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The authors introduce an augmented-basis method (ABM) to stabilize reduced-

order models (ROMs) of turbulent incompressible flows. The method begins

with standard basis functions derived from proper orthogonal decomposition

(POD) of snapshot sets taken from a full-order model. These are then

augmented with divergence-free projections of a subset of the nonlinear

interaction terms that constitute a significant fraction of the time-derivative

of the solution. The augmenting bases, which are rich in localized high

wavenumber content, are better able to dissipate turbulent kinetic energy

than the standard POD bases. Several examples illustrate that the ABM

significantly out-performs L2-, H1- and Leray-stabilized POD ROM

approaches. The ABM yields accuracy that is comparable to constraint-

based stabilization approaches yet is suitable for parametric model-order

reduction in which one uses the ROM to evaluate quantities of interests at

parameter values that differ from those used to generate the full-order model

snapshots. Several numerical experiments point to the importance of localized

high wavenumber content in the generation of stable, accurate, and efficient

ROMs for turbulent flows.
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1 Introduction

Parametric model-order reduction (pMOR) is a promising approach to leveraging

high-performance computing (HPC) for design and analysis in fluid-thermal engineering

applications. The governing equations in this context are the time-dependent

incompressible Navier-Stokes equations (NSE) and the thermal transport equation.

ztu + u · ∇u � −∇p + ]∇2u + f , ∇ · u � 0, (1)
ztT + u · ∇T � α∇2T. (2)
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Where ] and α parameterize the PDEs and the forcing function f
can be the Boussinesq approximation term, for example.1 The

equations are assumed to hold in a suitable domain Ω with

appropriate initial and boundary conditions. The Galerkin

statement is.

Find (ztu, p, ztT) ∈ Y ≔ [H1
0 ⊗ L2 ⊗ H1

0] s.t. ∀(v, q, S) ∈ Y.

v, ztu( ) + v, u · ∇u( ) � ∇ · v, p( ) − ] ∇v,∇u( ) + v, f( ),
q,∇ · u( ) � 0, (3)

S, ztT( ) + S, u · ∇T( ) � −α ∇S,∇T( ). (4)
Here, L2 is the space of square-integrable functions on Ω; H1 is

the space of functions in L2 whose gradient is also in L2; andH1
0 is

the space of functions in H1 that vanish on subsets of the

boundary, zΩD ⊂ zΩ, where homogeneous Dirichlet

conditions are imposed. H1
0 is the vector counterpart to H1

0.

To obtain a fully-accurate quantity of interest (QOI) such as

friction factor, Nusselt number, or Strouhal number, one

formally needs to obtain a full-order model (FOM) solution

to the governing equations at discrete points in the parameter

space of interest (e.g., spanned by a range of ] and α, of interest).

Typically, the FOM constitutes a high-fidelity spectral- or finite-

element solution to the governing equations, which can be

expensive to solve, particularly for high Reynolds number

cases that are typical of engineering applications. pMOR seeks

to develop a sequence of reduced-order models (ROMs) that

capture the behavior of the FOM and allow for parameter

variation. For unsteady flows, the pMOR problem can be

broken down into two subproblems: reproduction, wherein the

ROM captures essential time-transient behavior of the FOM

using the same parameter (anchor) point for each, and

parametric variation, wherein the ROM is run at a different

parametric point in order to predict the system behavior away

from the anchor points at which the FOM simulation was

conducted.

In this work, we focus primarily on the reproduction problem

for challenging unsteady flows. We do, however, also consider

pMOR, which we illustrate with an example from [1]. The

thermal-fluids problem is the axisymmetric Rayleigh-Bénard

configuration depicted in Figure 1A, which was studied by

Tuckerman and Barkley [2,3]. The problem is parameterized

by ϵ � Ra−Rac
Rac

, where Rac = 1734 is the critical Rayleigh number.

The 2D axisymmetric domain has an aspect ratio of Γ = 5, shown

in Figure 1A. For ϵ > 1.3843, traveling waves move towards the

centerline axis with a period that depends on ϵ. We perform

FOM calculations at two anchor points, ϵ = 1.6 and ϵ = 2.6, from

which we collect snapshots (full flow/temperature fields). We

apply proper orthogonal decomposition (POD) to the snapshot

sets from each of the FOMs and use 20 PODmodes from each to

form a reduced-order subspace ZN comprising N = 40 basis

functions. These modes are used in the weak- (Galerkin-)

formulation of the governing equations, where the solution is

restricted to ZN ⊂ Y. The low-dimensional ROM is able to capture

short- and long-time behavior as shown in the Nusselt number

reproduction traces in Figure 1B. Moreover, as shown in

Figure 1C, the pMOR is able to accurately predict the period

of the traveling wave solutions both inside and outside the ϵ range
spanned by the anchor points. Note that as ϵ → 1.3843, the

period goes to infinity and FOM simulations near this limit

become intractable. The ROM, however, is able to predict this

critical value of ϵ to within a few percent.

