
Stack Operation of Tensor Networks
Tianning Zhang1*, Tianqi Chen2, Erping Li3, Bo Yang2 and L. K. Ang1

1Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore, Singapore, 2School of
Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 3College of Information Science and
Electronic Engineering, Zhejiang University, Hangzhou, China

The tensor network, as a factorization of tensors, aims at performing the operations that
are common for normal tensors, such as addition, contraction, and stacking. However,
because of its non-unique network structure, only the tensor network contraction is so far
well defined. In this study, we propose a mathematically rigorous definition for the tensor
network stack approach that compresses a large number of tensor networks into a single
one without changing their structures and configurations. We illustrate the main ideas with
the matrix product states based on machine learning as an example. Our results are
compared with the for-loop and the efficient coding method on both CPU and GPU.

Keywords: tensor network, stack operation, machine learning, matrix product state, tensor network machine
learning

1 INTRODUCTION

Tensors are multi-dimensional arrays describing multi-linear relationships in a vector space. The
linear nature of the tensors implies that two tensors may be added, multiplied, or stacked. The stack
operation of tensors places all the tensors with the same shape row by row, resulting in a higher-
dimensional tensor with an extra stack dimension. For example, stacking scalars will lead to a
vector and stacking vectors gives a matrix. The tensor operation is designed for the fundamental
calculation in modern chips such as graphics processing unit (GPU) and tensor processing unit
(TPU) [1]. Thus, computations with a combination of tensor operations would be more efficient as
compared with the conventional ways. For example, there are two ways to calculate the dot product
between a hundred vectors vin×1(i � 1, 2, . . . , 100) and a core vector cn×1: either by applying the dot
operation 100 times via a for loop or align all the vectors into a big matrix M100,×,n and apply a
matrix-vector dot product. The latter method is much faster in GPU or TPU because of their
intrinsic design.

The tensor network [2–5] is a decomposition of a very large tensor into a network structure of
smaller tensors, which has seen recent applications in machine learning [6–15]. As it is merely
the decomposition of the tensors, the tensor networks were expected to be able to maintain the
same operations as mentioned previously. However, because of its arbitrary decomposition into
a network structure, only the contraction operation is well defined. Other operations such as
“stack” and the batched tensor networks have not been studied thoroughly so far. In fact, the
stack operation is quite an important part of the modern machine learning tasks, by treating
hundreds of input tensors as a single higher-dimensional batched tensor at training and
inference steps. Recent tensor network machine learning approaches include the matrix
product states (MPS) [6, 11], the string bond states (SBS) [12], projected entangled pair
states (PEPS) [16, 17], the tree tensor network (TTN) [9, 13, 18], and others [19, 20] that
either use a naïve iteration loop or skip the batched tensor network via a programming trick (we
note it as the efficient coding). Several studies have explored the concept of stack operation of
tensor networks to a certain extent. For instance, Ref. [21] puts forward the “A-tensor” to
represent the new local unit of MPS after adding the extra local state space. It represents the local

Edited by:
Chu Guo,

Hunan Normal University, China

Reviewed by:
Shi-Ju Ran,

Capital Normal University, China
Jie Ren,

Changshu Institute of Technology,
China

*Correspondence:
Tianning Zhang

tianning_zhang@
mymail.sutd.edu.sg

Specialty section:
This article was submitted to

Quantum Engineering and
Technology,

a section of the journal
Frontiers in Physics

Received: 28 March 2022
Accepted: 07 April 2022
Published: 11 May 2022

Citation:
Zhang T, Chen T, Li E, Yang B and
Ang LK (2022) Stack Operation of

Tensor Networks.
Front. Phys. 10:906399.

doi: 10.3389/fphy.2022.906399

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 9063991

ORIGINAL RESEARCH
published: 11 May 2022

doi: 10.3389/fphy.2022.906399

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.906399&domain=pdf&date_stamp=2022-05-11
https://www.frontiersin.org/articles/10.3389/fphy.2022.906399/full
http://creativecommons.org/licenses/by/4.0/
mailto:tianning_zhang@mymail.sutd.edu.sg
mailto:tianning_zhang@mymail.sutd.edu.sg
https://doi.org/10.3389/fphy.2022.906399
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.906399

tensor of the symmetric tensor network, which is regarded as
the stack of different “multiplets.” This approach is developed
for the scenario that the system has certain symmetries so that
the computational cost can be well controlled. It did not
explicitly reveal the concept of stacking hundreds of tensor
networks into one network. A more recent work [22] has put
forward the “add” operation of MPS for solving the many-body
Schrödinger’s equation. It represents the coefficients of the
many-body wave function as tensor networks and “adds” them
into one compact form. The “add” operation is similar to our
definition of the stacked tensor network with an additional
reshape. Therefore, it is useful to discuss what the stack of
tensor networks is and how it performs in machine learning
tasks. It is expected that the batched tensor network method
may be an alternative option for a faster machine learning
program when efficient coding is unavailable. It can also
provide the theoretical background for future chip designs
based on tensor network contractions.

