susceptible node in layer A obtains m pieces of information at
time t is

hm t( ) � 〈kA〉
m

( ) u t( )[ ]m 1 − u t( )[ ]〈kA〉−m, (5)

where u(t) = 〈kA〉λASA(t)ρA(t). Since the corresponding node in
layer A of a susceptible node in layer B should receive at least T
pieces of information when becoming to the vaccinated state, we
have

Γ t( ) � 1 − p( ) ∑
m≥T

hm t( ). (6)

Combining the above two situations, we know the evolution of
SB(t) as

dSB t( )
dt

� −λB〈kB〉SA t( )ρB t( ) − φ〈kA〉λASA t( )ρA t( ) − φΓ t( ).
(7)

Similarly, we know the evolutions of ρB(t), RB(t) and VB(t) as

dρB t( )
dt

� λB〈kB〉SA t( )ρB t( ) − γBρB t( ), (8)
dRB t( )
dt

� ρB t( ), (9)
and

dVB

dt
� φ〈kA〉λASA t( )ρA t( ) + φΓ t( ), (10)

respectively. Numerically studying the above equations, we
obtain the density of nodes in each state.

To obtain the percolation threshold point, we can investigate
the linearizitionlinearization of Eqs 3, 8 when t → 0. We have
SA(t) → 1 and SB(t) → 1. We know

dρA t( )
dt

� βA〈kA〉ρA t( ) + βB〈kB〉ρB t( ) − ρA t( ),
dρB t( )
dt

� βB〈kB〉ρB t( ) − ρB t( ),
(11)

where βA = λA/γA and βB = λB/γB are the rescaled infection
probability. We rewrite Eq. 11 in matrix form as

d �ρ

dt
� C �ρ − �ρ, (12)

where �ρ ≡ (ρA(t), ρB(t))T, and

C � βA〈kA〉 βB〈kB〉
0 βB〈kB〉

( ). (13)

Since the financial risk spreading promotes the information
diffusion in layer A, we know the information outbreak threshold
is smaller than the financial risk breaks outs. The largest
eigenvalue of C is

Λ1
C � max βA〈kA〉, βB〈kB〉{ }. (14)

The outbreak threshold of the information is

λAc � 1
Λ1

C

. (15)
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We cannot analytically obtain analytically a value for the
financial risk globally outbreak threshold, and we can only
obtain the numerical value.

3.2 Monte Carlo Simulation Results
We use a Monte Carlo simulation approach to study the
financial risk spreading dynamics on the two-layered
networks. For layers A and B, we use the homogeneous ER
networks with a Poisson distribution PA(kA) �
〈kA〉kA /kA!e−〈kA〉 and PB(kB) � 〈kB〉kB /kB!e−〈kB〉 for networks
A and B, respectively. For the given parameters, we perform it
2000 times and compute the average value in the following
figures. We set the network sizes of networks A and B are NA =
104 and NB = 104, respectively.

We first introduce the methods to perform the Monte Carlo
simulation for our suggested model.

i): Generating networks A and B according to the uncorrelated
correlated model for the given degree distributions PA (kA) and
PB(kB), respectively. For each CEO, we draw a probability q. If
q ≤ p, the CEO belongs to thea risk aversion category.
Otherwise, the CEO belongs to the risk patient.
ii): Randomly select a node in layer B and set it to be in the
infected state.
iii): To stimulate the financial risk spreading, we randomly
select one financial institution in layer B, and set it in to the
infected state.

iv): Update the states of nodes in layer B. Each infected node jB
tries to transmit the risk to a susceptible neighbor iB.
Generating a random probability q, if q ≤ λB, node iB
becomes infected, and the corresponding node iA becomes
informed.
v): Recovery of each infected node jB. Generating a random
probability q, if q ≤ γB, node jB becomes recovered.
vi): Update the states of nodes in layerA. Each informed node jA
tries to transmit the information to a susceptible neighbor iA.
Generating a random probability q, if q ≤ λA, node iA becomes
informed, and set ℓA → ℓA + 1. If iA is a risk patient CEO,
generating a random probability q and ℓA ≥ T, the node iA
change to a vaccination state when q ≤ φ. If iA is a risk aversion
CEO, iA changes to vaccination state with probability φ.
vii): Recovery of each infected node jA. Generating a random
probability q, if q ≤ γA, node jA becomes recovered.
viii): Repeat steps (iii)–(vii) until there is are no nodes in the
informed and infected states.

In Figure 1, we first study the temporal evolution of the
coevolution spreading dynamics on the homogeneous artificial
networks. For the risk information spreading in the CEO
network, i.e., layer A, the density of nodes in the informed state
A, the density of nodes in the informed state ρA(t) first increases with
time, then reaches a peak, and finally decreases to zero.We observe a
similar phenomenaphenomenon for the evolution of financial risk
ρB(t). Differently, ρA(t) reaches its peak is earlier than ρB(t), since the

FIGURE 1 | (Color online) Temporal evolutions of the spreading dynamics. The density of nodes in the (A) informed state ρA(t) of layer A, (B) infected state ρB(t) of
layer B, (C) removed state RA(t) of layer A, (D) removed state RB(t) of layer B, and (E) vaccination state RA(t) of layer (B). We set the average degree of the two layers as
〈kA〉 = 〈kB〉 = 10, information spreading probability λA = 0.5, financial risk probability λB = 0.8, T = 3, recovery probability γA = γB = 0.2, and φ = 0.9.
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financial risk spreading dynamics promote the risk information
spreading. However, the effects of the heterogeneous population of
CEO networks do not become obvious, i.e., the fraction of
individuals are the risk aversion CEOs. The evolutions of RA(t)
and RB(t) increases with t continuously. We note that the more
nodes belong to the risk aversion CEOs, the less financial risk
outbreak size, i.e., the smaller RB(t). Since This is because risk averse
CEOs are more likely to take measures to protect themselves from
being infected, resulting in a higher VB(t).