While pMOR is a promising approach for engineering

analysis and design, it is well known that even the

reproduction problem is challenging for the classical POD-

Galerkin approach at high Reynolds numbers after the flow

transitions to turbulence. One common issue with this class of

problems is that the ROM solution approaches an unphysical

attractor. This behavior is attributed to a lack of dissipation, given

that the truncated POD space lacks high-wavenumber modes

that are capable of dissipating energy. One can induce additional

dissipation by including more modes but the cost is high. The

convective tensor reduction requires storage of N3 entries for the

advection operator with a corresponding work of 2N3 operations

per timestep. While N = 100, with a cost of a two million

operations per step and a million words in memory, may be

tolerable, N = 400 with a cost of 128 million operations and

64 million words quickly makes pMOR less viable for running on

a workstation, which is typically the target for this type of

analysis tool.

Existing techniques for addressing the computational cost

include the discrete empirical interpolation method (DEIM) [4],

which effectively interpolates the convective term, and tensor

decomposition, which aims to approximate the convective tensor

by a low-rank tensor. We will show in our concluding examples

that these methods will not, on their own, address the unphysical

ROM dynamics. Stabilization of the ROM is critical and is the

primary topic of this work. Several stabilization strategies are

described in Section 2. The major contribution of this work is the

development of a novel augmented-basis method (ABM), in

which we add important modes to the standard POD bases.

In many cases, the ABM increases both the stability and accuracy

of the ROMs at a cost equivalent to standard POD approaches

having the same total number of modes.

2 Background

The POD-Galerkin technique in fluid flow emerged from

work to identify dominant flow features by [5] Model-reduction

using POD modes as basis functions was introduced afterwards,

1 These equations are effectively in nondimensional form, which for
forced conditions implies that ] = Re−1, the inverse Reynolds number,
and α = Pe−1, the inverse Peclet number. For buoyancy-driven flows
these parameters typically scale with Rayleigh number (Ra) and Prandtl
number (Pr), with the precise definition dependent on the chosen
scaling.
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with a comprehensive analysis appearing in a later

monograph by [5].

More complex PDEs with non-affine parameter

dependencies were addressed by [6] using decomposition of

the nonlinearity based on the empirical interpolation method

(EIM). In this approach, successive interpolation modes are

chosen to eliminate the error between the targeted term in

FOM and the ROM at “magic points” designated as points in

Ω where the error of the current interpolant (i.e., the

approximant of the next mode) is maximal. This method was

further extended by [4] with a POD decomposition of the

nonlinear term and the choice of points restricted to discrete

points produced by the spatial discretization of the PDE, called

discrete empirical interpolation method (DEIM). While these

methods enable application of pMOR to nonlinear problems the

issue of insufficient dissipation and feasible stabilization for the

NSE persists.

Due to its approach of treating nonlinear terms, DEIM has

the potential to address the high-cost issue of including more

modes. DEIM replaces the third-order convective tensor with a

collocation-like decomposition at the discrete magic points,

which yields a reduction of computational complexity from

O(N3) to O(N2). Accounting for the constants, evaluation of

advection using DEIM with N = 200 modes would be equivalent

to using the full tensor withN = 65. For the same cost, DEIM thus

permits the use of a richer approximation space.

To certify that the error in the ROMs that are produced is

smaller than the acceptable tolerance, error indicators have been

developed based on the residual of the ROM solutions in the full-

order model (FOM) space. Error indicators for coercive elliptic

PDEs are described by [7]. An a posteriori error indicator for

time-dependent NSE is described by [8] which is described as the

dual-norm of the residual of the time-averaged momentum

equation. This error indicator is evaluated by accumulation of

residual contributions from each term in the momentum

equation at each time-step. This metric provides an error

estimate for time-dependent ROM solutions, while not a strict

bound on the error, allows an efficient selection of anchor point

selection for pMOR. We do not consider these further here, but

they are an important component for efficient pMOR and are

discussed in a companion paper [9].

For addressing the issue of stability, several modifications to

the original POD Galerkin approach have been proposed [10].

proposed a modification of the POD mode generation in which

theH1 inner-product is used to produce the Gramian, rather than

L2 inner-product, to emphasize the importance of gradients in

the FOM snapshots [11]. introduced Leray regularization in the

context of ROM in which the advecting field is smoothed

(conveniently, by truncation of the modes in the case of

POD-ROM). This regularization enhances the stability

property of the dynamical behavior; however, the optimal

choice of regularization (e.g., number of modes to truncate or

shape of transfer function) is not known a priori.

An alternative stabilization approach, introduced by [8], is

to replace the discrete ODE system by a constrained

minimization problem at each timestep. During the

evolution of the system, the basis coefficients are bound by

the minimum and maximum coefficient values observed in the

snapshot projection onto the truncated POD space. (If the

constraints are inactive, one recovers the standard Galerkin-

based trajectory.) With this approach, the ROM tends to stay

close to the dynamics of the FOM. A challenge, however, is

that this approach requires ad hoc modification of the bounds

for parametric values where the FOM snapshots are

unavailable. Applications of several of these stabilization

techniques may be found in [1].