In this study, a regular tensor network stack operation method
is put forward to compress two or more tensor networks with the
same structure into one tensor network with one more stack bond
dimension. The remaining part of the stacked tensor network is
the same as that of the original tensors. We illustrate the main
procedures with the realization of the stack operation on a one-
dimensional tensor network system, that is, the MPS. However,
our result can be extended to an arbitrarily shaped tensor network
such as the PEPS. The rest of the article is organized as follows. In
Section 2, we present the concept of the stack operation for tensor
networks and the proof using MPS as an example. In Section 3,
we benchmark the speed and compare the machine learning
performance for three batch computing methods for the MPS
machine learning task: the naive loop method in Section 3.1, the
batch tensor network in Section 3 2, and the efficient coding
method in Section 3.3. In Section 3.4, we further discuss the
relationship between the batch tensor network and the efficient
coding method. We draw our conclusion and provide a future
perspective in Section 4.

2 BATCH CONTRACTION OF TENSOR
NETWORKS

In this section, we provide the definition of the regular stack
operation of tensor networks used in the study. We will first

discuss some basic concepts of tensors in Section 2.1 and tensor
networks in Section 2 2. We then present the details of the stack
operation for an MPS in Section 2.3 and its generalized
formation of higher dimensional tensor networks in Section 2.4.

2.1 The Stack Operation
A tensor T is a specifically organized high-dimensional collection
of real or complex numbers. For example, a rank-k tensor has k
indices. Therefore, a rank-1 tensor has only one index, and it is
just a vector; a rank-3 tensor is a higher-order tensor with three
independent indices. In this study, we will use a tuple with
parentheses (L1, L2, . . . , LK) to represent the rank-K tensor

T ≡ T p1 ,p2 ,...,pK � L1, L2, . . . , LK(),
where pi is the ith local index which takes the value from 1, 2 to Li,
that is, for each i, the local dimension is Li. Therefore, a vector
which has N dimension could be represented as a tuple like (N,)
and a matrix whose size is N × M (N, M).

“Stack” is a pervasive operation in tensor analysis. It could
merge a series of tensors having the same shape into a higher rank
tensor. For example, if we stack N vectors (M,), then we get a (N,
M). If we stackKmatrix (N,M), then we get a rank-3 tensor (K,N,
M) (Figure 1).

In computer science, the stack operation generally converts
the list of tensors having the same shape into a very compact form
that is memory efficient. For example, in Matlab, for a certain
problem which requires going through all the elements,
transforming it into matrices production is much more
efficient than using a for-loop operation for the multiplication
of row vectors.

For modern machine learning or deep learning, the feeding
input data are always encoded as tensors. To deal with thousands

FIGURE 1 | Illustration of stacking 4 vectors of (6) into a single matrix
(4, 6).

FIGURE 2 | Diagrammatic representations for tensor networks: (A)
Diagrammatic representations for tensors Mi and Ni,j,k, and the contraction
between them Mi · Ni,j,k; (B) Diagrammatic representation for the one-
dimensional tensor network MPS:Mj is the local rank-3 tensor and each
is contracted via auxiliary bond dimensions (vertical solid lines); σj is the index
for the physical dimension.

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 9063992

Zhang et al. Stack Operation of Tensor Networks

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

of inputs, those tensors are stacked together and reformulated
into a higher-rank tensor called a batch before passing it into the
model. This type of higher-rank tensor is also referred to as stack
operation in machine learning.

2.2 Basics of Tensor Networks
A tensor network {Ti} is the graph factorization of very large
tensors by some decomposition processes like SVD or QR. The
corresponding tensor results from contracting all the auxiliary
bonds of the tensor network.

T ⇋decomposition
contraction Ti{ },

where Ti represents the small local tensor in the tensor network.
A graphical representation of tensors is shown in Figure 2A.

In general, a rank-k tensor has k indices. Therefore, a vector as the
rank-1 has one dangling leg and a rank-3 tensor has three
dangling legs, as shown in Figure 2A. The contraction
between two tensors can thus be defined by contracting the
same index between two arbitrary tensors. In Figure 2A, a
rank-1 tensor Mk is contracted with another rank-3 tensor
Ni,j,k as Mk · Ni,j,k, and it ends up with a rank-2 tensor, that is,
a matrix.

In the context of quantum physics, a many-body wave
function can be represented as a one-dimensional rank-N
tensor network where each leg represents the physical index
for each site, as shown graphically in Figure 2B. This is
usually referred to as the matrix product state (MPS). The
MPS can therefore be seen as a connected array of local rank-
3 tensors. Each tensor Mj has three indices: the physical index σ,
and two auxiliary indices Dj and Dj+1 that are contracted and
therefore, implicit. An MPS with open boundary conditions can
be written as

ψ
∣∣∣∣ 〉 � ∑

σ{ }
Mσ0

0 M
σ1
1 . . .Mσn−1

n−1[] σ0, . . . , σn−1| 〉. (1)

2.3 Stack Operation for Matrix Product
States
A tensor T can be converted to a tensor network {Ti} which
consists of contracted local tensors Ti via decomposition such as
the tensor train method [23]. Mathematically, one could perform
operations such as product, trace, contraction, splitting, and
grouping on both of them.