We then investigate the final financial risk spreading sizeRB and
final risk information spreading size RA in Figure 2. Since the risk
information spreading probability is set to be λB = 0.5 and λB = 0.8,
we find that RA is not affected by the heterogeneity of the CEO

population (see Figures 2A,D). For the financial risk spreading, we
find optimal risk information spreading probability at which RB
reaches a minimum value (see Figures 2B,E). Specifically, RB first
decreases with λA since the CEOs will take measures to protect
themselves from being infected by the financial risk and will be
immunized, as shown in Figures 2C,F. However, when λA is large
enough, those risk patient CEOs will not be immunized since they
can not obtain sufficient risk information from neighbors, thus
inducing a higher values of RB. We conclude that a reasonable
information transmission probability helps us to decrease the
financial risk spreading. In Figure 3, we further study the
effects of the average degree of the two networks and find that
the phenomenona is not affected qualitatively.

FIGURE 2 | (Color online) The financial risk spreading on two-layer networks for a given values of financial risk transmission probability. Final information spreading
size RA (A), final financial risk spreading size RB (B), and vaccination size RB (C) versus information transmission probability λA with financial risk transmission probability
λB = 0.5. RA (D), RB (B), and RB (C) versus λAwith λB = 0.8. We set the average degree of the two layers as 〈kA〉 = 〈kB〉 = 10, T = 3, recovery probability γA = γB = 0.2, and
φ = 0.9.

FIGURE 3 | (Color online) The financial risk spreading on two-layer networks for a given values of financial risk transmission probability. Final information spreading
size RA (A), final financial risk spreading size RB (B), and vaccination size RB (C) versus information transmission probability λA with financial risk transmission probability
λB = 0.5. RA (D), RB (B), and RB (C) versus λAwith λB = 0.8. We set the average degree of the two layers as 〈kA〉 = 15, 〈kB〉 = 10, T = 3, recovery probability γA = γB = 0.2,
and φ = 0.9.
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For a given information transmission probability λA, we
investigate RA, RB, and VB as a function of λB in Figure 4.
Since λA are much larger than the risk outbreak threshold, RA

are not affected by p, i.e., the fraction of nodes belongs to the
risk averse CEOs (see Figures 4A,D). RB first increases with
as λB decreases, and finally increase, as shown in Figures
4B,E. That is to say, enlarging the financial risk spreading
probability does not always enlarge increase the financial risk
spreading. Since only the risk information and financial risk
spreading have a compatible speed, the immunized nodes will
be maximized (see Figures 4C,F). The average degree of the
two networks does not qualitatively affect the phenomena in
Figure 5.

4 CONCLUSION

This paper uses a mathematical model to investigate the financial risk
spreading on the multiplex networks. We first propose a model to
describe the coevolution of financial information diffusion on the
CEOs social network and financial risk spreading on the financial
networks. For the CEOs, we divide them into two types and
investigate the relatively fraction on the spreading dynamics. Using
a mean-field approach, we study the evolution of the coevolution
dynamics. We finally perform extensive numerical simulations. We
find that the financial information diffusion suppresses the financial
risk spreading. In addition, optimal information spreading probability
exists, at which the financial risk will be greatly suppressed. Finally, we

FIGURE 4 | (Color online) The financial risk spreading on two-layer networks for a given values of financial risk transmission probability. Final information spreading
size RA (A), final financial risk spreading size RB (B), and vaccination size RB (C) versus information transmission probability λB with financial risk transmission probability
λA = 0.5.RA (D),RB (B), and RB (C) versus λBwith λA = 0.8. We set the average degree of the two layers as 〈kA〉 = 〈kB〉 = 10, T = 3, recovery probability γA = γB = 0.2, and
φ = 0.9.

FIGURE 5 | (Color online) The financial risk spreading on two-layer networks for a given values of financial risk transmission probability. Final information spreading
size RA (A), final financial risk spreading size RB (B), and vaccination size RB (C) versus information transmission probability λB with financial risk transmission probability
λA = 0.5. RA (D), RB (B), and RB (C) versus λBwith λA = 0.8. We set the average degree of the two layers as 〈kA〉 = 15, 〈kB〉 = 10, T = 3, recovery probability γA = γB = 0.2,
and φ = 0.9.
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reveal that the networks average degree does not affect the above-
presented phenomena qualitatively. The results presented in this
paper may shed some light into on designing strategy to control
the financial risk diffusion. How to develop a more accurate theory to
study this model need further investigation.
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