FIGURE 1
ROM application to axisymmetric Rayleigh–Bénard.
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Methods that address the stability issue by constructing basis

functions that satisfy the energy-balance that closely match the POD

basis is introduced by [12]. In this work, existing work on stabilizing

linear time-invariant (LTI) systems by [13], which seeks optimal

combinations of snapshots to produce dynamically stable ROMs, is

combined with work by [14], in which the kinetic energy behavior is

stabilized by introducing an empirical turbulence closure term in the

ROM. In this combined method by Balajewicz, in a preprocessing

step, an a priori nonlinear constrained optimization problem is

solved that minimizes the difference between the energy captured by

the new modes and the energy captured by the POD modes for a

given N subject to constraints: the columns of the transformation

matrix are orthonormal and the empirical kinetic energy-balance is

satisfied. The result is a set of transformed POD modes that are

augmented directly with dissipation modes (also taken as linear

combinations of the snapshots). The author demonstrated that this

approach offers significant improvement over the standard POD-

Galerkin approach for a 2D lid-driven cavity problem and a 2D

mixing layer. Also discovered was the fact that by ensuring the

kinetic energy-balance is dissipative to an arbitrary degree, the ROM

solution becomes stabilized. Thus, by encapsulating the method by

this ROM training stage, the amount of appropriate dissipation to be

prescribed in the constrained optimization step can be found to

produce a stable ROM with mean TKE behavior close to that of

the FOM.

Another basis augmentation approach, introduced by

[15,16], uses a combination of L2 POD modes and H1 POD

modes that are subsets of the originating snapshot set. The idea is

to have a small number of L2 POD modes capture the dominant

energy-carrying features of the flow while the H1 POD modes

(containing small-scale features) provide the necessary

dissipation that is not realized by the L2 POD modes alone.

The authors successfully applied this augmented basis to 3D

turbulent flow in injectors.

In the next section, we introduce a novel augmented basis

method, that is designed to address accuracy and stability of

ROMs for turbulent flow. Rather than drawing upon the

snapshot set, the augmenting vectors are derived from the

nonlinear interaction terms that directly influence the time-

derivative of the NSE. This augmented basis set does not

require extensive training (i.e., ROM-parameter optimization)

and can be used within a standard Galerkin-ROM setting.

3 Augmented basis method

To motivate the ABM, we consider the Leray-projected form

of the NSE, in which the velocity field evolution is described as:

ztu � P −u · ∇u + ]∇2u[ ]. (5)

Here, the pressure has been formally eliminated and its effects are

represented by an abstract operator, P, sometimes called the

Leray projector, which will project the operand onto a space of

divergence-free fields. While the Leray projector is a projection

using the H1 inner-product, we will use the L2 inner-product for

our definition. For the discretized system, particularly with the

PNPN−2 spectral element discretization, this operator is well-

defined [17].

For the spectral element method (SEM), we look to find the

solution in a finite-dimensional space,XN , comprising piecewise

Nth-order tensor-product polynomial bases mapped from a

reference unit cube to each of E spectral elements, for a total

ofN ≈ EN3 degrees-of-freedom per field (in 3D). Finally, in the

POD-Galerkin approach, we restrict our attention to solutions

ZN ⊂ XN , where the basis is generally formed from a proper

orthogonal decomposition of a sequence of SEM solution

snapshots, using the method introduced by [18].

The method of snapshots forms a basis from a linear

combination of FOM solution fields (each involving O(N )
spectral element basis coefficients). One forms the Gramian

matrix, whose first N eigenvectors (ranked by eigenvalues

from largest to smallest) are used to determine the linear

combination of the snapshots that forms the N-dimensional

basis for the ROM approximation space, ZN. Because the

snapshots are (weakly) divergence-free, so are all elements of

ZN, which means that pressure drops out of the ordinary

differential equation that governs the ROM. In this work, the

velocity POD modes are denoted as ζi, and the thermal POD

modes are denoted as θi. For both of these collections of modes,

the i = 0 modes correspond to a lifting function that satisfies the

boundary conditions and is always associated with a coefficient

value of u0 = 1 and T0 = 1. The choice of the lifting function may

be a solution to the Stokes problem, the Poisson equation, or the

time-averaged solution. For the examples in Section 4, the lifting

function is based on time-averaged FOM solutions. For the POD-

ROM, the hierarchy of the spaces of interest is ZN ⊂ XN ⊂ Y.

For this work, we consider a FOM discretization that is well-

resolved such that the projection error from Y toXN is minimal.

We next show how the ZN space derived by the classical POD-

Galerkin method can be augmented such that the time-evolution

of the solution in the extended space better approximates the

time-evolution of the solution in XN .