However, the stack operation can only be directly applied to
one single tensor network rather than to multiple ones separately.
More precisely, we want to deal with such a problem as shown in
Figure 3: given a series of tensor networks {Ti}α with the same
configuration, we want to get their stacked tensor network
representation with the same physical structure and shape.

One direct method to realize this is to convert those tensor
networks {Ti} first to the corresponding tensor (k, k, . . . , k), and
then decompose the stacked tensor (n, k, k, . . . , k). However,
this deviates from the original intention of representing a tensor
as a tensor network. It is to be noted that we use a tensor
network to avoid storing or expressing the full tensor in
computing, which is memory-consuming and may be
prohibited in large systems. Thus, we would like to explore
other approaches that can help us to efficiently establish the
representation of the stacked tensor network without accessing
any contraction.

We show in Figure 4 that each rank-3 tensor in the MPS is (k,
nD, nD). Eachmatrix (nD, nD) along with the physical dimension
k, is a block diagonal matrix. The i-th block (D,D) is exactly the i-
th rank-3 tensor in the stack list at the same physical dimension k
(so it is a matrix). There are minor differences between the start
and the end of the MPS. The start tensor unit is a rank-2 matrix
with a row stack for the first unit in the stack list. The end tensor is
a diagonal rank-3 tensor (k, nD, n) with each diagonalD × 1 block
filled by the end unit in the stack list. A full mathematical proof is
given in Supplementary Appendix SA.

FIGURE 3 | Schematics of stack operations for MPS: illustration for the n
identical MPS with auxiliary bond dimensionDwhich ends up with a newMPS
with same physics dimension. One of the sites should have an extra bond
dimension n to fulfill the stack dimension requirement (here we set the
last site).

FIGURE 4 | Diagram result shows the result of the “stack” operation for
the MPS. It will allocate a block diagonal local rank-3 tensor: for each physical
dimension, it gives a block diagonal matrix where the size of each block is a
matrix (D, D). Note the first tensor unit’s block is a vector (D,) and the last
unit’s block is a matrix (D, 1)

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 9063993

Zhang et al. Stack Operation of Tensor Networks

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

2.4 Batch Operation for General Tensor
Networks
For other types of tensor networks such as the PEPS, the unit
tensor is a 4 + 1 rank tensor. The formula shown in IIC would be
more complicated. We show the results here directly. For any
tensor network consisting of M tensor unit

Ti � k, L1, L2, . . . , Lm()|i � 1, 2, . . . ,M{ }

its n-batched tensor network version is another tensor network

Ti
batch � k, nL1, nL2, . . . , nLm()|i � 1, 2, . . . ,M{ }

with one extra index. The extra index represents the stack
dimension (corresponding to the tensor stack) and is free to
be added since each local tensor is block-diagonal. We only need
to unsqueeze/reshape the diagonal block from (k, L1, L2, . . .) to (k,
1, L1, L2, . . .). For theMPS case, we could put it at the right end, as
shown in Figure 4.

The sub-tensor (nL1, nL2, . . . , nLm) along the physical indices
for each tensor is a diagonal block tensor. For example, the j-th
diagonal block is

Ti
batch()k,p1 ,p2 ,...,pm � Ti

j,

where pi is the local index for index iwhich takes the value from pi
∈ [j*Li, (j + 1)*Li] and T

i
j is the Ti of the j-th tensor network in the

tensor network list {Ti}α.
Meanwhile, one unit (for example, take the N-th local tensor)

should be “unsqueezed” to generate the dangling leg for the stack
number indices

TN
batch � k, nL1, nL2, . . . , nLm, n().

For example, the MPS case in Section 2.3 will generate a row
vector which is just the “diagonal block” form for the rank-1
tensor. The last MPS unit would get an external “leg” with the
dimension N as the requirement of the batch.

3 APPLICATION

In this section, we study the potential applications of the stack of
tensor networks. We apply this stack operation method to the
tensor network machine learning. For a tensor network-based
machine learning task, both the model and input data can be
collectively represented as a tensor or tensor network. In fact,
here, the model actually refers to the trainable parameters, and
we would note it as the machine learning core in the following
context. The forward processing to calculate a response signal y
corresponding to the input x is an inner product in a linear or
nonlinear function space, as the interaction between the
machine learning core and the input data. The lost function
is designed based on the type of task. For example, we would
measure the distance between the real signal ŷ and the
calculated signal y; for unsupervised learning, we might
design the structure loss of hundreds of signals y to
maximize the distance matrix. In this work, we take
supervised machine learning as an example. However, such a

method is flexible for any machine learning framework since it is
a modeling technology. Here, by using the language from
quantum physics, we denote the machine learning core as
|C〉 and one of the input data as |Ij = Ij(ψ)〉. As both the
core |C〉 and the input |Ij〉 are represented as tensors, this
processing can be batch executed in parallel. This machine
learning task can then be efficiently represented as

〈C| B, Ij()〉 � B, 〈C|Ij〉() � B, αj(), (2)
where αj is the resulting output data, and |(B, Ij)〉 is the batch
representation of B stacked tensors or a tensor network where
|(B, Ij)〉 has an explicit format.

In the following sections, we consider the one-dimensional
case of the MPS machine learning task as an example. As shown
in Figure 5, both the core |C〉 and the inputs |Ij〉 are the MPS, and
the output responsive signal αj is the result obtained by
contracting both physical bonds from the two MPS.

In the following sections, we show that there are three ways to
accomplish this machine learning task: the loop (LP) method,
the batched tensor network (BTN) method, and the efficient
coding (EC) method. The core MPS |C〉 consists of L local tensor
units with k being the dimension for all physical bonds and V
being the dimension for all auxiliary bonds. Each input MPS |Ij〉
consists of L local tensor units with k being the dimension for all
physical bonds and D being the dimension for all
auxiliary bonds.

3.1 Naïve Loop Method
As shown in Figure 5, for B input samples, one needs to
perform B contractions to obtain B outcomes. The most
obvious way to accomplish this is to perform contractions
one by one. When we utilize the auto differential feature from
the libraries PyTorch [25] and Tensorflow [26], the gradient
information would be accumulated in every step. At the end of
the loop, we can acquire the batch gradient by averaging over
the sum and applying it to the gradient descent method for
weight updating.

FIGURE 5 | Schematics of inputting individual data as the MPS (|Ij(ψ)〉)
onto the core model (〈C|): each operation follows the arrow with the same
color, and results in an outcome αj.

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 9063994

Zhang et al. Stack Operation of Tensor Networks

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

3.2 Batched Tensor Network Method
As discussed in Section 2, we can stack all the input MPS to a
batched tensor network which behaves like another MPS.
|(B, Ij)〉 � |I(ψstack)〉. Assume the number of input is B,
although the auxiliary bond dimension of the batched MPS
|(B, Ij)〉 gets B times larger (see Figure 4), the action of the
inner product

〈C| B, Ij()〉 � 〈C I ψstack()
∣∣∣∣ 〉 (3)

can now be written as one single tensor contraction, as shown in
Figure 6.With the help of the format of the batched tensor
network, we can now compress B times contraction into one
single contraction. Our advantage is obvious: software libraries
such as PyTorch and computational units such as GPU are
intrinsically optimized for tensor operations, so contracting a
large tensor is usually much faster than the matrix multiplication
using a for-loop. As you can see in the benchmark shown in
Figure 8, when using the GPU environment, the BTN method
can get constant time complexity whereas the LP method is the
linear function of batch size.

It is to be noted that we need to calculate an optimized
contraction path to efficiently contract the tensor network as
shown in Figure 6 whereas the LP method can simply contract
the physical bond first and then sweep from left to right. When B
gets larger, contracting the physical bond first in order requires
storing an MPS with an auxiliary bond equal to nVB, which is
quite memory consuming. Such a method would cost extra
memory allocation for the block diagonal tensor. The memory
increment is O(Bm), where m is the number of the auxiliary
bonds. For example, the rank-3 tensor of the batched MPS will
allocate a k × nB × nB memory to store only B × k × n × n valid
parameters. If an auto differential action is required in the
following process, the intermediate tensor required for
gradient calculation will also become B times larger. Thus,
although the speed is faster when the batch goes larger, the
memory will gradually blow up. The BTN method is a typical
“memory swap speed” method.

One possible solution is to treat the diagonal block tensor as a
sparse tensor, so we only need to store the valid indices and
values. Meanwhile, if we contract the physical bonds first, it will
return a matrix chain whose unit is also a sparse diagonal matrix
of the shape (nBV, nBV). This implies that we can block-wise
compute the matrix chain so that each sparse unit performs like a
compact tensor (B, nV, nV). At this juncture, it turns out that we

can then use the popular coding method called efficient coding,
which is widely used in modern tensor network machine learning
tasks [6, 11, 14, 16, 18].

3.3 Efficient Coding
The efficient coding (EC) does the “local batch contraction” for
every tensor unit calculation in the tensor network contraction.

We first batch-contract each physical index and get a tensor
train consisting of batched units as shown in Figure 7, then we
perform the batch contraction on all the auxiliary bonds for this
batched tensor train.

The batch contraction is realized by the built-in function
einsim which is provided in many modern scientific software
libraries such as Numpy [27], PyTorch [25], and Tensorflow [26]:

einsum(’kij,Bknm → Binjm’, core, batch), (4)
einsum(’Bij,Bjk → Bik’, core, batch). (5)

For those without einsim, one alternative solution is to implement
a highly efficient “batch matrix multiply” function. The
fundamental realization of PyTorch.einsim is, in fact, the
“batch matrix multiply” called PyTorch.bmm. It is to be noted
that such a method is not new for tensor network machine
learning, and Refs. [11, 14, 16] have already realized successful
learning algorithms based on this.