Assuming that the solution to Eq. 5 exists near t*, we can

describe the local temporal behavior through a Taylor-series

expansion involving a linear combination of all time-derivatives.

u x, tp + ϵ( ) � u x, tp( ) + ϵ ztu x, tp( ) + . . . (6)
� u x, tp( )︸���︷︷���︸

Snapshot

+ϵP −u · ∇u + ]∇2u{ } + . . . (7)

Therefore, in addition to capturing the dominant modes of the

snapshots, we propose to augment the POD basis set ZN with

modes that can accurately represent the order ϵ terms on the

right-hand side of (7) in order to construct u (x, t* + ϵ). The
consequence of not representing the O(ϵ) term is deviation in the
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trajectory of the physical solution and the projected (Galerkin)

solution.

Consider a solution u that lives in ZN, meaning u � ∑N
i�0ui ζ i.

Using (5), we can describe the time-derivative of the solution as

ztu � P −u · ∇u + ]∇2u[ ]
� − ∑N

i,j�0
uiuj P ζ i · ∇ζj[ ] +∑N

i�0
ui ]P ∇2ζ i[ ] (8)

Thus, we can accurately describe the time-derivative with (N +

1)2 terms for the nonlinear term and (N + 1) terms for the viscous

operator.

We consider an example with Fourier basis to highlight this

issue. When we have a band-limited solution state with the

highest wavenumber k, the convection term would produce a

solution at the next timestep of highest wavenumber 2k, which

does not live in the original space. Thus, the wavenumber 2k

behavior is never observed in the evolution of the projected

Galerkin system. With an augmentation of the basis with the

high-wavenumber modes, we will face the same issue through

lack of 4k mode representation. This issue is of course recursive.

We are helped, however, by the fact that the higher wavenumber

modes have higher rates of dissipation. Continuation of this

process will therefore eventually yield only marginal returns in

improved solution fidelity. We shall see, however, that addition

of just a few modes can have a significant impact on the overall

ROM performance.

Because of nonlinear advection, the solution will evolve

outside the N-dimensional span of ZN. We note that as the

basis includes more fine-scale components, the convective

contribution becomes small relative to the diffusive

contribution; thus, the solution becomes closed as the

minimal grid-size approaches 0, as is the case in FOM solvers

(i.e., the exact solution is band-limited). In the POD-ROM,

however, the basis is typically far from completing the

relevant approximation space and the addition of the modes

P[ζ i · ∇ζj] and P[∇2ζ i] can provide an important first-order

correction to ZN.

For advection dominated problems, we can focus on the

nonlinear contributions,

ztu ≈ P u · ∇u[ ] � ∑N
j,k�0

ujukP ζk · ∇ζj[ ] (9)

Whenever we evolve the solution in the space Y, where the

current solution lies in the truncated POD space ZN, we see that

the time derivative be reasonably represented with an additional

(N + 1)2 basis functions of the form ϕl�j+k(N+1) � P[ζk · ∇ζj].
Obviously, this process is not closed, since more basis functions

are required in the next timestep. Worse still, even starting with u
∈ ZN, the required number of additional basis functions will be

O(N2) if we include all terms in (9), which comes with an O(N6)

computational cost that is untenable, even for a small number of

POD modes, N. We therefore seek to augment the original POD

basis with subsets of these evolution basis that are most relevant

to the dynamics.

The first subset captures the interaction between the lifting

function, ζ0, and all other modes. This choice ensures that both

FIGURE 2
Velocity magnitude plot of a flow past a cylinder snapshot (Re = 100)
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the Taylor dispersion induced by the lifting function and the

transport of the mean momentum by the POD modes are

accurately captured. This choice is also rationalized by the

fact that the lifting function is ever-present in the solution

so its convective interaction is important in accurate

reproduction of the time-evolution by the ROM. Thus, we

add the modes P[ζ0 · ∇ζj + ζj · ∇ζ0]. Note that the two

interactive terms can be combined because it is linear in

each POD basis, ζj, meaning we only add N + 1 modes,

which is still an O(N) augmentation.

Next, we extract the diagonal entries, P[ζj · ∇ζj]. This choice
is justified by the fact that for each mode, ζj, the mode that is the

most correlated with it is itself (i.e., when othermodes might have

a phase-shift, or different temporal frequencies associated with it,

the auto-correlation dominates other interactions). So we

consider addition of these N modes with the total additional

modes being 2N + 1.

For a thermal system with an advection-diffusion equation to

describe its state, we can follow the same procedure as above for

the lifting function interaction in the form of ζ0 ·∇θj; however, the
auto-interaction modes are not obvious. For this work, we will

choose ζj ·∇θj, but there is no one-to-one correspondence

between the dominant thermal modes and dominant velocity

modes. One may come up with a more coherent substitute, but

this choice remains an open question.

We note that ABM modes are not orthogonal in general, but

are made orthogonal prior to running the ROM via

eigendecomposition of the ROM mass matrix for numerical

stability purposes. Disregarding round-off errors, the basis

representation for a specific solution and test space do not

affect the time-evolution of the solution for the standard

POD-Galerkin ROM.

In summary, the ABM starts with N standard PODmodes in

ZN and adds 2N + 1 modes corresponding to advection by the

lifting function, P[ζ0 · ∇ζj + ζj · ∇ζ0] and auto-advection,

P[ζj · ∇ζj + ζj · ∇ζj], resulting in a total of N̂ � 3N + 1 basis

functions, which are used in a standard Galerkin formulation.