The memory allocated for EC is much less than that for the
BTN, which is the major reason why the BTN method is slower
than EC.

Moreover, the dense BTN may require an optimized
contraction path for a large batch case, while EC for the MPS
would only allow contraction of the physical bond first, followed
by the contraction of the auxiliary bonds as the tensor train
contraction. The standard tensor train contraction method
sweeps from the left-hand side of the MPS to the right. In
particular, when we require all the MPS in the uniform shape,
that is, all the tensor units share the same auxiliary bond
dimension, we can then stack those units together (B, L, V, V)
and split them by odd indices (B, L/2, V, V) or even indices (B, L/

FIGURE 6 | Schematics of contractions between the core MPS 〈C|
(upper) and the batched MPS |(B, Ij)〉 (down).

FIGURE 7 | Illustration of efficient coding for the MPS. Each unit from the
core MPS is batch-contracted with the input MPS (upper), and they form a
batched unit as a local tensor in the resulting MPS (down).

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 9063995

Zhang et al. Stack Operation of Tensor Networks

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

2, V, V). In doing so, we can get the half-length tensor units (B, L/
2, V, V) for the next iteration by contracting the odd and
even parts.

3.4 Comparison and Discussion
In Figure 8, we show the speed-up benchmark results for all three
different methods introduced from Section 3.1 to Section 3.3
with respect to different batch sizes in a log—log plot. We
compare the performance using different libraries in Python.
Wemainly test three batch contractionmethods: the loopmethod
(LP), the batch tensor network method (BTN), and the efficient
coding method (EC) on the MPS batch contraction task in
Figure 5. The system size is a L = 20 units MPS with each
unit assigned V = 6, k = 3, and D = 1 (see Figure 7). The batch
contraction task size is from 1 to 1000. Overall, EC has the best
speed-up performance over other methods for almost all libraries,
especially at large batch sizes. Because of the pre-processing
requirement, the BTN can be slower than others in small-
batch cases. The CPU is not efficient in storing and processing
larger matrices or tensors, whereas the GPU is deeply optimized
to deal with tensor data structures. Thus, the BTN gets similarly
linear time complexity like the LP in CPU but maintains a
constant time complexity in GPU. It is to be noted that the
BTN will allocate tensors with (nB, nB). Thus, the larger the batch
size, the larger the intermediate tensor will be. We can see that the
PyTorch (CPU) gets better optimization with large tensors than
NumPy. In Figures 8C, D, both BTN and EC have constant time
complexity in GPU since the GPU would compress the time
complexity of the matrix contraction to a constant level. It also
implies that there is a close relationship between EC and BTN. As
we discussed at the end of Section 3 2, the EC is another
realization of the sparse matrix BTN. The redundancy
memory requirement for the diagonal block tensor slows
down the BTN method, but such redundancy requirement is
eliminated in EC.

For the EC and LP methods, we contract the physical bond
first, and obtain a tensor chain-like structure

B,V() − B,V,V() − B,V,V() −/ − B,V,V() − B,V,O(),

where B = 1 for the LP method and B > 1 for the EC method.
Notice that we assume D = 1 here for the traditional MPS
machine learning task. The memory complexity costs (L − 1)
× BV2 + BVO + BV as the O (B). Since the output bond is at the
right-hand side, the optimal path is contracting from the left end
to the right end. Here, we use the auto differential engine to
automatically calculate the gradient for each unit and then, the
computer records all the intermediates during the forward
calculation. We therefore obtain the (B, V) batched vector
calculated by a batched vector-matrix dot for the first two units

B,V() × B,V, V() → B,V() for the rest
B,V() × B,V, O() → B,O() for the last.

So the memory cost for the EC and LPmethods is straightforward
as saving L − 1 times batched vector-matrix dot result, which is
(L − 2) × BV + BO. If we apply the same contraction strategy to
the BTN method, the resulted chain is

BV,() − BV, BV() −/ − BV, BV() − BV, BO().
The memory complexity then costs (L − 1) × B2V2 + B2DVO +
BV memory as the O (B2). Surprisingly, the intermediate cost is
the same: (L − 2) × BV + BO. However, the left-right sweep path
is not always the optimal path for the BTN method, as we
discussed in Section 3 2. In our experiment, the memory
complexity for the optimal path consumes much less than
O(B2). In Figure 9, we give an example of the memory cost
for increasing the batch size which takes L = 21 units of MPS
with each unit assigned with V = 50, k = 3, D = 1 as the system
parameters. The output O = 10 classes leg is set at the right end.
The batch size increases from B = 10 to B = 1500. We also plot
the B times larger curve of the EC and we simply labeled it as
EC*B. We could see that although the BTN method takes more
memory than the EC method, the memory complexity is much
less than O(B2), which makes it an available option for machine
learning. Also, for other problems which require small batches
but larger auxiliary bond dimensions, the BTN will perform
better than the EC method as shown in Figure 10 with a B = 10,
k = 3, D = 1, O = 10 and V = 10 → 3000 MPS learning system.

FIGURE 8 | Speed-up benchmark results for different methods as a function of batch size with: (A)Numpy on CPU; (B) PyTorch on CPU; (C) PyTorch on GPU; and
(D) Tensorflow on GPU. The red, blue, and green solid lines correspond to the result obtained using the loop method (LP), efficient coding (EC), and the batch tensor
network method (BTN), respectively. All the panels are plotted in the log—log format. The result is tested on an Intel(R) Core(TM) i7-8700K CPU and 1080Ti GPU.

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 9063996

Zhang et al. Stack Operation of Tensor Networks

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

Contracting the auxiliary bonds first and keeping comparably
smaller intermediates is a better choice when B ≪ V. This is the
reason why the BTN method can allocate much less memory
than the EC method for large auxiliary dimensions as shown in
Figure 10.

We also demonstrate a practice MPS machine learning task in
Figure 11 and Figure 12. The dataset we used here is the MNIST
handwritten digit database [28]. The machine learning task
requires predicting precisely the number from 0 to 9 among

the dataset. The core tensor network is a ring MPS consisting of
24 × 24 units with each unit as (V, k, V) except the last one (C, V,
k, V). Here, V = 20 is the bond dimension, k = 2 is the physics
bond dimension, and C = 10 is the number of classes. The bond
dimension of the input tensor network is D = 1. We use the ring
MPS as it is easier to train than the open boundary MPS.
Figure 12 shows the valid accuracy versus time. The valid
accuracy is measured after each epoch and only plots five
epochs since the model gets over-fitting later. Each epoch will
swap the whole dataset once. The best valid accuracy for this

FIGURE 9 |Memory required for the increasing batch size MPSmachine
learning problem. The system is an MPS of L = 21 units, with each unit
assigned with V = 50, k = 3, D = 1, O = 10. The green curve (BTN) is the
required memory for the BTNmethod; the blue curve (EC) is the required
memory for the EC method; and the red curve (EC*B) is the B times larger
curve of EC.

FIGURE 10 | Memory required for the increasing auxiliary bond
dimension MPS machine learning problem. The system is an MPS with L = 21
units, with each unit assigned with B = 10, k = 3, D = 1, O = 10. The green
curve (BTN) is the required memory for the BTN method and the blue
curve (EC) is the required memory for the EC method.

FIGURE 11 | Evaluation of the train accuracy of MPS machine learning
tasks on the MNIST dataset using three batch contraction methods: (red solid
curve) the batch tensor network method (BTN); (green dashed curve) the
efficient coding; and (blue dotted curve) the loop method (LP).

FIGURE 12 | Evaluation of the valid accuracy of MPS machine learning
tasks on the MNIST dataset using three batch contraction methods: (red solid
curve) the batch tensor network method (BTN); (green dashed curve) the
efficient coding; and (blue dotted curve) the loop method (LP).

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 9063997

Zhang et al. Stack Operation of Tensor Networks

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

setup is around 92%, whereas the state-of-the-art MPS machine
learning task [16] can reach 99% with a large bond .

The result is tested on an Intel(R) Core(TM) i7 − 8700K CPU
and 1080Ti GPU and is shown in Figure 11. The optimizer we
used here is Adadelta [28] with the learning rate lr = 0.001. The
batch size is 100. The random seed is 1. The test environment is
PyTorch. The x-axis shown in Figure 11 is the time cost. It is to be
noted that these three methods are the only different approaches
to realize the batch contraction so that they will not influence the
contraction result. That is why these three curves shown in
Figure 11 are exactly the same. The EC method is the best
choice for tensor network machine learning. The LP method is
the most inefficient method, which would cost 1 hour to traverse
the dataset while EC only requires 60 s and BTN takes 300 s.

4 CONCLUSION

We have investigated the stack realization of the tensor network
as the spread concept of the stack operation for tensors. The
resulting stacked/batched tensor network consists of block-
diagonal local tensors with larger bonds. We connected this
method to the efficient coding batch contraction technique
which is widely used in tensor network machine learning. An
MPS machine learning task has been used as an example to
validate its function and benchmark the performance for
different batch sizes, different numerical libraries, and
different chips. Our algorithm provides an alternative way of
realizing fast tensor network machine learning in GPU and
other advanced chips. All the codes used in this work are
available at [29].