We will use N̂ for the comparison against other (classic or

stabilized) methods so that we have a fair cost comparison.

The standard POD Galerkin ROM and ABM differ only in

the choice of the underlying basis set.

4 Applications

We have demonstrated the effectiveness of the proposed

augmentation method on several examples, including flow in a

2D Lid-Driven cavity (Re = 30, 000), 2D flow past baffles (Re =

800), 3D lid-driven cavity flow (Re = 10,000), flow over a

hemisphere (Re = 2, 000), and turbulent pipe flow with forced

FIGURE 3
POD-ROM coefficient envelopes for flow past a cylinder (N = 10, t ∈ [2,700, 3,700], Re = 100)
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convection for Re = 4,000 −10,000. For brevity, we here consider

only the latter two. We will also use the 2D flow past a cylinder

problem to demonstrate long-time stable ROM solutions by use

of ABM. In the following, we denote the FOM solution with

(~u, ~T) and the various ROM solutions with (u, T). Time averages

are defined as 〈 · 〉 � 1
τ ∫τ

t0+τ · dt with integration times, τ,

prescribed on a case-by-base basis. There are plots that

compare different ROM strategies: Standard POD Galerkin

(L2-Glk), energy-based POD basis (H1
0-Glk), Leray-filtered (L2-

Lry), ABMwith lifting function interaction (L2-Aug0), ABMwith

auto-interaction (L2-AugD), and ABM with both interactions

(L2-AugC).

4.1 2D flow over a circular cylinder

Before we compare the stabilization properties of ABM to

other methods, we first investigate the long-time stability

properties of ABM on the flow past a cylinder problem.

Although this is a canonical problem that is used to

demonstrate the model-order reduction capabilities of the

POD-Galerkin approach, there are commonly observed

instability issues for a large domain. This phenomenon is

documented in [19–22]. To establish that ABM addresses this

long-time stability issue observed in ROMs of low Reynolds

number cylinder flows, we first take 200 snapshots of a flow past a

cylinder problem over 200 CTUs. The domain and boundary

conditions are of that specified in [20]. Figure 2 shows a velocity

magnitude plot of a snapshot used to produce the ROMs.

Figure 3 show reproduction of the 10 mode results in [20]

with a difference in the ordering and signs of the POD modes

stemming from the difference in snapshot count, snapshot

timing, and possibly integration time for the mean flow which

is used as the lifting function. For this problem, even if we

increase the number of POD modes to N = 20, the growth of the

instability is delayed, but is still present in the long-time solution

as shown in Figure 4. Application of ABM to 10 originating POD

modes resulting in a N̂ � 21 ROM produced a long-time result

(over 20,000 CTUs) that is free from the type of instability

observed in the N = 20 POD-ROM. The envelopes of the

coefficient trajectories of this ABM-ROM are shown in

Figure 5 on top of the POD-ROM result.

With this example, we have demonstrated that ABM

successfully address long-time stability issue observed in the

low-dimensional models constructed by the POD-Galerkin

methodology for the cylinder problem. In the next examples,

we will show successful application of ABM to 3D turbulence

problems.

FIGURE 4
POD-ROM coefficient envelopes for flow past a cylinder (N = 20, t ∈ [0, 104], Re = 100)
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4.2 3D flow over a hemisphere

Figure 6 shows a snapshot of flow past a wall-mounted

hemisphere of height D/2 at ReD = DU/] = 2000. A Blasius

profile with boundary-layer thickness δ99 = 0.6D is prescribed at

the inlet, which 3.2D units upstream of the hemisphere center.

Periodic boundary conditions are prescribed at ± 3.2D units in

the spanwise direction and a stress-free condition is applied on

the top surface, 3.2D units above the wall. Under these

conditions, the flow exhibits periodic shedding of hairpin

vortices, evidenced by the velocity distribution and λ2
contours [23] in the hemisphere wake. The FOM, based on a

spectral element mesh withN ≈ 2 million gridpoints was run for

100 convective time units (1 CTU =D/U) and 1,000 snapshots we

collected to form the ROM POD bases.

The mean-velocity error as a function of N̂ is shown in

Figure 7 (left) for the five different ROMS. POD Galerkin with L2

(L2–Glk) and H1
0 (H1

0–Glk) Gramians, Leray-regularized

Galerkin (L2–Lry), Constrained-Galerkin (L2–Cst), and ABM

with combined lifting- and diagonal-interactions (L2–AugC).

The unstable L2 and H1
0 Galerkin results have several drop-

outs for conditions that did not converge for this relatively high-

Reynolds number application. Given enough basis functions,

however, all cases converge, with the L2–Cst being the best

performer for N̂< 120. Both L2–Cst and L2–AugC yield mean-

field errors < .01 for the majority of the cases, with L2–Cst

generally being the best performer. Similar conclusions hold

for the turbulence kinetic energy (TKE), the measure of

kinetic energy contained in the fluctuations about the mean

velocity field, shown in the right panel of 7. We reiterate that,

while the constrained optimization solver performs well in the

reproduction problem, it is not readily extended to pMOR

because the parametric variation of the constraint limits is not

known a priori.