Several possible future directions may be of significant
interest. Our work reveals an intrinsic connection between
the block-diagonal tensor network units and the batched
contraction scheme, which is potentially useful for helping
researchers realize faster tensor network implementation with
the block-diagonal design like [17]. Secondly, our algorithm
comes without performing SVD to the stacked tensor network;
it would be great to define a batch SVD and check its
performance and error when truncating the singular values
for a larger data size. Thirdly, the efficient coding method
requires the contraction of the physical dimensions first.
However, the batch method provides the possibility to start
contractions in other dimensions first, which may be useful for
the contraction on a two-dimensional PEPS or through the
tensor renormalization group method [30–32]. Finally, the
BTN method takes advantage of compressing thousands of
contractions into one contracting graph. From the hardware
design perspective, with a specially designed platform

optimized for tensor network contraction, the BTN method
may intrinsically accelerate the tensor network machine
learning or any task involving a stacked tensor network.
Meanwhile, the tensor network states in many-body
quantum physics have a non-trivial relationship with the
quantum circuits. So the idea of representing several tensors
contracting into one single contraction also provides the
possibility of efficiently computing on NISQ-era quantum
computers.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found at: https://github.com/
veya2ztn/Stack_of_Tensor_Network.

AUTHOR CONTRIBUTIONS

LKA supervised the project, participated in the discussion, and
edited the manuscript. TZ initiated the project, developed most
of the codebase, proved the theory, ran experiments, and wrote
most of the manuscript. TC participated in the discussion,
assisted in proving the theory, and wrote parts of the
manuscript. BY participated in the discussion and edited the
manuscript. EPL participated in the discussion and funded the
project.

FUNDING

This work was supported by US Office of Naval Research Global
(N62909-19-1-2047) and SUTD-ZJU Visiting Professor (VP
201303).

ACKNOWLEDGMENTS

TZ acknowledges the support of Singapore Ministry of Education
PhD Research Scholarship.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphy.2022.906399/
full#supplementary-material

REFERENCES

1. Jouppi NP, Young C, Patil N, Patterson D, Agrawal G, Bajwa R, et al. In-
Datacenter Performance Analysis of a Tensor Processing Unit. SIGARCH
Comput Archit News (2017) 45:1–12. doi:10.1145/3140659.3080246

2. Verstraete F, Murg V, Cirac JI. Matrix Product States, Projected Entangled Pair
States, and Variational Renormalization Group Methods for Quantum Spin
Systems. Adv Phys (2008) 57:143–224. doi:10.1080/14789940801912366

3. Orús R. A Practical Introduction to Tensor Networks: Matrix Product States
and Projected Entangled Pair States. Ann Phys (2014) 349:117–58. doi:10.
1016/j.aop.2014.06.013

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 9063998

Zhang et al. Stack Operation of Tensor Networks

https://github.com/veya2ztn/Stack_of_Tensor_Network
https://github.com/veya2ztn/Stack_of_Tensor_Network
https://www.frontiersin.org/articles/10.3389/fphy.2022.906399/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2022.906399/full#supplementary-material
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

4. Orús R. Tensor Networks for Complex Quantum Systems. Nat Rev Phys
(2019) 1:538–50. doi:10.1038/s42254-019-0086-7

5. Cirac JI, Pérez-García D, Schuch N, Verstraete F. Rev. Mod. Phys., 93 (2021). p.
045003. doi:10.1103/revmodphys.93.045003

6. Stoudenmire E, Schwab DJ. In: D Lee, M Sugiyama, U Luxburg, I Guyon,
R Garnett, editors. Advances in Neural Information Processing Systems, 29.
Curran Associates, Inc. (2016).

7. Gao X, Duan L-M. Efficient Representation of Quantum many-body States with
DeepNeural Networks.Nat Commun (2017) 8:662. doi:10.1038/s41467-017-00705-2

8. Deng D-L, Li X, Das Sarma S. Phys Rev X (2017) 7:021021. doi:10.1103/
physrevx.7.021021

9. Stoudenmire EM. Learning Relevant Features of Data with Multi-Scale Tensor
Networks. Quan Sci. Technol. (2018) 3:034003. doi:10.1088/2058-9565/aaba1a

10. Chen J, Cheng S, Xie H,Wang L, Xiang T. Phys Rev B (2018) 97:085104. doi:10.
1103/physrevb.97.085104

11. Han Z-Y, Wang J, Fan H, Wang L, Zhang P. Phys Rev X (2018) 8:031012.
doi:10.1103/physrevx.8.031012

12. Glasser I, Pancotti N, Cirac JI. From Probabilistic Graphical Models to
Generalized Tensor Networks for Supervised Learning (2019). arXiv:
1806.05964 [quant-ph].

13. Liu D, Ran S-J, Wittek P, Peng C, García RB, Su G, et al. Machine Learning by
Unitary Tensor Network of Hierarchical Tree Structure. New J Phys (2019) 21:
073059. doi:10.1088/1367-2630/ab31ef

14. Efthymiou S, Hidary J, Leichenauer S. Tensornetwork for Machine Learning
(2019). arXiv:1906.06329 [cs.LG].

15. Roberts C, Milsted A, Ganahl M, Zalcman A, Fontaine B, Zou Y, et al.
Tensornetwork. A library for physics and machine learning (2019). arXiv:
1905.01330 [physics.comp-ph].