4.3 Forced convection in turbulent
pipe flow

The next example is that of forced convection in turbulent

pipe flow with Reynolds number Re = 4,000, 5300, and 10,000

(based on pipe diameter), and Prandtl number Pr = 1. All the

cases use the same spectral element distribution with differing

polynomial orders. The mesh consists of 12.5 million grid points

FIGURE 5
ABM-ROM coefficient envelopes for flow past a cylinder (t ∈ [0, 2 × 104], Re = 100)
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for Re = 4,000 and 5300, and 24.5 million points for Re = 10,000.

The periodic domain length is L = 4D, which is generally

inadequate for a full DNS of turbulence but deemed sufficient

for the numerical tests in this study. For Re = 4,000, 5300, and

10,000, the respective FOM Nusselt numbers are Nu = 16.38,

21.42, and 36.14, which is in good agreement with the Dittus-

Boelter relationship, Nu = 0.023 Re4/5 Pr2/5. For all cases, the FOM

is run until the solution is relaxed to a statistically steady state

prior to gathering statistics or snapshot data. For each case,

1,000 snapshots are collected over 50 CTUs to form the Gramian,

from which the POD basis is generated. Figure 8 shows typical

snapshots of velocity magnitude and temperature that reveal the

variation in range of scales for the different cases.

The governing equations for the FOM are the incompressible

Navier–Stokes equations and the thermal advection-diffusion

equation. Because of the constant-flow rate and periodic restriction

FIGURE 6
FOM velocity magnitude snapshot of flow over hemisphere (Re = 2,000) with overlaid λ2 contour.

FIGURE 7
Flow over hemisphere (Re = 2,000): Mean and TKE error comparison, curve broken by blowup solution.
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FIGURE 8
FOM velocity (top) and temperature (bottom) snapshots of 3D pipe flow at Re = 4,000, 5300, and 10,000.

FIGURE 9
Pipe flow mean velocity error (top) and TKE results (bottom), for Re = 4,000, 5300, and 10,000 (FOM: τ = 50, ROM: τ = 500), curve broken by
blowup solution.
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FIGURE 10
Pipe flow mean temperature error (top) and thermal variance results (bottom), for Re = 4,000, 5300, and 10,000 (FOM: τ = 50, ROM: τ = 500),
curve broken by blowup solution.

FIGURE 11
Pipe flow error in Nusselt number for Re = 4,000, 5300, and 10,000.
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on the solutions, we provide a brief discussion of modifications to the

standard equations for the FOM and their effect on the ROM

formulation. We start with the Navier–Stokes equations:

zu
zt

+ u · ∇u � −∇p + ]∇2u + f u( ), ∇ · u � 0 (10)

Here, f(u) is a uniform forcing vector field function in the

streamwise direction, ẑ, that enforces a time-constant flow-

rate. In the time-discrete problem, the forcing term effectively

adds an impulse-response streamwise velocity field with

boundary layer thickness proportional to
���
]Δt

√
. This impulse

response is scaled appropriately at each time step to ensure that

the mean velocity at each timestep conforms to the prescribed

flow-rate. In the case of the ROM, the lifting function has the

prescribed flow-rate and the remaining POD basis functions have

zero flow-rate, meaning that the test-space ZN only contains

members with zero flow-rate. In the weak-form, the ROM

forcing term therefore becomes

v, f( ) � ∫
Ω
v · f dV � fz ∫

Ω
vz dV( ) � 0. (11)

Thus, the forcing term in the ROM formulation is zero.

The boundary conditions for the thermal problem are

prescribed unit thermal flux on the walls. Therefore, we add a

constant-slope ramp function γz such that the lifted temperature

T, can be periodic in the domain. The equation becomes

zT

zt
+ u · ∇ T + γz( ) � α∇2T (12)

To ensure that thermal energy is conserved in the domain we set

γ � P
Q � 4, where P is the circumference of the pipe and Q is the

volumetric flow-rate.

The results for the ROMs are presented in Figures 9–11, which

show the error and variance for the velocity and temperature as well

as the Nusselt number behavior as a function of the total number of

modes. The mean Nusselt number definition is based on the time-

averaged streamwise velocity and temperature,

Nu � 1

α Ts − Tb( ), Ts � ∫
zΩ
〈T〉dS, Tb �

∫Ω〈T〉〈uz〉dV
∫Ω〈uz〉dV

. (13)

The legends are ordered in the following manner: L2 basis, H1
0

basis, L2 basis with Leray regularization, L2 basis with constrained

optimization, L2 basis augmented with 0th-mode interaction, L2

basis augmented with auto-correlation (diagonal), and L2 basis

augmented with combined 0th-mode and auto-correlation

modes.

A common observation for Figures 9–11 is nominal

convergence for the Re = 4,000 case for the L2, H1
0, and Leray

FIGURE 12
Magnitude of POD and ABM modes for a regularized lid-driven cavity problem.
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regularization methods, albeit to relatively large asymptotic

values. As the Reynolds number increases, more modes are

required for the L2 and H1
0 formulations to converge, with the

required number of modes apparently exceeding N̂ � 200 for

Re = 10,000. Clearly, Leray outperforms standard L2 andH1
0, but

is inferior to L2–Cst and L2–AugC, with the latter two having

mean velocity error of just a few percent at Re = 10,000 (Figure 9,

top right). The thermal behavior is similar, save that the mean-

field error (Figure 10, top) is above 10% with the exception of

L2–AugC for Re = 10,000. Remarkably, this same case exhibits

too little thermal variance, as seen in the lower right frame of

Figure 10 (We explore this anomalous behavior in the next

section.) On the other hand, the error in Nu for L2–AugC at

Re = 10,000 is uniformly less than 1% (Figure 11).

We close this section with a remark about DEIM as a possible

alternative to ABM. Although DEIM allows for larger number of

modes in the ROM for a given cost, its accuracy will not surpass

that of the underlying ROM formulation on which it is based. So,

for a classic L2– orH1–based formulation, DEIM will not yield an

acceptable reconstruction result even at N = 200, whereas the

constrained and ABM formulations realize convergence at much

lower values of N̂ and much lower costs.

5 Discussion

The ABM has been remarkably successful in advancing our

ability to apply ROMs to high-Reynolds number flows. Several

observations point to the stabilization properties of the ABM,

rather than its approximation quality, as the principal driver for

its success. Inspection of the modes for several cases indicate that

the augmenting modes in the ABM have high wavenumber

FIGURE 13
Temporal behavior of basis coefficients for standard POD (Glk), Leray-filtered (Lry), Constrained (Cst), and ABM-ROM solutions of turbulent pipe
flow at Re = 5300 over (convective) time intervals t ∈ [0, 10] [0.100], and [0.500].
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content that is localized in Ω to regions of active flow dynamics.

An example is illustrated in Figure 12, which shows the first

14 L2–AugC modes for the case of a lid-driven cavity at Re = 30,

000. For j = 0, . . . , 4, the first five POD modes, ζj ∈ ZN, are in the

top row; the first five 0-modes, P u0 · ∇uj + uj · ∇u0{ }, are in the

center row; and the first five diagonal-modes, P uj · ∇uj{ }, are in
the lower row (The 0–0 mode is of course not used twice when

forming the augmented basis.) We see that the auto-interaction

modes in particular feature high wavenumber content in regions

ofΩwhere the PODmodes have significant amplitude. Although

it is not shown here, the augmented bases develop high

wavenumber content at a much faster rate (i.e., lower mode

number) than their high mode-number POD counterparts,

which explains why it takes so long for the standard POD

Galerkin method to stabilize in the Re = 4,000, 5300, and

10,000 pipe flow cases of the preceding section. In this sense,

the augmenting modes are more wavelet-like than Fourier-like

and therefore quite efficient in providing a localized dissipation

mechanism for quadratic interactions. Using these bases thus

makes some sacrifice on approximation properties (because we

use fewer PODmodes, which are optimal in generating low-rank

approximations to the snapshot space in the same spirit as low-

rank SVD-based matrix decompositions) in favor of better

stabilization. Despite this trade-off, the ABM generally yields a

much better overall approximation of the dynamics than even its

stabilized POD counterparts, as is evident in the turbulent pipe

flow case.While not shown in this work, ABM-ROM constructed

from pipe-flow at Re = 5300 snapshots were stable even with

parametric variation (in Reynolds number), but accuracy in the

Nusselt number prediction decreased as the Reynolds number

FIGURE 14
Convergence for mean velocity (left) and TKE (right) for turbulent pipe flow at Re = 5300 as a function of the number of modes for the POD-
ROM (top) and ABM-ROM (bottom). The dimension of the snapshot space, K, is indicated in the legend.

Frontiers in Physics frontiersin.org14

Kaneko and Fischer 10.3389/fphy.2022.905392

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.905392


moved away from 5300. How to address this phenomenon will be

studied in subsequent works in the future.

This stabilization hypothesis is supported by the graphs of

Figure 13, which shows the amplitudes of the basis coefficients

for POD and ABM Galerkin ROM solutions to pipe flow at Re =

5300 as a function of time and mode number. The coefficient

evolutions are shown over three time windows [0, 10] [0, 100],

and [0, 500], which reveal the growth and saturation of the

amplitudes. We see that for the ABM (in the lowest row), the

coefficients are all smaller than unity, save for the ζ0 coefficient,

which is unity (All modes have unit 2-norm, so the coefficients

represent the true amplitude of each scaled mode.) The ABM

results also show that most of the energy is in the POD bases,

corresponding roughly to the lower third of the mode indices. By

contrast, the coefficients for the standard POD Galerkin modes

(top row) quickly saturate to amplitudes in excess of 100, and all

modes are excited. As is well known from under-resolved Navier-

Stokes simulations, there is an energy pile up—manifest as high

amplitude modal coefficients—when the representation lacks

high wavenumber bases capable of dissipating energy. The

Leray-regularized coefficients (second row) exhibit a behavior

similar to the standard Galerkin approach, save that the

coefficients are much more controlled, which peak amplitudes

much closer to unity. The constrained approach (third row) also

exhibits chaotic coefficient behavior but at much more controlled

amplitudes than either the standard or Leray cases. Remarkably,

the evolution on the t = [0, 100] window indicates that the ABM

coefficient behavior is nearly time periodic.