16. Cheng S,Wang L, Zhang P. Supervised Learning with Projected Entangled Pair
States. Phys Rev B (2021) 103:125117. doi:10.1103/physrevb.103.125117

17. Vieijra T, Vanderstraeten L, Verstraete F. Generative Modeling with Projected
Entangled-Pair States (2022). arXiv:2202.08177 [quant-ph].

18. Cheng S, Wang L, Xiang T, Zhang P. Tree Tensor Networks for Generative
Modeling. Phys Rev B (2019) 99:155131. doi:10.1103/physrevb.99.155131

19. Novikov A, Podoprikhin D, Osokin A, Vetrov DP. In: C Cortes, N Lawrence,
D Lee, M Sugiyama, R Garnett, editors. Advances in Neural Information
Processing Systems, 28. Curran Associates, Inc. (2015).

20. Guo C, Jie Z, Lu W, Poletti D. Phys Rev E (2018) 98:042114. doi:10.1103/
physreve.98.042114

21. Weichselbaum A. Non-abelian Symmetries in Tensor Networks: A Quantum
Symmetry Space Approach. Ann Phys (2012) 327:2972–3047. doi:10.1016/j.
aop.2012.07.009

22. Hong R, Xiao Y-X, Hu J, Ji A-C, Ran S-J. Functional Tensor Network Solving
many-body Schrödinger Equation (2022).

23. Oseledets IV. Tensor-Train Decomposition. SIAM J Sci Comput (2011) 33:
2295–317. doi:10.1137/090752286

24. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. In:
H Wallach, H Larochelle, A Beygelzimer, F d’Alché-Buc, E Fox, R Garnett,
editors. Advances in Neural Information Processing Systems 32. Curran
Associates, Inc. (2019). p. 8024–35.

25. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems (2015). software
available from tensorflow.org.

26. Harris CR, Millman KJ, van derWalt SJ, Gommers R, Virtanen P, Cournapeau
D, et al. Array Programming with NumPy. Nature (2020) 585:357–62. doi:10.
1038/s41586-020-2649-2

27. LeCun Y, Cortes C, Burges CJ. Mnist Handwritten Digit Database (1998).
28. Zeiler MD. Adadelta: An Adaptive Learning Rate Method (2012). arXiv:

1212.5701 [cs.LG].
29. veya2ztn Stack_of_Tensor_Network (2022) Available at: https://github.com/

veya2ztn/Stack_of_Tensor_Network.
30. Levin M, Nave CP. Tensor Renormalization Group Approach to Two-

Dimensional Classical Lattice Models. Phys Rev Lett (2007) 99:120601.
doi:10.1103/physrevlett.99.120601

31. Gu Z-C, Levin M, Wen X-G. Tensor-entanglement Renormalization Group
Approach as a Unified Method for Symmetry Breaking and Topological
Phase Transitions. Phys Rev B (2008) 78:205116. doi:10.1103/physrevb.78.
205116

32. Evenbly G, Vidal G. Tensor Network Renormalization. Phys Rev Lett (2015)
115:180405. doi:10.1103/physrevlett.115.180405

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhang, Chen, Li, Yang and Ang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 9063999

Zhang et al. Stack Operation of Tensor Networks

https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.1103/revmodphys.93.045003
https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.1103/physrevx.7.021021
https://doi.org/10.1103/physrevx.7.021021
https://doi.org/10.1088/2058-9565/aaba1a
https://doi.org/10.1103/physrevb.97.085104
https://doi.org/10.1103/physrevb.97.085104
https://doi.org/10.1103/physrevx.8.031012
https://doi.org/10.1088/1367-2630/ab31ef
https://doi.org/10.1103/physrevb.103.125117
https://doi.org/10.1103/physrevb.99.155131
https://doi.org/10.1103/physreve.98.042114
https://doi.org/10.1103/physreve.98.042114
https://doi.org/10.1016/j.aop.2012.07.009
https://doi.org/10.1016/j.aop.2012.07.009
https://doi.org/10.1137/090752286
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/veya2ztn
https://github.com/veya2ztn/Stack_of_Tensor_Network
https://github.com/veya2ztn/Stack_of_Tensor_Network
https://github.com/veya2ztn/Stack_of_Tensor_Network
https://doi.org/10.1103/physrevlett.99.120601
https://doi.org/10.1103/physrevb.78.205116
https://doi.org/10.1103/physrevb.78.205116
https://doi.org/10.1103/physrevlett.115.180405
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Stack Operation of Tensor Networks
	1 Introduction
	2 Batch Contraction of Tensor Networks
	2.1 The Stack Operation
	2.2 Basics of Tensor Networks
	2.3 Stack Operation for Matrix Product States
	2.4 Batch Operation for General Tensor Networks

	3 Application
	3.1 Naïve Loop Method
	3.2 Batched Tensor Network Method
	3.3 Efficient Coding
	3.4 Comparison and Discussion

	4 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