Another study to investigate the role of dissipation is

illustrated in Figure 14. We focus initially on the upper left

graph, which shows the mean-flow error for the standard POD-

ROM case as a function of the number of modes N̂ � N. The

modes are drawn from a set of POD bases functions based on K

snapshots, where K = 125, 250, 500, or 1,000. Whenever N = K it

is clear that ZN is equivalent to the snapshot space, which implies

that the modes contain all the high frequency content present in

the snapshots of a turbulent flow solution.We see that these cases

have a lower error than cases where the number of modes is a

relatively small fraction of the number of snapshots. The same

trends are indicated in the TKE plots for the POD-ROM in the

upper right graph. By contrast, the ABM-ROM needs very few

total modes to yield a better estimate of the mean flow (lower left)

and the best TKE predictions are obtained when the snapshot set

is large (e.g., K ≥ 500 in the lower right graph). If we have too few

modes in the snapshot space, along with the nonlinear

augmentation modes, the ABM-ROM appears to be overly

dissipative. Therefore, we suspect that using more snapshots

to produce a more accurate POD series may ensure an accurate

ROM reproduction for high Reynolds number pipe flow cases.

The effectiveness of the ABM approach in a pMOR context is

demonstrated by considering the pipe flow problem with two sets

of snapshots at Re = 5300 and Re = 10,000. Combining

1,000 snapshots from each anchor point, we obtain 30 POD

modes and 61 ABMmodes using the average of the mean velocity

solutions at the anchor points as the lifting function. Running

this ROM for Re ∈ {4,000, 5000, . . . , 10,000} resulted in a

parameteric behavior that is consistent with the physical flow: as

Reynolds number is increased, the boundary layer thickness

decreases according to the law of the wall and the turbulence

fluctuation adjacent to the wall region increases. Figure 15 depict

the mean axial flow profile. This profile was produced by an

additional spatial averaging in the axial and azimuthal directions.

More detailed analysis will be conducted in the future, but this

preliminary example pMOR application provides evidence that

ABM-ROM is a promising approach for pMOR of turbulent

flows.

6 Conclusion

We introduced a novel stabilization method, ABM, for

ROM-based simulations of incompressible turbulent flows that

augments the standard POD basis with approximate temporal

derivatives. For a space of POD basis functions, ZN = {ζi}, i = 0, . . .

, N, we include and additional 2N + 1 functions that are the Leray

(divergence-free) projections of the nonlinear interactions with

the lifting mode, {ζ0 ·∇ζi + ζi ·∇ζ0}, and nonlinear auto-

interactions, {ζi ·∇ζi}. With these basis functions, the ROM

proceeds in the standard Galerkin fashion and is seen to

dramatically outperform standard L2-and H1
0-POD Galerkin

ROM approaches as well as Leray-stabilized methods

introduced by [1,11]. The ABM performs comparably to the

constraint-based stabilization approach of [8], but the latter is

restricted to the ROM reproduction problem (i.e., running at the

FIGURE 15
Time- and space-averaged axial velocity profiles for ABM-
ROM pMOR.
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same parameter points as the originating FOM) because, in a

pMOR setting, the correct basis-coefficient limits are not known

at training points other than the anchor points.

We showed that the auxiliary modes of the ABM have high

wavenumber content that is localized to regions in Ω where flow

gradients are large and thus provide efficient dissipation

mechanisms that are lacking in standard POD bases. We

further demonstrated that, for standard POD methods, having

a more complete POD space (i.e., incorporating N ≈ K modes

from a relatively small snapshot space of rank K) yields lower

errors than having N′ > N POD modes from a larger snapshot

space of rank K′ > N′. The reasoning is the same—the more

complete space includes high wavenumber content in the ROM

basis set that provides dissipation and hence stability. Analysis of

the ROM coefficient time-traces for turbulent pipe flow at Re =

5300, illustrated that the amplitudes of all the modes for non-

stabilized POD-ROM are orders of magnitude larger than their

stabilized counterparts. While Leray-based stabilizationmitigates

this behavior, it still yields coefficient amplitudes that are roughly

a factor of ten greater than observed in either the constrained or

ABM-based formulations.

The ABM was also shown to be effective for predicting

thermal QOIs such as Nusselt numbers. It was, however, a bit

overly dissipative at Re = 10, 000. The study of the interplay

between N and K indicates that this dissipation can be controlled

with these two parameters and one might therefore use these

parameters to gain insight to the root cause of the over-

dissipation. Future work will include application of the ABM

to higher Reynolds number flows and to more complex domains.
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